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Background: Colonoscopy remains the predominant diagnostic modality for colorectal cancer (CRC), 
as the diagnostic performance of tumor markers in alone, particularly in the early stages of the disease, 
is limited. This study sought to develop a diagnostic model for CRC that integrated various laboratory 
parameters.
Methods: One hundred patients with CRC were assigned to an experimental group while 114 with 
benign colorectal diseases and 101 healthy individuals were assigned to a control group. The clinical and 
laboratory data, including the tumor markers such as carcinoembryonic antigen (CEA), glycan carbohydrate 
antigen 19-9 (CA19-9), carbohydrate antigen 242 (CA242), blood count parameters, blood biochemical 
parameters, and coagulation parameters, were collected for each participant. Three machine-learning models 
[multilayered perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and random forest (RF)] were used 
to construct CRC diagnostic models. The performance of each model was evaluated based on its area under 
the curve (AUC), sensitivity, and specificity.
Results: There are 12 parameters: including CEA, CA19-9, CA242, absolute neutrophil value (NEUT), 
hemoglobin, the neutrophil/lymphocyte ratio, the platelet/lymphocyte ratio, alanine aminotransferase, 
alkaline phosphatase, aspartate aminotransferase, albumin, and prothrombin time, were selected to build the 
diagnostic model. For the validation set, the RF machine-learning model achieved the highest performance 
in identifying CRC [AUC: 0.902 (95% confidence interval: 0.812–0.989), accuracy: 0.803, sensitivity: 0.908, 
specificity: 0.772, positive predictive value: 0.664, negative predictive value: 0.890, and F1 score: 0.763]. 
The AUC, sensitivity, specificity, and Youden’s index for the combined diagnosis of tumor markers CEA,  
CA19-9, and CA242 were 0.761, 0.486, 0.983, and 0.469, respectively. The RF diagnostic model showed 
better diagnostic efficacy than the combined diagnosis model of tumor markers CEA, CA19-9 and CA242.
Conclusions: The use of machine learning combined with multiple laboratory parameters effectively 
improved the diagnostic efficiency of CRC and provided more accurate results for clinical diagnosis.
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Introduction

Colorectal cancer (CRC) is a common malignant tumor 
of the digestive tract. According to recent statistics, the 
worldwide incidence of CRC was 10% in 2020, second 
only to breast cancer in females and lung cancer, with a 
mortality rate of 9.4%, second only to lung cancer (1). 
CRC is also one of the most common malignant tumors in 
China. According to the China Cancer Statistics Report, 
CRC ranks second and fourth in terms of its incidence 
and mortality rates, respectively (2,3). In 2020, 555,000 
new cases of CRC and 286,000 CRC-related deaths were 
reported (2,3). The incidence and mortality rates of CRC in 
China have shown an increasing trend in recent years (2,3).

Patients with CRC show no obvious symptoms at early 
stages, and half of CRC patients become symptomatic in 
the intermediate and advanced stages (4). Nearly 20–25% 
of patients have metastasis at the time of diagnosis (4). Even 
after radical surgery, one third of patients develop recurrent 
metastasis, thus the prognosis of CRC is poor (4). The  
five-year relative survival rate of patients with stage I CRC 

is 90%, and that of patients with stage IV CRC is only  
14% (5).

It is believed that most CRCs originate from polyps. 
Polyps that are adenomatous acquire mutations and 
epigenetic changes over time, and eventually progress to 
CRC over a period of approximately 10 to 15 years (6). 
Previous studies have shown that regular CRC screening 
reduces the incidence and mortality of CRC (7,8). 
Therefore, the early screening, detection, diagnosis, and 
treatment of CRC are key to reducing the incidence and 
mortality of CRC (7,8).

