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Background: Colorectal cancer (CRC) is a common intestinal malignancy worldwide, posing a serious 
threat to public health. Due to its high heterogeneity, prognosis and drug response of different CRC patients 
vary widely, limiting the effectiveness of traditional treatment. Therefore, this study aims to construct a novel 
CRC prognostic signature using machine learning algorithms to assist in making informed clinical decisions 
and improving treatment outcomes.
Methods: Gene expression matrix and clinical information of CRC patients were obtained from the 
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then, genes with 
prognostic value were identified through univariate Cox regression analysis. Next, nine machine learning 
algorithms, including least absolute shrinkage and selection operator (LASSO), gradient boosting machine 
(GBM), CoxBoost, plsRcox, Ridge, Enet, StepCox, SuperPC and survivalSVM were integrated to form 97 
combinations, which was employed to screen the best strategy for building a prognostic model based on the 
average C-index in the three CRC cohorts. Kaplan Meier survival analysis, receiver operating curve (ROC) 
analysis and multivariate regression analysis were conducted to assess the predictive performance of the 
constructed signature. Furthermore, the CIBERSORT and ESTIMATE algorithms were utilized to quantify 
the infiltration level of immune cells. Besides, a nomogram were developed to predict 1-, 2-, and 3-year 
overall survival (OS) probabilities for individual patient.
Results: A prognostic signature consisting of 13 genes was developed utilizing LASSO Cox regression and 
GBM methods. Across both the training and validation datasets, the performance evaluation consistently 
indicated the signature’s capacity to accurately predict the prognosis of CRC patients. Especially, compared 
with 30 published signatures, the 13-gene model exhibited dramatically superior predictive power. Even 
within clinical subgroups, it could still precisely stratify the prognosis. Functional analysis revealed a robust 
association between the signature and the immune status as well as chemotherapy response in CRC patients. 
Furthermore, a nomogram was created based on the signature-derived risk score, which demonstrated a 
strong predictive ability for OS in CRC patients. 
Conclusions: The 13-gene prognostic signature is expected to be a valuable tool for risk stratification, 
survival prediction, and treatment evaluation of patients with CRC.
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Introduction

Colorectal cancer (CRC) is the third most frequently 
diagnosed cancer on a global scale, with approximately  
1.9 million new cases and 903,859 deaths reported in  
2022 (1). The situation regarding the prevention and 
treatment of CRC in China is particularly concerning, as 
there has been a notable rise in both the incidence and 
mortality rates of the disease (2). Despite the updated 
treatment strategies and the continuous improvement of 
medical standards, the prognosis of CRC patients remains 
unfavorable, as a considerable proportion of individuals 
are diagnosed when the disease has already progressed to 
advanced stages (3). As reported, the 5-year survival rate 
for patients with metastatic CRC is approximately 20% (4).  
In clinical practice, the prognostic assessment of CRC 
mainly relies on clinicopathologic features and tumor-
node-metastasis (TNM) classification staging system. 
However, these traditional methods often ignore individual 
differences, dynamic changes in disease progression, and 
complex interactions between multiple factors, resulting in 
limited accuracy and reliability. Therefore, it is urgent to 
develop and validate new prognostic models to effectively 
monitor CRC progression.

In recent years,  with the rapid development of 
artificial intelligence technology, the application of 
machine learning algorithms in the medical field has 

increasingly attracted attention. They could extract 
useful information from massive amounts of data and 
automatically learn the complex relationships between data 
to support predictions and decision-making. Especially, 
machine learning algorithms can improve the accuracy 
of risk prediction models in the prognostic assessment 
of cancer by integrating multidimensional information, 
including clinical data, molecular biology features (5), 
and pathological images (6,7). It has been reported that 
machine learning-based models have emerged as crucial 
tools in predicting survival outcomes for various types 
of cancer (8-10). For example, Gong et al. (11) used 
CoxBoost and random survival forest (RSF) to construct 
a neutrophil-derived prognostic signature for improving 
the prognosis of hepatocellular carcinoma. Zhu et al. (12) 
developed a machine learning-based prognostic model 
for prostate cancer and confirmed the role of TMED3 in 
promoting malignant cell proliferation. Zhang et al. (13) 
constructed a prognostic model for lung adenocarcinoma 
by using a combination of 26 machine learning algorithms. 
The signature can accurately predict patient prognosis 
and immunotherapy response. Therefore, by employing 
machine learning algorithms, researchers can obtain more 
accurate and reliable prognostic assessments, contributing 
to better treatment decisions.

