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A B S T R A C T

EEG studies play a crucial role in enhancing our understanding of brain development across the lifespan. The
increasing clinical and policy implications of EEG research underscore the importance of utilizing reliable EEG
measures and increasing the reproducibility of EEG studies. However, important data characteristics like reli-
ability, effect sizes, and data quality metrics are often underreported in pediatric EEG studies. This gap in
reporting could stem from the lack of accessible computational tools for quantifying these metrics for EEG data.
To help address the lack of reporting, we developed a toolbox that facilitates the estimation of internal consis-
tency reliability, effect size, and standardized measurement error with user-friendly software that facilitates both
computing and interpreting these measures. In addition, our tool provides subsampled reliability and effect size
in increasing numbers of trials. These estimates offer insights into the number of trials needed for detecting
significant effects and reliable measures, informing the minimum number of trial thresholds for the inclusion of
participants in individual difference analyses and the optimal trial number for future study designs. Importantly,
our toolbox is integrated into commonly used preprocessing pipelines to increase the estimation and reporting of
data quality metrics in developmental neuroscience.

1. Background

Electroencephalography (EEG) measures brain activity across the
lifespan and is widely used for studying brain function in various do-
mains such as neuroscience, psychology, and psychiatry. Its non-
invasive nature, high cost-effectiveness, mobility, scalability, and tem-
poral resolution have made EEG a powerful tool in developmental
neuroscience research (Buzzell et al., 2023; Lopez et al., 2023;
Troller-Renfree et al., 2021). Numerous EEG studies serve to charac-
terize the development of various cognitive and affective phenomena
(Morales et al., 2022), provide uniquemeasures of individual differences
(Sanchez-Alonso and Aslin, 2020), and evaluate the effectiveness of
interventions (e.g., Buzzell et al., 2023; Debnath et al., 2020; Troller--
Renfree et al., 2022). Beyond clinical settings, EEG research also pro-
vides neurobiological correlates that have policy implications in areas
such as education, health and family policy (e.g., Apochi, 2023; Pavlakis

et al., 2015; Troller-Renfree et al., 2022). These clinical and policy im-
plications underscore the importance of utilizing reliable EEG measures
and enhancing the reproducibility of EEG studies. In addition, although
pediatric EEG has been mostly used in relatively small samples, re-
searchers are becoming increasingly aware of EEG’s potential to
advance neurodevelopmental research further when integrated with
large datasets (Norton et al., 2021). Studies such as the Autism Bio-
markers Consortium for Clinical Trials (ABC-CT) (McPartland et al.,
2020), the Youth Of Utrecht (YOUth) Study (Onland-Moret et al., 2020),
and the HEALthy Brain and Cognitive Development (HBCD) Study
(Volkow et al., 2021; Fox et al., 2024) employ EEG techniques across
multiple sites to identify biomarkers to study neurodevelopmental dis-
orders as well as measure cognitive and emotional development in
large-scale research. These studies utilize EEG to capture changes,
maturation, and learning over time, thus contributing to the under-
standing of developmental processes.

* Correspondence to: University of Southern California, 501 Seeley G. Mudd Building, Los Angeles 90089, USA.
E-mail addresses: wenyix@usc.edu (W. Xu), santiago.morales@usc.edu (S. Morales).

Contents lists available at ScienceDirect

Developmental Cognitive Neuroscience

journal homepage: www.elsevier.com/locate/dcn

https://doi.org/10.1016/j.dcn.2024.101458
Received 1 April 2024; Received in revised form 2 August 2024; Accepted 24 September 2024

Developmental Cognitive Neuroscience 70 (2024) 101458 

Available online 28 September 2024 
1878-9293/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:wenyix@usc.edu
mailto:santiago.morales@usc.edu
www.sciencedirect.com/science/journal/18789293
https://www.elsevier.com/locate/dcn
https://doi.org/10.1016/j.dcn.2024.101458
https://doi.org/10.1016/j.dcn.2024.101458
https://doi.org/10.1016/j.dcn.2024.101458
http://creativecommons.org/licenses/by/4.0/


The increasing amount of large, longitudinal EEG datasets un-
derscores the necessity for automated EEG pipelines. Such necessity has
led to the development of several publicly available EEG preprocessing
pipelines, such as PREP (Bigdely-Shamlo et al., 2015), MADE (Debnath
et al., 2020), and HAPPE (Gabard-Durnam et al., 2018; Monachino et al.,
2022). These standardized pipelines provide distinct advantages in
automating adult and pediatric data processing. Compared to manual
visual inspection, these automated pipelines offer a more time-efficient
alternative and provide a standardized method for removing artifacts,
especially in large sample sizes. Additionally, they eliminate inter-rater
differences that commonly arise with preprocessing steps that require
visual inspection and subjective judgments (Leach et al., 2020). Because
of these advantages, automated preprocessing approaches are becoming
a common way to preprocess and analyze EEG data, even among studies
with relatively small samples.

The increased use of EEG for studying neurodevelopment with policy
and clinical implications, along with its expansion into larger sample
sizes and automated pipelines, also highlights the importance of eval-
uating and reporting critical data characteristics, such as the psycho-
metric properties of EEG measures. In addition, as research employing
EEG shifts focus from characterizing broad group differences to delving
into the nuances of individual differences in brain function, the rele-
vance of considering the psychometric properties of EEG metrics be-
comes increasingly important (Lopez et al., 2023). Understanding
individual differences in brain function through EEG requires a robust
framework that accounts for the reliability and validity of EEG metrics.
These psychometric properties are crucial because they ensure that the
EEG measures accurately capture the individual variability in brain
activity.

2. Current study

Despite the importance of data quality metrics for understanding
data characteristics as well as individual differences, reports on the
reliability and validity of EEG measures in pediatric populations are
scarce. The lack of reporting and use for these metrics in EEG research
may partly be because they require additional preprocessing, which can
be computationally demanding and is not provided by most pre-
processing packages. Because of this, adding data quality metrics as a
standard output of the automated preprocessing pipelines will likely
increase the use of these metrics in research moving forward. Here, we
remove this barrier to access by introducing the Reliability, Effect size,
And Data quality In EEG (READIE) Toolbox, written in MATLAB, and
integrating it with automated software to provide automated and
straightforward computation of multiple key psychometric and data
quality parameters. The READIE Toolbox facilitates the estimation per
dataset of reliability, effect size, and data quality measures (e.g., stan-
dardized measurement error; SME; Luck et al., 2021) with a
user-friendly interface that facilitates both computing and interpreting
these measures. In addition, the READIE Toolbox provides subsampled
internal consistency reliability and effect size in increasing numbers of
trials. Collectively, these estimates can guide the determination of the
required number of trials for identifying reliable measurements and
significant effects. They can help establish the minimum threshold of
trials necessary for participant inclusion and provide guidance on the
optimal number of trials for the design of future studies.