Colonoscopy is the most sensitive test for detection and 
prevention of CRC. Adequate bowel prepping is required 
for optimal visualization of the mucosa during colonoscopy. 
However, the strenuous nature of bowel prepping has led to 
reduced patients’ compliance, leading to low participation 
rates .  Computed tomography colonography (CT 
colonography) is a non-invasive alternative to colonoscopy, 
especially for those unable to undergo colonoscopy. 
However, strict bowel preparation is also needed prior 
to CT colonography. More so, specialized equipment 
and personnel, and radiation risk make it unsuitable for 
screening large-scale populations. Nonetheless, CT 
colonography may not readily discriminate between 
residual faeces and true mucosal processes and smaller 
polyps are easily missed. More so, the therapeutic aspect 
of polypectomy during colonoscopy cannot be achieved 
with CT colonography (9). Fecal occult blood testing is 
commonly used in clinical practice. It is low-cost and non-
invasive, but its sensitivity and detection rates are low (10). 
Serum tumor markers are produced by tumor cells or by the 
body in response to tumor cells. These markers reflect the 
existence and growth of tumor cells and play an important 
role in the diagnosis, follow-up, and recurrence monitoring 
of malignant tumors. One commonly used tumor marker is 
carcinoembryonic antigen (CEA), which plays an important 
role in the diagnosis and prognosis of CRC. Tumor markers 
are also elevated in benign diseases and can be at normal 
levels in malignant tumors. Thus, the limited specificity 
represents a major limitation for the use of tumor markers 
for diagnostic purposes (11).

In addition to the identification of novel tumor 
markers, diagnostic models can be developed that include 
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a combination of already known markers to improve 
the diagnosis of CRC. Over the past decade, there has 
been tremendous progress in the technology of artificial 
intelligence. Clinical machine learning-based techniques 
can recognize patterns of high-dimensional data sets and 
help clinicians to make decisions for the early diagnosis 
and treatment of diseases (12,13). There is increasing 
evidence that the integration of pathological sections, 
blood markers, and machine-learning techniques can 
enhance the diagnostic accuracy of CRC models (14-16). 
With the extensive application of machine learning in the 
field of medical research, its potential and advantages for 
tumor prognosis and survival assessment have gradually 
advanced. Clinical laboratories can provide data resources 
for machine learning. Machine learning can extract rules 
or models related to biomarkers and clinical diseases and 
build complex and multi-parameter methods to assist in 
clinical decision making. In this study, biomarkers for CRC 
were analyzed by multilayered perceptron (MLP), eXtreme 
Gradient Boosting (XGBoost), and random forest (RF) 
algorithms to construct diagnostic models. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-24-516/rc). 

Methods

Study population

A retrospective study enrolled a total of 314 participants. 
A total of 100 CRC patients admitted to The Seventh 
Affiliated Hospital of Sun Yat-sen University from 2020 to 
2022 were included in the study as the experimental group, 
of whom 60 were males and 40 were females. According 
to the tumor node metastasis (TNM) staging, 17 of these 
patients had stage I CRC, 27 had stage II CRC, 36 had 
stage III CRC, and 20 had stage IV CRC. Additionally, 214 
healthy participants or participants with colorectal benign 
polyps were enrolled in the control group over the same 
period. Of the 214 participants in the control group, 113 had 
benign colorectal polyps, of whom 75 were males and 38 were 
females, aged 45–75 years, while the remaining 101 were 
healthy participants, of whom 70 were males and 31 were 
females. Both the CRC and colon polyps diagnoses were 
pathologically confirmed. All neoplasms, whether benign 
or malignant, were authenticated through pathological 
examination and immunodiagnostic procedures. The 
study was conducted in accordance with the Declaration of 

Helsinki (as revised in 2013). This study was approved by 
the Ethics Committee of The Seventh Affiliated Hospital 
of Sun Yat-sen University (approval No. KY-2020-039-
01, approval date: October 25, 2020). Individual informed 
consent was waived due to the retrospective nature of this 
study.

Inclusion criteria and exclusion criteria

The inclusion criteria for the study were as follows: (I) 
patients were included in the experimental group if they had 
been diagnosed with CRC after a pathological examination 
and had not been treated with surgery, radiotherapy, or 
chemotherapy; (II) patients were included in the control 
group if they had been pathologically diagnosed with 
benign colorectal polyps, and CRC had been ruled 
out. Patients were excluded from the study if they met 
any of the following exclusion criteria: (I) had a serious 
disease, such as heart, lung, liver, or kidney disease, severe 
immunodeficiency, serious infection, or any other disease; 
and/or (II) had a malignant tumor in another site, or had 
received radiotherapy or chemotherapy due to another 
malignant tumor.