This study aimed to develop a prognostic signature 
for CRC based on gene expression profiles and clinical 
information using machine learning methods. The 
prognostic value of the multi-gene signature was evaluated 
through Kaplan-Meier (KM) survival analysis, receiver 
operating curve (ROC) analysis  and performance 
comparison analysis. The correlation between the signature-
derived risk score and several factors including infiltration 
level of immune cells and chemotherapy sensitivity, was 
systematically investigated. Additionally, a nomogram was 
developed by combining the risk score and common clinical 
factors to estimate the survival probabilities of individuals 
with CRC, thus providing more personalized support 
for clinical decision-making. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jgo.amegroups.com/article/view/10.21037/jgo-
24-325/rc).

Methods

Data collation and analysis

Gene expression matrix and clinical information from 
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524 cases of colon adenocarcinoma (COAD) and rectum 
adenocarcinoma (READ) were obtained from the The 
Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/). Meanwhile, clinical information and 

transcriptome data of CRC patients were retrieved from 
the Genomics Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) with the accession 
numbers GSE17536 (n=177) and GSE39582 (n=585).  
Table 1 summarizes the clinical information of patients in 
the training set GSE39582 (14). Download and collection 
of these datasets began in October 2023. Patients without 
clinical information were excluded from the subsequent 
analyses. Next, univariate Cox hazard analysis was 
carried out to detect genes with prognostic value in all 
three datasets (P<0.05). Finally, an online tool (https://
bioinformatics.psb.ugent.be/webtools/Venn/) was used 
to determine the overlap of prognostic genes across these 
three datasets (15). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Construction of the prognostic model for CRC

To develop a reliable prognostic model for CRC, univariate 
Cox regression analysis to identify genes that are significantly 
associated with patient survival. Genes with a P value  
less than 0.05 were considered statistically significant 
and included in further analysis. Then, the present study 
integrated nine machine learning algorithms, including 
supervised principal components (SuperPC), gradient 
boosting machine (GBM), partial least squares regression 
for Cox (plsRcox), Ridge, survival support vector machine 
(survival-SVM), least absolute shrinkage and selection 
operator (LASSO), StepCox, Enet, and CoxBoost (16). By 
leveraging the unique strengths of each algorithm, their 
integration was able to improve the overall performance 
of the prognostic model in predicting CRC outcomes. 
Among the nine machine learning algorithms used in this 
study, LASSO, StepCox, and CoxBoost algorithms possess 
the capacity for feature selection and data dimensionality 
reduction, and they were combined with other types 
of machine learning algorithms to build 97 prognostic 
signatures.

To further select the algorithmic combination that 
could be used to establish the optimal prognostic model, 
the C-index values of each model were computed in the 
GSE39582, GSE17536 and TCGA cohorts. Based on the 
comparison of average C-index values across the three 
cohorts, the prognostic signature with the highest score 
was selected as the optimal model for further analyses. The 
risk score for each patient was then calculated using the 
algorithmic combination used to build the optimal model. 
The “surv_cutpoint” function in “survminer” (17) was used 

Table 1 The clinical information of the CRC patients in the 
GSE39582 dataset

Characteristics Values

Gender

Female 263 (45.0) 

Male 322 (55.0) 

Stage

0 4 (0.7) 

1 38 (6.5) 

2 271 (46.3) 

3 210 (35.9) 

4 60 (10.3) 

Unknown 2 (0.3) 

T stage

T0 1 (0.2) 

T1 12 (2.1) 

T2 49 (8.4) 

T3 379 (64.8) 

T4 119 (20.3) 

Tis 3 (0.5)

Unknown 22 (3.8)

N stage

N+ 6 (1.0)

N0 314 (53.7)

N1 137 (23.4)

N2 100 (17.1)

N3 6 (1.0)

Unknown 22 (3.8)

M stage

M0 499 (85.3)

M1 61 (10.4)

MX 3 (0.5)

Unknown 22 (3.8)

Values are presented as n (%). CRC, colorectal cancer.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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to determine the optimal cutoff point to divided CRC 
patients into the high- and low-risk groups. This cutoff 
point corresponds to the risk score value that can maximize 
the difference in overall survival (OS) time between the two 
groups.