Our manuscript has the following aims: First, we introduce the
READIE Toolbox, designed to enhance the reporting of data quality
metrics for widely-used automated EEG pipelines for large-scale devel-
opmental studies, by reviewing the data quality metrics currently pro-
vided in the READIE Toolbox. These metrics include internal consistency
reliability, effect sizes, and Standard Measurement Error (SME). Next, we
demonstrate the capabilities of the READIE Toolbox using three EEG tasks
(visual-evoked potential [VEP] task, Resting State task, and passive-
viewing face processing task) collected from the pediatric population.
Finally, we discuss the limitations and future directions for the toolbox.

3. Metrics chosen

The READIE Toolbox includes three data quality metrics: internal
consistency reliability, within-person effect size, and SME. Here, we
explain the details of these three metrics.

3.1. Internal consistency reliability

Reliability broadly evaluates the consistency and stability of the
measurements used and, for a specific construct, reflects the inherent
data quality (Cronbach, 1957). Specifically, for EEG studies, internal
consistency reliability assesses the degree to which trials or epochs are
correlated with one another. Given that EEG studies rely on stable in-
dividual measures of brain function to relate to individual measures of
cognitive, affective, and sensory processing and performance (Parsons
et al., 2019), evaluating reliability measures of those brain estimates
would be a prerequisite for identifying potential brain-behavior re-
lations. Similarly, in the context of large-scale longitudinal studies (e.g.,
HBCD; Volkow et al., 2021), EEG measures with adequate reliability
would be necessary to evaluate associations between individual differ-
ences in brain functions and external factors such as environments, ex-
periences, and exposures. In addition, as noted by Vul et al., (2009) and
Parsons et al., (2019), the reliability of measures limits the strength of
the association that can be determined between individual difference
measures (Nunnally Jr., 1970). Thus, considering and optimizing in-
ternal consistency reliability estimates are crucial to draw robust con-
clusions on individual differences such as biomarkers or other
brain-behavior relations.

Importantly, given that internal consistency reliability is a property
of the test scores rather than the test itself, there’s no simple conclusion
on whether "a test is reliable or unreliable" (Wilkinson, 1999, p. 596). In
the context of EEG, this suggests that the internal consistency of EEG
data is not a universal trait but varies within each sample and paradigm.
In other words, internal consistency reliability reflects a characteristic of
the data at hand and the estimated measures (e.g., for that population)
rather than an inherent characteristic of the EEG measure (e.g., ERP
component; Clayson and Miller, 2017). Therefore, it is crucial to report
internal consistency reliability in every study, as they can vary by
several factors such as sample characteristics (e.g., age, Morales et al.,
2022; clinical diagnosis, Baldwin et al., 2015), EEG recording proced-
ures, or task environments (Clayson and Miller, 2017). For example, in a
study of 4- to 9-year-olds, Morales and colleagues (2022) found that
internal consistency reliability was higher for older than younger chil-
dren for error monitoring measures. Similarly, Baldwin and colleagues
(2015) reported a different internal consistency reliability for the con-
trol group compared to the group with clinical diagnoses. These results
suggest differences in internal consistency reliability across various
participant groups (e.g., age; clinical vs. typical) in each study, high-
lighting the necessity for studies to report the reliability of their EEG
measures on a study and population basis.

In addition to obtaining an overall measure of the internal consis-
tency reliability of the measure for the sample, estimates can be
computed in an increasing number of trials. This can provide guidance
on thresholds for the minimum number of trials required for reaching
acceptable levels of internal consistency to include participants in ana-
lyses of individual differences. Previous research has proposed thresh-
olds for reliability (e.g., acceptable [.60], good [.70–.80], and excellent
[.90]; Clayson and Miller, 2017; Meyer et al., 2014), but these vary
across studies. In addition, providing changes in internal consistency
reliability as a function of increasing numbers of trials can inform
optimization efforts within a dataset’s analyses and inform decisions
about the number of trials for future study designs. However, it is worth
noting that not all paradigms should aim for high internal consistency
reliability across all trials. For example, for tasks that involve conditions
or changes in the measurement construct over time (e.g., learning or
habituation tasks), the internal consistency threshold should be set
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differently for different conditions or phases of the task.
For reliability computation in READIE, we used the split-half reli-

ability method rather than calculating Cronbach’s alpha, another
commonly used way to estimate internal consistency. Cronbach’s alpha
calculates the average correlation between all possible pairs of items in a
test (Hajjar, 2018). While it provides a comprehensive measure of in-
ternal consistency, it has limitations, such as assuming that the order of
items is the same across subjects and having a direct dependency on the
number of trials (Allen et al., 2004; Parsons et al., 2019; Towers and
Allen, 2009). This is a concern when examining the reliability of ERP
paradigms, which can have hundreds of trials presented in a different
order across participants, and when conducting reliability analyses in an
increasing number of trials. Because of this, we employ split-half reli-
ability in the READIE Toolbox, following previous research (e.g., Amir
et al., 2023; Morales et al., 2022; Morales et al., 2021; Parsons et al.,
2019; Towers and Allen, 2009). Estimating split-half reliability entails
randomly dividing the dataset into two halves and then assessing the
consistency of results across these splits by estimating the correlation
between these halves. Typically, the correlation estimates are refined
using the Spearman-Brown prophecy formula (Nunnally Jr., 1970).
Cronbach’s alpha and split-half reliability are tightly related, as Cron-
bach’s alpha for all items equals the average of the
Spearman-Brown-corrected correlation coefficients derived from every
possible split (Towers and Allen, 2009). In addition, while Cronbach’s
alpha provides overall reliability estimates for the measurement,
split-half analysis can be used to assess the overall reliability when trials
are not presented in a fixed order and provide reliability estimates as the
number of trials increases. The overall reliability offers a general esti-
mate of the measure’s consistency for that sample, while analyzing the
increasing number of trials provides insights into the number of trials
needed to reach different thresholds of reliability (e.g., acceptable [.60],
good [.70–.80], and excellent [.90]; Clayson and Miller, 2017; Meyer
et al., 2014). These thresholds provide guidelines for evaluating the
reliability estimate of a certain task. Providing reliability estimates in an
increasing number of trials informs the determination of minimum trial
thresholds for including participants in individual difference analyses
and for optimizing trial numbers in future study designs.