Staging criteria

The clinical staging of CRC was performed based on the 
American Joint Committee on Cancer/Union Internationale 
Contre le Cancer (AJCC/UICC) TNM staging system for 
CRC (Eighth Edition, 2017) (17).

Laboratory data collection

According to the literature, the following laboratory data 
related to CRC were selected: (I) tumor markers, including 
CEA, carbohydrate antigen 19-9 (CA19-9), carbohydrate 
antigen 242 (CA242), and carbohydrate antigen 50 (CA50); 
(II) blood count parameters, including the white blood cell 
(WBC) count, absolute neutrophil value (NEUT), absolute 
lymphocyte value (LYM), absolute monocyte value (MON), 
platelet count (PLT), hemoglobin (HGB), and mean 
platelet volume (MPV); (III) blood biochemical parameters, 
including urea nitrogen (UREA), creatinine (CREA), 
uric acid (UA), total protein (TP), albumin (ALB), total 
bilirubin (TBIL), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), and alkaline phosphatase (ALP); 
and (IV) coagulation parameters, including prothrombin 
time (PT), activated partial thromboplastin time (APTT), 
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thrombin time (TT), fibrinogen (FIB), and the international 
normalized ratio (INR). Further, some indicators were 
converted into ratios, including the neutrophil/lymphocyte 
ratio (NLR) and platelet/lymphocyte ratio (PLR).

Data processing

The clinical laboratory data were randomly divided into two 
sets, and 70% (219 cases) of the data were used to train the 
model, and 30% (95 cases) of the data were used to verify 
the model.

Feature selection

The training set data were used for feature filtering. To 
improve the applicability of the model, and reduce the error 
caused by collinearity and correlation, Gaussian Naïve Bayes 
(GNB) classification, a neural network classification algorithm 
(i.e., MLP), and an Adaboost machine-learning algorithm were 
used to filter out the top 20 most important features for each 
of the models. Finally, the features were screened for model 
construction by machine-learning algorithms.

Machine model construction 

We used a machine-learning technique to develop the 
following three models to diagnose CRC: MLP, RF, and 
XGBoost. We randomly divided the data set into the 
training and validation sets at a ratio of 7:3, cross-validated 
the training set five times, and verified the predictive 
ability of each model using the test set. The diagnostic 
performance of the three machine-learning models was 
evaluated based on the sensitivity, specificity, and area under 
the curve (AUC) of the receiver operating characteristic 
(ROC) curve corresponding to the highest point of the 
Youden index.

Statistical analysis

SPSS 25.0 (IBM SPSS Statistics, Armonk, NK, USA) was 
used to analyze data. The normally distributed data were 
expressed as the mean ± standard deviation, and the t-test 
was used to compare the two groups. The non-normally 
distributed data were expressed as the median (interquartile 
range), and the Mann-Whitney U test was used to compare 
the two groups. Machine-learning models were performed 
using R version 3.6.3 and Python version 3.7. A P value 
<0.05 was considered statistically significant.

Results

Participant characteristics

A flowchart was used to delineate the subjects, clinical 
parameters, and methodological approaches utilized in the 
diagnosis of CRC (Figure 1). The baseline characteristics 
of the participants are presented in Table 1. There were no 
statistically significant differences between the experimental 
and control groups in terms of age and sex. The CEA 
level, CA242 level, NLR, and PLR were higher in the 
CRC patients than the control subjects, while HGB was 
significantly lower in the CRC patients than the control 
subjects.

Feature selection

GNB classif ication (Figure 2A) ,  a neural network 
classification algorithm (i.e., MLP) (Figure 2B), and an 
Adaboost (Figure 2C) machine-learning algorithm were used 
to identify the top 20 feature variables of the three models. 
Ultimately, 12 parameters (i.e., CEA, CA19-9, CA242, 
NEUT, HGB, the NLR, the PLR, ALT, ALP, AST, ALB, 
and the PT) were identified to establish diagnostic models 
with machine-learning algorithms.