Performance evaluation of the prognostic model

To assess the predictive performance of the constructed 
signature, KM survival analysis was conducted using the 
“survival” and “survminer” packages in the training and 
validation cohorts (17,18). This analysis allowed researchers 
to assess the association between the signature-derived 
risk score and patient survival outcomes in each cohort. 
Besides, time-dependent ROC analysis was carried out by 
using the “timeROC” package (19) to evaluate the predictive 
efficacy of the model in the training and validation cohorts. 
In the ROC analysis, the area under the curve (AUC) was 
calculated as a measure of the model’s discriminatory ability. 

Next, a total of 30 prognostic signatures for CRC were 
queried from the PubMed database (https://pubmed.ncbi.
nlm.nih.gov/) (Table S1). To compare the performance of 
these models with the prognostic signature proposed in 
the study, the “survival” R package (20) was employed to 
calculate the C-index values of each model in the training 
and validation datasets. Then, the “compareC” R package (16) 
was utilized to determine whether the proposed prognostic 
signature outperformed other existing models in predicting 
CRC outcomes.

Construction and performance analysis of the prognostic 
nomogram

Based on the independent prognostic factors including 
the signature-derived risk score and the common clinical 
features, a prognostic nomogram was constructed by 
using the “nomogramEx” package (21) in the GSE39582 
dataset. Then, to evaluate the predictive performance 
of the nomogram in predicting OS, several analyses 
were conducted in the GSE39582 dataset. First, ROC 
analysis was carried out using the “timeROC” package (19)  
to evaluate the predictive efficacy of the nomogram by 
calculating the AUC and comparing it to other models 
or clinical factors. Second, calibration curve analysis 
was performed using the “calibrate” package (22), which 
allowed for the comparison of the predicted probabilities of 
survival with the actual survival outcomes observed in the 
GSE39582 cohort.

Comparative analysis of immune cell infiltration levels 
between high- and low-risk groups

The CIBERSORT algorithm is an impactful deconvolution 
algorithm that uses gene expression profiles and a 
pre-defined immune signature matrix to estimate the 
proportion of 22 distinct human tumor-infiltrating immune 
cells present in a given sample (23). In this study, the 
CIBERSORT algorithm was employed to estimate the 
abundance of tumor-infiltrating immune cells in both 
the high-risk and low-risk groups of CRC. Furthermore, 
the ESTIMATE algorithm (24) was utilized to assess the 
immune, stromal, and ESTIMATE scores for each CRC 
sample. The immune, stromal and ESTIMATE scores 
indicate the ratios of immune and stromal components as 
well as the overall proportions of these components within 
the tumor microenvironment (TME). 

Expression pattern analysis of genes constituting the 
prognostic signature

GEPIA2 (http://gepia2.cancer-pku.cn/) (25) is an online 
tool for exploring gene expression data from TCGA and 
Genotype-Tissue Expression (GTEx) projects. In this study, 
GEPIA2 online tool was utilized to compare the expression 
profiles of the genes constituting prognostic signature in 
tumor and normal control tissues. Furthermore, the Human 
Protein Atlas (https://www.proteinatlas.org/) database (26) 
was employed to retrieve histological staining information 
of the representative genes in tumor and normal control 
tissues of CRC.

Analysis of drug sensitivity in different risk groups

The GDSC database (https://www.cancerrxgene.org/) is a 
valuable resource that provides extensive information on the 
sensitivity of cancer cell lines to different types of anticancer 
drugs (27). Based on the GDSC database, half maximal 
inhibitory concentration (IC50) was calculated to assess the 
response of each CRC patient to chemotherapy drugs by 
using “prophetic” R package (28). The Wilcoxon test was 
applied to assess the statistical significance of the difference 
in IC50 values between the high- and low-risk groups, with a 
P value threshold set at less than 0.05.

Statistical analysis

All statistical analyses were performed using R (version 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://cdn.amegroups.cn/static/public/JGO-24-325-Supplementary.pdf
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4.3.2) (29). If not specified, statistical significance was 
determined based on a two-sided P value or adjusted  
P value below 0.05.