This split-half approach has been widely used in the EEG field with
adults (e.g., Towers and Allen, 2009) and pediatric populations (e.g.,
Meyer et al., 2014). Furthermore, studies have employed reliability es-
timates in increments of trial numbers to determine the optimal number
of trials needed for robust reliability assessments of specific ERP com-
ponents (Morales et al., 2022; Towers and Allen, 2009). Our integration
of the split-half approach as a measure of internal consistency into the
READIE Toolbox is designed to be intuitive, practical, and user-friendly,
with minimal dependencies on external libraries, modules, and software
components. It simplifies the analytical process, allows easier adoption
by novice and advanced researchers, and facilitates its application in
research settings.

3.2. Within-subject effect size

Effect sizes quantify the magnitude of differences between groups or
conditions and provide an estimate of the data quality (Boudewyn et al.,
2018; Delorme, 2023; Kappenman and Luck, 2010). Unlike reliability,
which assesses the stability or consistency of individual difference
measures, effect sizes for within-subject designs focus on quantifying the
magnitude of differences in experimental manipulations. Effect sizes in
the context of EEG are often reported between different experimental
conditions (e.g., congruent vs. incongruent; errors vs. correct trials, etc.)
or compared to a pre-stimulus baseline in within-subjects designs,
aiming at detecting specific ERP components (e.g., N2, P3, or ERN).
Effect sizes evaluate the impact of the measure of interest on studied
processes and can help determine the likelihood of detecting a signifi-
cant effect if it exists (Luck et al., 2021). Furthermore, effect sizes
facilitate power analysis, which aids in determining the appropriate

sample size, improving study design, and enhancing study replicability.
In addition, given the increasing momentum of utilizing EEG in large
developmental datasets, small effects can achieve statistical significance
due to the large sample size. Thus, given that sample sizes continue to
grow in large developmental studies, effect sizes become increasingly
important because they quantify the magnitude of differences.

Effect size indicating experimental manipulations can also be viewed
as a sign of data quality. This interrelation is critical because noise can
obscure the detection of the manipulation of interest, thereby dimin-
ishing the perceived effect size. Here, we use effect size measures to
assess data quality and quantify the impact of experimental manipula-
tions. Previous studies have utilized effect size as a metric for data
quality comparison. For example, Delorme (2023) used effect sizes to
compare different EEG preprocessing parameters and pipelines, indi-
cating the performance of various pipelines. Similarly, Kappenman and
Luck (2010) employed this metric to quantify the differences between
EEG systems, assessing the impact of different systems on data quality.
However, to our knowledge, it has not been used to examine data quality
in pediatric populations. In our toolbox, we have built-in within-subject
effect size functions to help users quantify the magnitude of differences
between conditions within a task as an additional data quality metric.

3.3. Standard Measurement Error (SME)

Recently, Standard Measurement Error (SME) has been proposed as a
simple and flexible approach to represent the standard error of mea-
surement for ERP measures (Luck et al., 2021). It indicates the spread of
values across trials and measures the standard deviation of the sampling
distribution for these measurements (Luck et al., 2021). In addition, it
provides a measure of variability at the individual level, both at the
individual participant level and at the level of individual channels
within a participant. Providing a data quality metric at the individual
level is a key advantage of SME compared to internal consistency reli-
ability and effect sizes, which offer generalized measures for the entire
sample. This individual-level metric facilitates the exclusion of partici-
pants or problematic channels. Moreover, SME, closely related to in-
ternal consistency reliability, quantifies the degree of change under
repeated measurements within the same condition. This enables re-
searchers to quantify differences in data quality between experimental
designs, preprocessing, and data analysis parameters. Additionally, it
aids in the identification of potential issues that impact data quality,
such as detecting environmental noise or identifying bad channels (Luck
et al., 2021). Studies have employed SME to evaluate EEG data on both
adults and children; for example, Zhang and Luck (2023) observed large
differences in SME across different ERP components among college
student participants (e.g., P3b, N170, mismatch negativity, N400). In
addition, Isbell and Grammer (2022) applied SME calculations to ERP
data collected from young children, suggesting that SME can be used to
reach decisions about appropriate scoring methods and baseline
correction for pediatric EEG data.

Similar to the context-dependent application of internal consistency
reliability, it is important to note that SME’s application should be
considered depending on the context as well. For example, for tasks that
expect varying responses over time or studies involving neurodiverse
populations, the use of SME may need to be carefully evaluated, given
that their varied responses might indicate learning, developmental
changes, or neurodevelopmental differences between groups rather than
poor data quality. Therefore, while SME is valuable for assessing data
quality in certain contexts, it should be applied with caution and an
understanding of its meaning in specific research scenarios. Given these
considerations, our tool provides researchers with well-established data
quality metrics, including internal consistency reliability and effect
sizes, alongside this innovative metric.
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3.4. Summary of READIE toolbox metrics

In summary, the three metrics discussed—internal consistency reli-
ability, within-subject effect size, and SME—each play a unique role in
assessing data quality. Reliability focuses on the internal consistency of a
dataset, which is crucial for identifying individual differences. The
within-subject effect size quantifies variations between conditions,
capturing the brain’s response to experimental manipulations and
providing information about data quality. SME evaluates the precision
of the measurement for each participant, enabling detailed analysis at
the individual level. Collectively, these metrics offer a comprehensive
framework for understanding different dimensions of data quality,
ensuring both the reliability and robustness of the data, informing future
research designs, and being a prerequisite to the accurate interpretation
of the research findings. Furthermore, considering their distinct impli-
cations, it is important to apply these metrics judiciously, aligning them
with the most suitable contexts, experimental designs, and research
questions.

4. Methods

4.1. Split-half reliability

To assess the internal consistency of EEG data, we employ the split-
half reliability method, a technique widely used in prior EEG research (e.
g., Leach et al., 2020; Morales et al., 2022; Towers and Allen, 2009). We
utilize participant trial-level data to estimate the overall reliability and
identify the minimum number of trials needed to obtain a reliable
measure through subsampling. For overall reliability, we first randomly
split all trials per condition into two bins, correlate the scores, and then
apply the Spearman-Brown formula to estimate reliability. We repeat
this process many times (e.g., 1000–5000) to obtain a robust estimate of
overall internal consistency reliability. For increasing numbers of trials,
we first randomly create a subsample of trials and conduct
Spearman-Brown corrected split-half correlations for reliability calcu-
lation. We iteratively increase the number of trials (n) in the subsamples
(e.g., 5–100 in increments of 5) to examine when the reliability esti-
mates reach different thresholds (e.g., acceptable [.60], good [.70–.80],
and excellent [.90]; Clayson and Miller, 2017; Meyer et al., 2014).
Because estimates depend on which trials are sampled, several iterations
are conducted (e.g., 1000–5000) in which the reliability is estimated for
each number of trials (n). This iterative procedure provides a robust
measure as it allows for the split-half randomization to vary across it-
erations. We utilize the generated distribution of reliability estimates
from the iterative procedure to calculate confidence intervals around the
reliability estimates for both overall and increasing number of trials.
Specifically, the steps of calculating split-half reliability analysis
include:

1. Subsampling: A given number of trials (n) from each participant and
condition is subsampled without replacement.

2. Splitting of Trials: Within each participant, the subsampled n trials
are randomly divided into two bins.

3. Averaging: The averaged value is calculated in each bin for each
participant.

4. Correlating Scores: The average scores are calculated for all partic-
ipants between the two bins.

5. Applying the Spearman-Brown Formula (Eq. 1): This formula is
employed to adjust the observed correlation coefficient between the
halves of the test to estimate the correlation coefficient for the full
test and calculate the reliability estimate derived from the test
(Warrens, 2017).

rfull =
2(rhalf )

1+ rhalf

Spearman − Brown Formula
(1)

Where:
rfull is the reliability coefficient of the full-length test.
rhalf is the reliability coefficient of the half-length test.

6. Repeating and Averaging: The entire process is repeated multiple
times (e.g., 1000–5000), and the average, as well as the 95 % con-
fidence intervals of the reliability estimates, is calculated. This
repetition generates a distribution of reliability estimates, from
which the 2.5th and 97.5th percentiles are used to determine the
confidence intervals.

4.2. Within-subject effect size

To estimate effect sizes, we calculate Cohen’s d between conditions
(Eq. 2). Cohen’s d is a standardized measure that quantifies the differ-
ence between the means of two conditions by dividing the mean dif-
ference by the pooled standard deviation (Boudewyn et al., 2018).

d =
X1 − X2

s
Coheń s d Formula

(2)

Where:
d is the Cohen’s d effect size.
X1, X2 is the mean of condition 1 and condition 2.
s is the pooled standard deviation.
We follow the same overall and subsampling process for increasing

number of trials as described in the internal consistency reliability sec-
tion. Specifically, the steps of computing within-subject effect size
include:

1. Subsampling: A given number of trials (n) from each participant and
condition is subsampled without replacement.

2. Computing Within-Subject Effect Size: For conditioned data, effect
size calculations are conducted compared to the baseline, as well as
cross-conditions. Both one-sample t-tests for data within a single
condition (compared to the baseline or zero) as well as paired-sample
t-tests between different conditions are performed.

3. Repeating and Averaging: The entire process is repeated multiple
times (e.g., 1000–5000), and the average, as well as the 95 % con-
fidence intervals of the effect size, is calculated. This repetition
generates a distribution of effect size estimates, from which the 2.5th
and 97.5th percentiles are used to determine the confidence
intervals.

4.3. Standard Measurement Error (SME)

For SME estimation, we follow the approach described by Luck et al.
(2021). In their work, Luck et al. (2021) distinguished different condi-
tions under which analytic standardized measurement error (aSME) and
bootstrapped standardized measurement error (bSME) should be used
for data precision measurement. Specifically, aSME is applicable to the
time-window mean amplitude because this score remains consistent
whether it is obtained from the averaged ERP waveform or by averaging
individual single-trial scores (Luck et al., 2021). In contrast, bSME
should be used for peak amplitudes or peak latency (Luck et al., 2021).
When measuring these scores, the values obtained from averaging in-
dividual trials differ from those obtained from the averaged ERP
waveform, and the standard errors also differ. Therefore, bSME utilizes
bootstrapping with replacement to estimate the standard error of the
data. In the READIE Toolbox, we provide calculations for both aSME and
bSME for cross-validation purposes. Note that the READIE Toolbox
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currently only accepts mean amplitude values.
For aSME calculation for each participant, we apply the following

equation (Eq. 3). We compute the standard deviation (SD) across trials of
a single participant and divide it by the square root of the number of
trials (N) for that participant (Eq. 3).

SME =
ŜD̅̅̅

̅
N

√

SME Equation
(3)

Where:
ŜD is the estimated standard deviation across trials of a single
participant.
N is the number of trials for that participant.
Following the same approach used in Luck et al. (2021) for bSME

calculation, we utilize bootstrapping with replacement to estimate the
standard error of our data. Specifically, the steps of computing bSME for
each participant include:

1. Bootstrapping: New samples are simulated from an existing set of
trials through bootstrapping with replacement for each participant.

2. Repeating: The entire bootstrapping process is repeated multiple
times (e.g., 1000–5000). Sampling distribution is generated by
participant.

3. Computing bSME: The bSME for the participant is the standard de-
viation (SD) of the sampling distribution.

5. Data utilized for illustration

5.1. Participants

The dataset utilized in this manuscript to illustrate our toolbox was
collected as part of an ongoing longitudinal Khula study of the first 1000
days (see Zieff et al., 2024 for complete longitudinal protocol). Briefly,
families participated in three in-lab study visits over their infant’s first
two years of life: one between 2 and 5 months of age (Visit 1; mean age:
4.09 months, SD = 0.91, range = 2.07 – 5.82 months), one between 6
and 12 months (Visit 2; mean age: 9.46 months, SD =1.62, range = 6.04
– 12.96 months), and one between 13 and 18 months (Visit 3; mean age:
15.41 months, SD = 1.16, range = 13.04 – 18.68 months). For the
purposes of illustrating age-related changes, we excluded infants who
are outside the age ranges of 2–5 months (n = 3), 6–12 months (n = 4),
and 13–18months (n = 0) for visits 1, 2, and 3, respectively. The number
of participants is reported in the description of each task, as the number
of participants differed by task. For all visits, infant electroencepha-
lography (EEG) data were collected. Not all infants provided usable data
for all tasks or at all time points.

5.2. EEG data acquisition

Description of the EEG data collection can be found in previous re-
ports (e.g., Margolis et al., 2024). EEG data were recorded while infants
sat on their caregivers’ laps using high-density (128-channel) HydroCel
Geodesic Sensor Nets (Magstim EGI; Whitland, UK). Nets with modified
taller (9.3 mm) pedestals designed for improving the inclusion and
experience of infants with curly, coiled, and/or coarsely textured hair
were used as needed (Mlandu et al., 2024). EEG data were recorded at a
sampling rate of 1000 Hz and online referenced to the vertex (channel
Cz) via NetStation 5.4 software (Magstim EGI) connected to a Net Amps
400 Series high-input impedance amplifier. Impedances were aimed to
be kept below 100 kΩ in accordance with the impedance capabilities of
the amplifier. EEG data were collected during a visual-evoked potential
(VEP) task, a passive-viewing face processing task, and a Resting State
task. All tasks were administered using E-prime 3.0 software (Psychol-
ogy Software Tools, Pittsburgh, PA) on a Lenovo desktop computer with

an external monitor 19.5 in. on the diagonal facing the infant (with
monitor approximately 65 cm away from the infant on their caregivers’
lap). During all tasks, an experimenter was seated near the infants to
keep them calm and engaged while stimuli were presented.