Model performance

After the feature screening, 12 parameters (i.e., CEA, 
CA19-9, CA242, NEUT, HGB, NLR, PLR, ALT, 
ALP, AST, ALB, and PT) were found to be significantly 
associated with the diagnosis of CRC. Based on these 12 
parameters, three machine-learning algorithms (i.e., MLP, 
RF, and XGBoost) were used to construct the diagnostic 
models. The diagnostic performance of the three machine-
learning models is shown in Table 2. The ROC curves were 
plotted to compare the diagnostic performance of the three 
machine-learning models (Figure 3A). The RF model had 
better prediction performance than the other machine-
learning models (Figure 3A).

For the validation set (Figure 3B), the RF model had 
higher diagnostic efficacy than the MLP and XGBoost 
models. The accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value, F1 score, and 
AUC [95% confidence interval (CI)] of the RF model, were 
0.803, 0.908, 0.772, 0.664, 0.890, 0.763, and 0.902 (0.812–
0.989), respectively.

Calibration plots with the Brier scores for the MLP, RF, and 
XGBoost models for CRC are shown in Figure 4. Notably, the 
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RF model had the lowest Brier score for diagnosing CRC 
(0.097). The Brier scores for the MLP and XGBoost models 
were 0.100 and 0.112, respectively. The comparison of the 
performance of the machine-learning models, showed that 
the RF model had the best performance of all the models 
for diagnosing CRC.

The importance of the inspection indicators in the models

The top four indicators in the RF model were HGB, ALP, 
CEA, and ALB (Figure 5).

Comparison of the machine-learning models and tumor 
markers

The three machine-learning models were compared, and 
the results showed that the diagnostic performance of the 

RF model was better than that of the other two models. 
Thus, the diagnostic performance of the RF model was 
compared to CEA alone and to a combination of CEA, 
CA19-9, and CA242. In terms of the AUC, sensitivity, 
and specificity, the diagnosis efficacy of the RF model was 
higher than that of the traditional tumor markers. Thus, the 
models that combined machine-learning algorithms with 
several biomarkers significantly improved the diagnosis of 
CRC (Table 3).

Discussion

With high incidence and mortality rates, CRC is one of 
the most common malignant tumors in China (2,3). Due 
to changes in the living environment and eating habits of 
people in China (2,3), the incidence and mortality rate 
of CRC continue to increase. Thus, early screening is 

CRC patients

(n=100)
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(n=214)

Stage I (n=17)

Stage II (n=27)
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Tumor markers

Blood count parameters
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Figure 1 Flowchart of the subject recruitment and data collection. CRC, colorectal cancer.
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Table 1 Participant characteristics

Baseline characteristic Control group (n=214) Experimental group (n=100)

Age (years) 55.50 (50.00, 62.50) 55.00 (52.00, 71.00)

Sex ratio (M/F) 144/70 60/40 

CEA (ng/mL) 1.91 (1.25, 2.22) 2.20 (1.22, 10.51)*

CA19-9 (ng/mL) 10.79 (7.33, 13.78) 9.53 (5.58, 23.78)*

CA242 (ng/mL) 4.53 (2.91, 7.43) 5.25 (2.53, 23.00)*

CA50 (ng/mL) 5.98 (4.45, 8.10) 5.69 (3.09, 14.97)*

WBC (×109/L) 6.82 (5.34, 7.95) 5.80 (4.70, 7.08)

NEUT WBC (×109/L) 3.61 (2.98, 5.06) 3.22 (2.57, 4.14)

LYM WBC (×109/L) 2.14 (1.82, 2.45) 1.86 (1.33, 2.28)*

MON WBC (×109/L) 0.42 (0.32, 0.52) 0.37 (0.32, 0.52)

PLT WBC (×109/L) 237.0 (221.0, 277.5) 247.0 (199.0, 311.0)

HGB (g/L) 143.0 (124.5, 157.0) 122.0 (104.0, 135.0)*

MPV (fL) 9.80 (8.93, 10.00) 10.00 (8.95, 11.00)

NLR 1.63 (1.24, 2.76) 1.78 (1.33, 2.31)*

PLR 114.08 (95.47, 123.26) 145.45 (116.67, 189.04)*

UREA (mmol/L) 4.80 (3.93, 5.53) 4.60 (3.60, 5.80)