Results

Identification of genes with prognostic value in CRC

To identify reliable prognostic genes in CRC, univariate 
Cox analysis was performed using gene expression data 
and survival information from three independent datasets 
including GSE39582, GSE17536 and TCGA. As shown 
in Figure 1, 3,462, 2,461 and 1,136 genes were found to 
have significant associations with prognosis in GSE39582, 
GSE17536 and TCGA, respectively (P<0.05). From these 
gene sets, we identified 14 hazardous genes [hazard ratio 
(HR) >1] and 8 protective genes (HR <1) that consistently 
overlapped across all three datasets (Figure 1). Accordingly, 
these 22 genes were selected to serve as the input for 
constructing prognostic signatures in CRC.

Construction of a 13-gene prognostic signature based on 
combinations of machine learning algorithms

To construct a reliable prognostic signature, we applied a 
comprehensive machine learning survival framework to 
the 22 prognostic genes in the GSE39582 training dataset. 
The framework consisted of 97 algorithm combinations, 
which were used to develop corresponding models. Then, 
the C-index value of each model was calculated across 
the training and validation datasets. Comparatively, the 
13-gene prognostic signature constructed through the 
“LASSO + GBM” combination exhibited the highest 
average C-index across the three cohorts, and was thus 
identified as the optimal model (Figure 2A). In detail, 
in the GSE39582 training cohort, 13 genes including 
LAMP5, CLK1, KCNQ3, MID2, FABP4, CALB2, GDI1, 
ZNF552, FAM83F, SLC39A8, RAB11FIP1, TBC1D14 and 
SLC18A1, were identified as the most critical subset closely 
associated with the prognosis of CRC patients by LASSO 
Cox regression analysis (Figure 2B-2D). GBM algorithm 
was further employed to determine the importance of these  
13 genes with non-zero coefficient in the prognostic 
signature (Figure 2E). Accordingly, the risk score of each 
CRC patient was calculated in the GSE39582 dataset, and 
they were subsequently divided into high- and low-risk 
groups based on their respective scores.

Furthermore, to assess the performance of the 13-gene 

prognostic signature in stratifying CRC patients with 
different risks, KM survival curve analysis was conducted 
in the GSE39582 dataset. The result revealed a significant 
decrease in OS rates for patients in the high-risk group 
compared to those in the low-risk group, indicating 
that high-risk patients had a worse prognosis (P<0.001)  
(Figure 2F). Besides, time-dependent ROC analysis was 
employed to assess the predictive capability of the 13-gene 
signature. The results showed that the AUC values for 1-, 
2- and 3-year survival were 0.7495, 0.7281 and 0.7148, 
respectively (Figure 2G), indicating its relatively good 
performance in predicting patient outcomes.

Validation of the predictive capability of the 13-gene 
prognostic signature

The robustness of the established prognostic signature was 
further evaluated in the validation datasets TCGA (COAD 
+ READ, n=497) and GSE17536 (n=177). Within each 
dataset, CRC patients were stratified into high-risk and 
low-risk groups based on the optimal cutoff point of the 
risk score. KM survival curve analysis indicated that patients 
in the low-risk group had higher OS probability compared 
to those in the high-risk group (Figure 3A). Time-
dependent ROC analysis demonstrated the stable predictive 
ability of the model for patient survival time (Figure 3B). 
Furthermore, multivariate Cox regression analysis showed 
that the signature-derived risk score and common clinical 
factors including age and stage could serve as independent 
prognostic indicators for CRC patients across the three 
cohorts (Figure 3C). Importantly, the 13-gene prognostic 
signature consistently outperformed most of the 30 
previously published models when evaluating the C-index 
across three datasets (Figure 3D). Therefore, these findings 
indicated that the 13-gene signature exhibited a powerful 
ability in predicting the clinical survival of CRC patients.