5.2.1. VEP Task
For the VEP task, a standard phase-reversal VEP was induced using a

black and white checkerboard stimulus (1 cm×1 cm squares within the
board) alternating every 500 ms for a total of 100 trials. Participant
attention was monitored via video and by an assistant throughout data
collection and the task was repeated if participants looked away. See
Margolis et al., (2024) for a more in-depth description of this task in this
sample. For this task, there were 234, 254, and 247 infants for Visits 1–3,
respectively.

5.2.2. Face processing task
A passive-viewing face processing task was only collected at visits 2

and 3. Stimuli were images of Model BF – 016 from the Chicago face
database (Ma et al., 2015) expressing happy and fearful emotions. At
Visit 2, a maximum of 150 trials were presented to each infant, 50 of
each condition (happy upright, happy inverted, and fear upright). At
Visit 3, a maximum of 100 trials were presented to each infant, 50 of
each condition (happy upright and fear upright). Stimuli were presented
on a white background. Each face stimulus was presented for 500 ms,
with a variable interstimulus interval (ISI) between 500 and 800 ms.
Stimuli were presented in blocks of 5 within each condition and con-
dition presentation block was randomized. For this task, there were 218
(Visit 2) and 225 (Visit 3) infants for Fearful facial expressions and 216
(Visit 2) and 223 (Visit 3) infants for Happy facial expressions.

5.2.3. Resting state task
EEG was collected while infants passively viewed a silent 3-minute

resting state video consisting of different colorful and engaging clips.
The nearby experimenter also engaged the infants with bubbles or
another silent toy as needed during the recording sessions. For this task,
there were 243, 240, and 258 infants for Visits 1–3, respectively.

5.3. EEG data pre-processing

All EEG files were processed using the Harvard Automated Process-
ing Pipeline for EEG, an automated preprocessing pipeline designed for
infant EEG data (HAPPE; Gabard-Durnam et al., 2018; Monachino et al.,
2022). Version 3.3 of the HAPPE pipeline was run using MATLAB
version 2022b and EEGLAB version 2022.0 (Delorme and Makeig,
2004).

For the VEP task, we generated mean amplitudes for the N1 (40–100
ms), P1 (75–130 ms), and N2 (100–230 ms) in the Oz electrode cluster
(E70, E71, E75, E76, & E83; see Margolis et al., 2024 for more details).
For the face processing task, we generated mean amplitudes for the P1
(60–140 ms), N290 (100–300 ms), and P400 (300–500 ms) for the Fear
and Happy upright facial expressions in an extended Oz electrode cluster
(E71, E74, E75, E76, E82, E70, E66, E65, E69, E83, E84, E89, & E90)
through the generateERPs script (HAPPE; Gabard-Durnam et al., 2018;
Monachino et al., 2022). We selected these time windows based on vi-
sual inspection and previous research (Bowman et al., 2022; Conte et al.,
2020; Peltola et al., 2020; Xie et al., 2019). For the Resting State task, we
segmented artifact-free data into contiguous 2-second windows and
estimated absolute power to extract delta (2–3.99 Hz), theta
(4–5.99 Hz), low alpha (6–8.99 Hz), high alpha (9–12.99 Hz), beta
(13–29.99 Hz), and gamma (30–50 Hz) band power across all electrodes
using the HAPPE generatePower script (Gabard-Durnam et al., 2018;
Monachino et al., 2022). These frequency bands were selected based on
previous research (Gabard-Durnam et al., 2019).
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6. Results

6.1. Reliability, effect size, and SME sample results

The READIE Toolbox is an open-source tool written in MATLAB. The

READIE Toolbox with a comprehensive user guide and the sample R
code for plotting can be accessed here: https://github.com/Bead-L
ab/The-READIE-Toolbox-Reliability-Effect-size-And-Data-quality-In-
EEG. We developed the tool to facilitate the estimation, per dataset, of
reliability, effect size, and standardized measurement error (SME; Luck

Fig. 1. Overall Reliability as well as the reliability in increasing number of trials of VEP data across Age Groups for N1, P1, and N2 Component’s mean amplitudes.
The error bars represent 95 % confidence intervals from the resampling distribution. The red dotted line represents the threshold for acceptable data quality (.60), the
black solid line represents the threshold for good data quality (.80), and the black dotted line represents the threshold for excellent data quality (.90).
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et al., 2021) with a user-friendly interface. We used data from the VEP
task, face processing task, and Resting State task in the previously
described longitudinal birth cohort dataset, the Khula Study (Zieff et al.,
2024), to demonstrate how to use and interpret outputs from the
READIE Toolbox.

6.2. Example results from READIE toolbox

The following section showcases the internal consistency reliability,
effect size, and SME results with 1000 iterations used for computation of
the VEP, face processing and Resting State datasets, outputted from the
READIE Toolbox. To consolidate multiple outputs into a single visuali-
zation, we utilized a plotting R script to integrate READIE output into
the following graphs.

6.2.1. Reliability output
The READIE Toolbox provides overall and trial-level reliability, as

illustrated for the VEP data (Fig. 1), face processing task data (Fig. 2),
and Resting State task data (Fig. 3) across the three age groups (2–5
months; between 6–12 months; between 13–18 months). For reliability
in increasing trials numbers, the reliability estimates increased as the
number of trials increased for all age groups and tasks. Interestingly, the
number of trials needed to achieve different thresholds differed by age
and the task/measure used. The Resting State task showed the highest
internal consistency reliability and achieved excellent reliability with
only a few seconds of data. In contrast, the ERP tasks required more
trials, with the VEP task requiring the most trials. For the VEP task
(Fig. 1), the P1 and N2 components had higher reliability compared to
the N1 across age groups. Additionally, for all three ERP components in
the VEP task, infants exhibited lower reliability at 6–12 months than at
other age groups. For the face processing task (Fig. 3), the N290 and
P400 components displayed higher reliability than the P1 component.