CREA (μmol/L) 79.50 (65.50, 83.25) 66.00 (59.67, 81.00)

UA (mmol/L) 333.75 (280.68, 382.58) 310.60 (272.80, 385.80)*

TP (g/L) 68.70 (66.33, 73.05) 68.20 (62.80, 71.00)*

ALB (g/L) 40.45 (39.10, 43.18) 39.40 (38.00, 40.60)*

TBIL (μmol/L) 13.95 (8.83, 20.72) 9.09 (6.84, 15.80)*

ALT (U/L) 16.50 (12.75, 26.00) 14.00 (10.00, 23.00)

AST (U/L) 20.50 (16.00, 25.50) 17.00 (14.00, 20.00)

ALP (U/L) 69.50 (58.75, 84.25) 66.00 (56.00, 77.00)

PT (s) 11.65 (11.20, 12.30) 11.80 (11.40, 12.50)*

APTT (s) 26.85 (25.30, 28.80) 27.40 (25.90, 28.60)

TT (s) 17.70 (16.98, 18.10) 17.30 (16.80, 17.90)*

FIB (g/L) 2.60 (2.33, 3.09) 2.69 (2.40, 3.44)*

INR 0.97 (0.94, 1.03) 0.99 (0.96, 1.05)*

Data are presented as numbers or median (Q1, Q3). *, P<0.05, versus the control group. CEA, carcinoembryonic antigen; CA19-9, 
carbohydrate antigen 19-9; CA242, carbohydrate antigen 242; CA50, carbohydrate antigen 50; WBC, white blood cell count; NEUT, 
absolute neutrophil value; LYM, absolute lymphocyte value; MON, absolute monocyte value; PLT, platelet count; HGB, hemoglobin; MPV, 
mean platelet volume; NLR, neutrophil/lymphocyte ratio; PLR, platelet/lymphocyte ratio; UREA, urea nitrogen; CREA, creatinine; UA, uric 
acid; TP, total protein; ALB, albumin; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline 
phosphatase; PT, prothrombin time; APTT, activated partial thromboplastin time; TT, thrombin time; FIB, fibrinogen; INR, international 
normalized ratio; Q1, 25th percentile; Q3, 75th percentile.
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Figure 2 Importance ranking graphs showing the impact factors for the following three machine-learning models: (A) GNB; (B) MLP; and 
(C) Adaboost. CEA, carcinoembryonic antigen; CA242, carbohydrate antigen 242; CA19-9, carbohydrate antigen 19-9; CA50, carbohydrate 
antigen 50; HGB, hemoglobin; HE4, human epididymis protein 4; NLR, neutrophil/lymphocyte ratio; ALT, alanine aminotransferase; 
ALB, albumin; TT, thrombin time; CREA, creatinine; PLR, platelet/lymphocyte ratio; NEUT, absolute neutrophil value; ALP, alkaline 
phosphatase; TBIL, total bilirubin; MPV, mean platelet volume; AST, aspartate aminotransferase; PT, prothrombin time; TP, total protein; 
FIB, fibrinogen; UA, uric acid; PLT, platelet count; APTT, activated partial thromboplastin time; WBC, white blood cell count; UREA, 
urea nitrogen; GNB, Gaussian Plain Bayesian; MLP, multilayered perceptron. 

Table 2 Diagnostic efficacy of the three machine-learning models for the training and validation sets

Data set
Classification 

model
AUC Accuracy Sensitivity Specificity

Positive  
predictive value

Negative 
predictive value 

F1 score 

Training 
set

RF 0.974  
(0.955–0.993)

0.904  
(0.873–0.936)

0.904  
(0.848–0.960)

0.912  
(0.846–0.979)

0.832  
(0.720–0.944)

0.951  
(0.931–0.971)

0.858  
(0.822–0.894)

XGBoost 0.951  
(0.921–0.981)

0.897  
(0.888–0.907)

0.827  
(0.793–0.861)

0.935  
(0.911–0.959)

0.844  
(0.798–0.891)

0.921  
(0.910–0.931)