Construction of a nomogram to quantify the OS of CRC 
patients

A nomogram could provide a concise visual representation 
of prognostic factors, facilitating the estimation of 
individualized survival probabilities across multiple time 
points for patients. Accordingly, utilizing four independent 
prognostic factors (including gender, age, stage, and 
risk score) obtained from multivariate Cox regression 
analysis, we developed a nomogram to assess the 1-, 2-, 
and 3-year OS of CRC samples in the GSE39582 dataset 
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Figure 1 Screening for overlapping prognosis-related genes across the three datasets. (A) Venn plot shows the overlapping protective genes 
(left) and hazardous genes (right) across the three datasets. (B) Forest plot shows the univariate Cox analysis results of the overlapping 
prognostic genes in the GSE39582 dataset. TCGA, The Cancer Genome Atlas.

(Figure 4A). Notably, the calibration curve analysis showed 
good agreement between the observed and predicted OS 
probabilities (Figure 4B-4D). Moreover, the ROC curve 
analyses demonstrated that the 1-, 2-, and 3-year AUC values 

of the nomogram-derived score (nomoscore) were 0.86, 
0.88, and 0.81, respectively, which exceeded the AUC values 
of the risk score, stage, age and gender (Figure 4E-4G).  
These findings suggest that the prognostic nomogram had 
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robust power for predicting the OS of CRC patients.

Correlation between the 13-gene prognostic signature and 
clinical characteristics

To elucidate the relationship between the 13-gene 
prognostic signature and common clinical features, we 
evaluated the variation in risk scores across different 
clinical subgroups in the GSE39582 cohort. As shown in 
Figure 5A, the risk score was closely related to TNM stage, 
T stage, N stage and M stage, whereas no correlation 
was observed between the risk score and age or gender. 
Moreover, patients with advanced stage, distant metastasis, 
and lymph node metastasis tended to possess higher 
risk score, which is consistent with clinical observations. 
Furthermore, a stratified KM curve analysis was conducted 
in the GSE39582 dataset to evaluate the predictive efficacy 
of the 13-gene signature in different clinical subgroups of 
CRC patients. The results showed that high-risk patients 
had a worse prognosis than low-risk patients across various 
subgroups, including age <60, age ≥60, male, female, TNM 
stage I/II, TNM stage III/IV, T3/4, M0, M1, N0 and 
N1/2 subgroups (Figure 5B). These findings suggest that 
the prognostic model is highly stable, as it can effectively 
distinguish between high- and low-risk groups in most 
independent clinical subgroups.

Correlation between the 13-gene prognostic signature and 
immune status

Considering the crucial role of immune infiltration in 
cancer progression, we used the CIBERSORT algorithm 
to quantify the difference in the abundance of immune 
cell infiltration between the high- and low-risk groups in 
the GSE39582 dataset. As shown in Figure 6A, there were 
significant differences in the infiltration levels of nine 
immune cell types between the high- and low-risk groups, 
such as M2 macrophages and neutrophils. Notably, among 
the 13 genes utilized in constructing the signature, the 
expression levels of CALB2, FABP4, FAM83F, LAMP5, 
MID2 ,  RAB11FIP1, SLC39AB and TBC1D14  were 
significantly linked to the abundance of M2 macrophages 
(P<0.05) (Figure 6B). In addition, the signature-derived 
risk score was significantly correlated with both immune 
score and stromal score (P<0.001) (Figure 6C). These 
findings suggest that the 13-gene prognostic model may 
be associated with immune cell infiltration levels and could 
potentially serve as a biomarker for predicting the tumor 
immune microenvironment of CRC.