6.2.2. Effect size output
The READIE Toolbox provides overall and trial-level effect sizes as a

data quality metric. For individual components, the effect sizes repre-
sent a comparison between the component to the pre-stimulus baseline.
This is illustrated using the VEP data (Fig. 4) and face processing data
(Fig. 5) across the different age groups. Across tasks, there was no
change in effect size with an increasing number of trials, so all graphs
reflected consistent effect sizes across different numbers of trials.
Despite the lack of changes with increasing number of trials, the vari-
ability around the effect sizes, as reflected by the confidence intervals,
was reduced as trials increased. Additionally, given that the order of
comparison affects the positive or negative value of effect size, the
magnitude of the effect size (how much it differs from 0) is used for
comparing in addition to the sign of the effect size. Positive values
indicate greater than the pre-stimulus baseline, whereas negative values
indicate less than the pre-stimulus baseline. For the VEP task, 13- to 18-
month-old infants exhibited a larger effect size compared to the other
age groups for the N1 and N2 component. In addition, 2- to 5-month-old
infants exhibited a larger P1 component compared to the other age
groups. This is in line with the developmental changes in these VEP
components (Margolis et al., 2024). Similarly, for the face processing
task, older infants had a larger effect size for the P1 and P400 compo-
nents, but a smaller N290 component relative to the pre-stimulus
baseline. In addition, the face processing task allowed us to illustrate the
between-condition effect size by contrasting the Happy and Fear con-
ditions based on the facial expression. As shown in Fig. 5, this difference
between conditions had a small effect size that was similar across ages
and number of trials. We didn’t offer an effect size estimate for the
Resting State task, as effect size makes more sense when the task in-
volves differences between groups or conditions.

6.2.3. SME output
The READIE Toolbox also provides SME as an additional data quality

metric. Fig. 6 illustrates the summary output of the averaged SME for
VEP and face processing tasks. For the VEP task, across all components,
the SME was larger for the 2- to 5-month-old infants, compared to 6- to
12-month-old and 13- to 18-month-old infants (t’s >= 5.39, p’s <.001,
d’s =.40–.52). However, there were no differences between 6- to 12-
month-old and 13- to 18-month-old infants (t’s <= 1.32, p’s =.189
− .244, d’s =.09–.10). For the face processing task, there were no con-
dition by age group interactions. However, there were differences by age
and condition, such that SME tended to be higher for the 6- to 12-month-
old compared to the 13- to 18-month-old infants across conditions for
the N290 and P400 (t >= 2.15, p’s <.033 -, d’s = 0.16–0.26). However,
there was not a difference between age groups in the P1 component (t =
1.62, p =.105, d = 0.12). Across ages, the Happy condition tended to
have smaller SMEs than the Fear Condition for all components (t’s >=

2.10, p’s <.040, d’s = 0.13–0.15). Finally, the individual data points are
also shown in Fig. 6 to illustrate that this measure can characterize in-
dividual observations, showing wide variability within age groups.

7. Developer’s notes for the tool

We have integrated our tool with HAPPE (Gabard-Durnam et al.,
2018; Monachino et al., 2022), one of the most widely used automated
pipelines for pediatric EEG data preprocessing. The HAPPE user inter-
face provides users with the option to have data quality metrics calcu-
lated. Additionally, users can utilize plotting functions within our
toolbox to easily visualize their data quality metrics output, either in
increments of the number of trials or overall, depending on their se-
lection. The updated version of HAPPE (version 5.0) with data quality
metrics calculation capabilities can be found here: https://github.
com/PINE-Lab/HAPPE.

In addition to the integration of data metrics computation into
HAPPE, the scripts can be easily adapted to process data that has been
preprocessed with different preprocessing pipelines such as the MADE
pipeline (Debnath et al., 2020). Moreover, in addition to utilizing the
plotting functions within the READIE Toolbox, we provide sample R
code to create publication-ready plots such as the ones used in this
manuscript. The READIE Toolbox with a comprehensive user guide and
the sample R code for plotting can be accessed here: https://github.co
m/Bead-Lab/The-READIE-Toolbox-Reliability-Effect-size-And-Data-
quality-In-EEG.

8. Discussion

Data quality metrics serve as an important foundation for reporting
and interpreting meaningful results from scientific research. Given that
data quality metrics are an intrinsic quality of the dataset, it is recom-
mended that research papers consistently report them for each study
(Clayson and Miller, 2017; Luck et al., 2021). Thus, we developed the
READIE Toolbox to facilitate easier computation of data quality metrics,
including reliability, effect size, and SME. In addition, we integrated our
tool with the HAPPE preprocessing pipeline (Gabard-Durnam et al.,
2018; Monachino et al., 2022) to increase its adoption and ultimately
facilitate the reporting of these important metrics in the developmental
EEG literature.

8.1. Reliability, effect size and data quality metrics (SME)

This paper utilized VEP, face processing task, and Resting State task
data from a longitudinal sample with 2- to 18-month-olds to showcase
the data quality metrics provided by the READIE Toolbox. For VEP
dataset reliability, our results suggest that the 6- to 12-month age group
exhibited lower reliability across components compared to the 2- to 5-
month and 13- to 18-month age groups. This contrasts with other studies
with older children, like Morales and colleagues (2022) with 4- to
9-year-old children, which found linear age-related increases in reli-
ability in error monitoring measures. These non-linear changes in
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Fig. 2. Overall reliability as well as reliability in increasing number of trials of face processing data across three visits for P1, N290 and P400 Components’ mean
amplitude. The error bars represent 95 % confidence intervals from the resampling distribution. The red dotted line represents the threshold for acceptable data
quality (.60), the black solid line represents the threshold for good data quality (.80), and the black dotted line represents the threshold for excellent data qual-
ity (.90).

W. Xu et al. Developmental Cognitive Neuroscience 70 (2024) 101458 

8 



reliability could be due to developmental changes and increased insta-
bility in those estimates, as well as potential differences in data collec-
tion, such as changes in demands for that visit (e.g., addition of the face
processing task). In addition, our results showed that the internal con-
sistency reliability differed by the component examined even within a
task. For the VEP, the P1 and N2 components displayed higher reliability
compared to N1.