Association between the 13-gene prognostic signature and 
drug sensitivity

Chemotherapy is a critical strategy in shrinking tumors, 

Figure 2 Construction of the 13-gene prognostic signature by machine learning methods. (A) C-index values of 97 combinations of machine 
learning algorithms in predicting the OS of CRC patients in the GSE39582, GSE17536 and TCGA datasets. (B,C) LASSO Cox regression 
analysis was performed to select genes used to comprise the prognostic signature. (D) LASSO coefficients for 13 genes with prognostic 
value. (E) Contribution of 13 genes with prognostic value in GBM. (F) KM survival curves for patients in the high- and low-risk groups. 
(G) Time-dependent ROC curves for assessing the predictive power of the constructed signature. TCGA, The Cancer Genome Atlas; 
AUC, area under the curve; OS, overall survival; CRC, colorectal cancer; LASSO, least absolute shrinkage and selection operator; SuperPC, 
supervised principal components; GBM, gradient boosting machine; plsRcox, partial least squares regression for Cox; survival-SVM, survival 
support vector machine; KM, Kaplan-Meier; ROC, receiver operating curve.
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Figure 3 Performance assessment of the 13-gene prognostic signature in predicting the OS of CRC patients. (A) KM survival curve analyses 
were performed to assess the performance of the 13-gene signature in predicting the OS of high- and low-risk patients in the validation 
datasets (GSE17536 and TCGA). (B) Time-dependent ROC curve analyses were conducted to determine the ability of the 13-gene 
signature in predicting the 1-, 2- and 3-year OS in the validation datasets (GSE17536 and TCGA). (C) Multivariable Cox regression analysis 
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Figure 4 Nomogram for predicting OS of CRC patients in the GSE39582 dataset. (A) Construction of the nomogram based on the 
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analysis. *, P<0.05; ***, P<0.001. OS, overall survival; CRC, colorectal cancer; ROC, receiver operating curve.

preventing their spread, and improving OS rates for 
patients with CRC (30). To preliminarily explore the 
potential of the 13-gene prognostic signature in guiding 
chemotherapy for CRC, we conducted a correlation analysis 
between the prognostic model and drug sensitivity based 
on GDSC database. IC50 refers to the concentration of an 
antagonist that is required to inhibit half of the measured 
biological activity. As shown in Figure 7, the IC50 values 
of eight drugs reported for the clinical treatment of CRC, 
including AMG-706 (31), OSI-906 (32), PD-0332991 (33), 
sunitinib (34), AS01245 (35), axitinib (36), pazopanib (37) 

and erlotinib (38), were lower in the high-risk group than 
in the low-risk group (P<0.001), indicating the promising 
role of the 13-gene prognostic signature in predicting 
chemotherapy response.

Expression pattern of representative genes in the 13-gene 
prognostic signature

To gain further insight into the 13-gene prognostic 
signature, we compared the expression patterns of 
representative genes that make up the signature in the 
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tumor and normal control tissues of CRC. As shown in 
Figure 8A,8B, CLK1, FABP4 and CALB2 were significantly 
down-regulated in tumor tissues, while GDI1, FAM83F and 
SLC39A8 had the opposite trend. Furthermore, the protein 
expression levels of these genes in tumor and normal 
control tissues were examined using the Human Protein 
Atlas (HPA) database, which confirmed the above findings 
(Figure 8C-8H).

Discussion

In recent years, how to improve the prognosis and 
personalized treatment outcome of CRC patients has been 
the focus of both biological researchers and clinicians. 
Given this challenge, this study aimed to construct a 
multi-gene model for predicting OS of CRC patients and 
elucidate its functional significance through an integrated 

computational approach.
The integration of machine learning algorithms to 

construct prognostic risk prediction models for cancer 
patients is currently a popular strategy in the field of 
oncology. For example, Feng et al. utilized eight machine 
learning algorithms to assess the risk of lymph node 
metastasis in central neck thyroid cancer, and found that 
the “LASSO + RF” combination yielded the most effective 
model for predicting metastasis (39). Li et al. combined ten 
machine learning algorithms to form 117 combinations 
and found that “LASSO + Stepcox” was the optimal 
combination for constructing an immune-related lncRNA 
prognostic model for gastric cancer (40). Similarly, among 
the 97 combinations of machine learning algorithms 
utilized in this study, “LASSO + GBM” exhibited the best 
performance and thus was selected for constructing the 
prognostic signature. LASSO is a linear regression method 
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Figure 7 Comparison of responses to chemotherapeutic agents between the high- and low-risk patients. IC50, half maximal inhibitory 
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that adds a penalty term to the sum of squared residuals to 
force some coefficients to be exactly zero. The advantage 
of LASSO in handling high-dimensional data by reducing 
the number of variables in the model, makes it a popular 
method in survival analysis (41). The GBM method 
excels at handling nonlinear relationships, considering  
interactions (42) and incorporating higher-order effects in 
the modeling process to better capture complex biological 
features and potential nonlinear associations (43,44). 
Considering the importance of avoiding overfitting and 
improving generalization (45), this study adopted ten-
fold cross-validation for LASSO Cox regression analysis 
to select the optimal λ value and for GBM to select the 
optimal number of decision trees, thereby minimizing the 
prediction error. Notably, our 13-gene prognostic signature 
demonstrated high prediction accuracy in both the training 
and validation sets when compared to 30 published 
prognostic models, as indicated by the C-index value.