For the face processing task, the N290 and P400 components showed
higher reliability compared to the P1. This is notable given that when
utilizing this task as an individual difference measure, the P1 component
for VEP is often the measure that most strongly relates to other outcomes
such as prenatal risk factors (Margolis et al., 2024). Similarly, studies
examining face processing often utilize the N290 as an individu-
al-difference measure, such as in relation to autism (Gui et al., 2021; Guy
et al., 2021; Tye et al., 2022). Additionally, the wider ERP components
are more forgiving for mean amplitude calculation than narrower
components (e.g., N1, P1). This might relate to our observation that
wide components like P400 and N2 have higher reliability, suggesting
that window selection (wider or narrower) may impact the reliability of
ERP components. For increasing numbers of trials, the face processing
task required less trials than the VEP task to achieve acceptable reli-
ability and had higher overall reliability. The VEP task required over 80
trials for most age groups and components, whereas the face processing
task only required ~20 trials for most components and age groups (and
even 16 trials for the N290 and P400 components). This difference in
reliability might be due to the magnitude of the ERPs, where we
observed that ERPs for face processing task were larger compared to
those for the VEP task. Additionally, we would like to highlight that the

reliability results for the face processing task should be considered as
reflecting ERP responses to faces in general, rather than emotion-specific
effects (e.g., Fear vs. Happy).

In contrast to the ERPs, measures from the Resting State task all
displayed excellent reliability even with minimal data. This replicates
previous studies examining the internal consistency reliability of Resting
State measures (Hernandez et al., 2024; Leach et al., 2020; Lopez et al.,
2023; Troller-Renfree et al., 2021) and highlights their utility as indi-
vidual difference measures. Importantly, these age-related and ERP
component-related differences in reliability indicate that the internal
consistency of a dataset is intrinsic and context-dependent (Clayson,
2020; Morales et al., 2022). Thus, data quality metrics should be
consistently reported for different contextual factors such as paradigms
and populations. For datasets where the data quality does not meet the
acceptable threshold, researchers should be cautious when using such
data as a measure of individual differences. For individual differences
analysis, researchers should consider increasing the length of the task or
adjusting the paradigm to reach an acceptable level of internal consis-
tency in the dataset. Future studies can consider assessing the same
participants repeatedly within short time windows to ensure enough
data is being collected to obtain robust individual-level measures. In
addition, data should be collected with tested and reliable EEG systems,
under experimental environments that minimize noise, and data
collection procedures should be consistent across sessions. Moreover,
continuous effort should be made in developing data preprocessing
pipelines that reduce artifacts and noise, ensuring data with a high
signal-to-noise ratio are used for analysis.

Regarding effect size, we found that the effect sizes followed age-

Fig. 3. Overall Reliability as well as the reliability in increasing number of trials of Resting State data across three age groups for power in each frequency band. The
error bars represent 95 % confidence intervals from the resampling distribution. The red dotted line represents the threshold for acceptable data quality (.60), the
black solid line represents the threshold for good data quality (.80), and the black dotted line represents the threshold for excellent data quality (.90).
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related changes in the ERPs across tasks. This pattern is similar to that
observed by Morales and colleagues (2022), where older children
showcased higher effect sizes as indicative of age-related changes.
However, we found no change in effect size when trial number
increased, suggesting that effect sizes can be observed for all age groups
with a few trials. This finding is similar to previous studies with ERPs, in

which the effect sizes remained of similar magnitude as the number of
trials increased (Morales et al., 2022). This suggests that in contrast to
reliability estimates, effect size estimates are less impacted by the
number of trials. However, note that, as expected, the variability around
the average effect size estimates was reduced as the number of trials
increased, enhancing the power to detect significant effect sizes. This

Fig. 4. Overall effect size as well as effect size in increasing number of trials of VEP Task data across age groups for N1, P1, and N2 component’s mean amplitude,
tested against the pre-stimulus baseline. The error bars represent 95 % confidence intervals from the resampling distribution.
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highlights one of the advantages and importance of reporting effect sizes
in the context of large data. Although effects may reach statistical sig-
nificance given the increased power afforded by a large sample, the
effect sizes can help interpret the magnitude of the differences.

For SME, our results showed that, across tasks, the 13- to 18-month

age group had smaller SMEs compared to the other age groups, sug-
gesting greater variability in SME among younger infants. Given that
SME is a relatively new data quality metric and various factors such as
trial number, data collection procedures, and task paradigms can
potentially cause differences in SME scores (Luck et al., 2021), we are

Fig. 5. Overall effect size as well as effect size in increasing number of trials of faces processing data across age groups for P1, N290, and P400 component’s mean
amplitude, tested against the pre-stimulus baseline. The error bars represent 95 % confidence intervals from the resampling distribution.
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unable to isolate single factors that cause the differences in SME across
age. However, similar to the reliability estimates, it is likely that older
children would have higher data quality metrics. Similarly, given the
novelty of this data quality metric, we are unable to establish thresholds
for acceptable SME. Thus, we hope that our toolbox will facilitate more
frequent reporting of SME, which will help us gain a better under-
standing of threshold SME and better isolate the different factors that
cause differences. Interestingly, the age-related differences in SME are
not identical to those observed with the reliability analyses, highlighting
the unique and complementary role of each of the data quality metrics.

8.2. Limitations and future directions

Our study has certain limitations. First, our tool employs a split-half
reliability analysis grounded in Classical Test Theory (CTT), which
posits that observed variance is a combination of true-score variance and
random error variance. This approach is predicated on the assumption
that tasks are in parallel form, characterized by equal means, variances,
and covariances (Clayson and Miller, 2017; Cronbach, 1975). However,
it is crucial to acknowledge that CTT’s assumptions may not universally
apply, as external factors such as test location and device can introduce
systematic errors into the observed scores. To address these limitations,
some developers have turned to Generalizability Theory (G Theory),
which offers a more nuanced framework for the estimation of mea-
surement error. G Theory distinguishes between systematic and random
errors, facilitating the analysis of multiple sources of error for more
comprehensive reliability assessments. This approach is advantageous
for handling unbalanced designs and isolating multiple facets of mea-
surement error (Clayson and Miller, 2017). The ERA Toolbox is an
example of an application that leverages G Theory for these purposes
(Clayson and Miller, 2017).

Secondly, in addition to split-half reliability analysis, Cronbach’s
alpha is a widely used method for evaluating internal consistency,
grounded in Classical Test Theory (CTT). Previous research has used

Cronbach’s alpha as a way of estimating reliability in EEG studies (e.g.
Neuper et al., 2005; Rietdijk et al., 2014). While both split-half reli-
ability and Cronbach’s alpha rely on correlations between items to es-
timate reliability, they do so in different ways. Cronbach’s alpha
calculates the average correlation between all possible pairs of items in
the test, whereas split-half reliability involves dividing the test into two
equal halves and calculating the correlation between the scores on these
halves under a certain number of iterations. Previous studies have
applied Cronbach’s alpha to examine different factors related to internal
consistency. For instance, Thigpen et al. (2017) demonstrated that the
number of trials can significantly impact ERP internal consistency when
measured using Cronbach’s alpha, with interactions noted between the
number of trials and factors such as electrode regions and ERP compo-
nents. This observation is consistent with our results, where we observed
variability in internal consistency using the split-half approach across
different age groups, components, and paradigms. Additionally, Cron-
bach’s alpha has its limitations, such as assuming same order of items
across subjects and dependency on the number of trials, which has led
some to question its suitability for psychophysiological and cognitive--
behavioral data (Parsons et al., 2019; Towers and Allen, 2009). Thus,
our toolbox employed split-half reliability for internal consistency due
to its ability to compute reliability in increasing number of trials and
when trials are not presented in a fixed order across participants.