Functionally, the signature-derived risk score was closely 
associated with the infiltration levels of multiple immune cell 
types as well as stromal score and immune score (Figure 6).  
Additionally, there were significant differences in the 

responses to eight reported chemotherapeutic agents between 
the high- and low-risk CRC patients, including AMG-
706 (31), OSI-906 (46), PD-0332991 (33), sunitinib (34),  
AS01245 (35), axitinib (36), pazopanib (37) and erlotinib (38).  
For example, Kaya et al. (31) found that AMG-706 exhibited 
anti-proliferative, anti-angiogenic, and apoptotic effects on 
HT29 CRC cells, and the combination of AMG-706 with 
DUP-697 could further enhance these effects. Leiphrakpam 
et al. (32) demonstrated that OSI-906, a small molecule 
tyrosine kinase inhibitor, could act as an IGF-1R antagonist 
and inhibit subcutaneous CRC xenograft growth. This 
is achieved by downregulating the X-linked inhibitor of 
apoptosis (XIAP) protein, which is crucial for cell survival and 
prevention of cell death. Therefore, the 13-gene prognostic 
signature could serve as a valuable tool for assisting in the 
clinical decision-making concerning the treatment of CRC.

Furthermore, we found that some of the genes 
comprising the 13-gene prognostic model were involved 
in CRC pathogenesis. For example, FABP4 knockdown 
could inhibit CRC progression by regulating cell growth, 
apoptosis, stemness and glycolysis through the reactive 
oxygen species/extracellular signal-regulated kinase/
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proteinatlas.org/ENSG00000133477-FAM83F/tissue/colon#img), and tumor sample (image available from https://www.proteinatlas.org/
ENSG00000133477-FAM83F/pathology/colorectal+cancer#img). (G) Immunohistochemical images of SLC39A8, normal sample (image 
available from https://www.proteinatlas.org/ENSG00000138821-SLC39A8/tissue/colon#img), and tumor sample (image available from 
https://www.proteinatlas.org/ENSG00000138821-SLC39A8/pathology/colorectal+cancer#img). (H) Immunohistochemical images of 
RAB11FIP1, normal sample (image available from https://www.proteinatlas.org/ENSG00000156675-RAB11FIP1/tissue/colon#img), and 
tumor sample (image available from https://www.proteinatlas.org/ENSG00000156675-RAB11FIP1/pathology/colorectal+cancer#img). *, 
P<0.05. TPM, transcripts per million; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma; CRC, colorectal cancer; N, normal 
control; T, tumor.

mammalian target of rapamycin (ROS/ERK/mTOR) 
pathway (47). Ma et al. (48) demonstrated that MID2 
could mediate the proliferation, migration, and invasion 
of CRC cells in vitro. CALB2 has been recognized as a 
prognostic biomarker for CRC and a potential target for 
gemcitabine, a preferred second-line anti-cancer drug used 
in the treatment of CRC (49). Xie et al. (50) demonstrated 
that elevated levels of GDI1 were dramatically associated 
with poor outcomes in CRC patients. Therefore, the 
identification of these genes in the 13-gene prognostic 
model provides valuable insights into the molecular 
mechanisms underlying CRC pathogenesis and highlights 
their potential as prognostic biomarkers and therapeutic 
targets for CRC.

In addition, there are some limitations in this study. 
First, the clinical utility of the 13-gene prognostic signature 
identified in this study may be restricted by sample size 
constraints and potential biases in the datasets. Second, the 
stability and generalizability of the model across diverse 
patient populations and clinical settings require further 
validation. Third, the functions of the genes that make up the 
prognostic model need to be experimentally verified in CRC.

Conclusions

The machine learning-based prognostic model developed 
in this study can be used to stratify CRC patients into 
different risk groups based on their gene expression profiles. 
Its prognostic value was evaluated and verified through KM 
survival analysis, time-dependent ROC curve analysis and 
multivariate Cox regression analysis in the training and 
validation datasets. Therefore, this signature provides an 
opportunity to improve individualized treatment strategies 
and enhance patient outcomes for CRC.
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