Additionally, our toolbox provides internal consistency reliability,
effect size, and SME measures to assess EEG data quality. However,
metrics not included in the toolbox, such as the signal-to-noise ratio
(SNR), have also been used to evaluate the quality and interpretability of
EEG data by distinguishing meaningful signals from noise (e.g., Luck,
2014; Thigpen et al., 2017). Effect size compared with the pre-stimulus
baseline and SNR carry similar meanings as both reflect the strength of
the signal relative to the noise or baseline. However, there are differ-
ences between the two metrics. SNR divides that signal of interest over
the noise. In contrast, effect size indicates the strength of the experi-
mental manipulation (signal of interest), calculated based on the

Fig. 6. Averaged SME output across age groups for the VEP and face processing data. The error bars represent 95 % confidence intervals of the variability between
individuals. Dots represent the individual participants.
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standardized difference between two conditions or with the baseline
period (zero). Given that data quality and high signal-to-noise are
important determinates for data reliability (Clayson, 2020), future work
should integrate SNR into the READIE Toolbox to provide insights into
the signal clarity of the EEG components and explore the relationship
between SNR and effect size.

Also, although the dataset we used is a longitudinal dataset, we
treated the data as cross-sectional to illustrate our toolbox and applied
the same time windows and frequency bands across age ranges. The goal
of our study was to illustrate the data quality metrics provided by the
toolbox and show age-related changes in the data quality metrics, rather
than provide a detailed description of how these ERP and power mea-
sures change across infancy. However, researchers examining the
developmental changes of those ERP components or EEG power mea-
sures could identify each individual’s peak to more carefully define the
time windows (e.g., Margolis et al., 2024) or frequency bands (e.g.,
Donoghue et al., 2020). In addition, since wider time windows are more
forgiving for mean amplitude calculation, components with wider
windows might show higher reliability. Further research should inves-
tigate how time window selection affects reliability. Furthermore, our
measures did not adjust for the previous component (e.g., peak-to-peak
analysis), which some researchers perform. Future studies could
examine how those adjustments impact the reliability of the measures.

In addition, our toolbox can only be applied to measures for which
mean scores or average waveforms are the same as the average of single-
trial scores, such as ERPs’ mean amplitude or EEG power. The READIE
Toolbox is not recommended for measures for which this is not the case,
such as peak amplitude and latency or time-frequency measures
involving variability across trials. For instance, the peak latency for an
averaged waveform across trials does not equal the mean of peak latency
across trials (Luck et al., 2021). This creates computational complica-
tions for reliability estimate calculations as it involves averaging across
trials and participants. Luck and colleagues (2021) have discussed ways
to estimate SME for latency measures through bootstrapping and Mo-
rales and colleagues (2022) have estimated the reliability of time--
frequency measures. Future versions of the READIE Toolbox could
potentially include data quality metrics for these measures, providing
researchers with a broader range of tools for evaluating the quality of
EEG data.

Furthermore, for the bootstrap calculations of internal consistency
reliability and effect size, we adopted an approach consistent with
previous research, which typically employs 1000–5000 iterations for
bootstrapping (e.g., Morales et al., 2022; Towers and Allen, 2009).
However, we have not yet established a specific threshold for the
number of iterations that would ensure stable results while optimizing
computational efficiency. Moving forward, we aim to explore how the
optimal number of iterations could be dynamically tailored for each
study, thereby achieving a balance between reliable outcomes and
computational speed.

While we highlight the distinct aspects captured by reliability, effect
size, and SME, READIE currently lacks a method for comparing across
these metrics to understand how variations in one metric may influence
another. Although existing literature explores data quality and reli-
ability metrics for EEG data with adults, the results are scarce and often
mixed. For example, Clayson et al. (2020) suggest that internal consis-
tency is related to increased effect sizes for the correct-related negativity
(CRN), and SME is negatively correlated with subject-level depend-
ability estimated for reward positivity (RewP). Amir et al. (2023) sug-
gest a positive relationship between SME and between-trial standard
deviation for RewP. Conversely, Thigpen et al. (2017) found generally
non-linear relations between SNR, internal consistency, and effect size
for different ERP measurement techniques. These mixed findings indi-
cate that multiple factors can interact with the interrelations among
different metrics. Thus, future studies should focus on elucidating these
relations to advance our understanding of data quality metrics in EEG
research and provide recommendations about combinations of cutoffs or

ranges in these metrics.
We underscore the distinct implications of three key metrics: reli-

ability, effect sizes, and SME. Collectively, they provide a framework for
evaluating data quality. Yet, it is critical to recognize that there is no
one-size-fits-all solution as different studies have unique manipulations
and contexts (e.g., clinical populations, age, and conditions). Some
metrics are more informative than others depending on the task and
context. For example, effect sizes comparing to baseline is influenced by
factors like hair length, while comparing between conditions is more
suitable for paradigms with robust condition effects. Therefore, we
included additional metrics such as internal consistency and the stan-
dard error of measurement (SME) in the toolbox, providing estimates of
different aspects of data quality.

Finally, for studies that capture changes in state or developmental
processes, it is important to balance robust measures that are stable
across iterations of testing with measures that are flexible enough to
reflect "true" changes in psychological states or developmental profile. It
is crucial to seek variability that is explainable by meaningful factors, so
this variability is not treated as noise. Therefore, while advocating for
the routine reporting of data quality metrics in developmental research,
we emphasize the necessity of selectively applying these metrics to best
suit the specific needs of the dataset and the experimental design.

9. Conclusion

The paper has discussed three data quality metrics: reliability, effect
sizes, and SME; highlighting their importance in measuring data quality.
Following existing literature that advocates routine reporting of reli-
ability estimates, we aim to facilitate the estimation and reporting of
EEG data quality metric analysis by providing the READIE Toolbox that
is intuitive, user-friendly to researchers, and integrated with existing
preprocessing pipelines. We hope the toolbox will help promote higher
standards for reliability and reproducibility in future developmental
neuroscience research.
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