0.834  
(0.822–0.845)

MLP 0.899  
(0.854–0.944)

0.817  
(0.794–0.841)

0.838  
(0.758–0.919)

0.817  
(0.768–0.866)

0.658  
(0.618–0.699)

0.917  
(0.886–0.948)

0.734  
(0.701–0.767)

Validation 
set

RF 0.902  
(0.812–0.989)

0.803  
(0.729–0.877)

0.908  
(0.851–0.964)

0.772  
(0.710–0.834)

0.664  
(0.543–0.785)

0.890  
(0.838–0.943)

0.763  
(0.666–0.860)

XGBoost 0.891  
(0.792–0.989)

0.808  
(0.747–0.869)

0.815  
(0.713–0.918)

0.849  
(0.723–0.975)

0.725  
(0.566–0.884)

0.857  
(0.792–0.921)

0.754  
(0.670–0.838)

MLP 0.838  
(0.711–0.965)

0.758  
(0.685–0.831)

0.800  
(0.645–0.955)

0.837  
(0.691–0.983)

0.572  
(0.477–0.667)

0.874  
(0.816–0.933)

0.654  
(0.568–0.740)

Data are presented as numerical value with 95% CI. RF, random forest; XGBoost, eXtreme Gradient Boosting; MLP, multilayered 
perceptron; AUC, area under the curve; CI, confidence interval. 
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important for the treatment and prognosis of CRC patients. 
Of the three machine-learning models investigated, the 
RF model outperformed the other two models with regard 
to diagnostic accuracy, sensitivity, specificity, positive and 
negative prediction values, F1 score and an AUC of 0.902.

In this study, we utilized routine laboratory data to develop 
machine learning models aimed at identifying CRC patients, 
employing MLP, XGBoost, and RF for model construction. 

MLP, also known as an artificial neural network (ANN), 
uses the basic principles of neural networks in biology. ANN 
examines network topology as the theoretical foundation 
for simulating the processing of complex information within 
the human nervous system. It uses a multi-level model 
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Figure 3 ROC curves for the training and validation sets of the three machine-learning models. ROC, receiver operating characteristic; 
AUC, area under the curve; CI, confidence interval; XGBoost, eXtreme Gradient Boosting; MLP, multilayered perceptron.
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Figure 5 RF model SHAP importance graph. HGB, hemoglobin; 
ALP, alkaline phosphatase; CEA, carcinoembryonic antigen; ALB, 
albumin; PT, prothrombin time; CA242, carbohydrate antigen 
242; PLR, platelet/lymphocyte ratio; CA19-9, carbohydrate 
antigen 19-9; NLR, neutrophil/lymphocyte ratio; ALT, alanine 
aminotransferase; NEUT, absolute neutrophil value; AST, 
aspartate aminotransferase; SHAP, shapely additive explanations; 
RF, random forest.



Journal of Gastrointestinal Oncology, Vol 15, No 5 October 2024 2153

© AME Publishing Company.   J Gastrointest Oncol 2024;15(5):2145-2156 | https://dx.doi.org/10.21037/jgo-24-516

composed of multiple neurons of the perceptron. It has 
parallel distributed processing power, high fault tolerance, 
and intelligence, and is capable of self-learning. 

Baxter et al. (18) used four machine-learning models (i.e., 
XGboost, ANN, support vector machine, and RF) to mine 
the routine test data of enrolled patients. The AUCs of 
the XGboost model in the training set and the prospective 
validation set were 0.799 and 0.816, respectively, which 
were better than those of the fecal occult blood test. In 
another study, Li et al. (19) reported that the diagnostic 
AUC of a logistic regression model based on CEA, HGB, 
lipoprotein(a), and high-density lipoprotein was 0.849. In 
the present study, compared with the MLP and XGboost 
models, the RF model had better diagnostic performance, 
and its accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, F1 score, and AUC (95% 
CI) were 0.803, 0.908, 0.772, 0.664, 0.890, 0.763, and 0.902 
(0.812–0.989), respectively. These figures suggest that RF 
may be a better predictive model in comparison to XGboost 
and MLP models.

A major strength of this study is the use of readily 
available data from routine clinical work-up. Twelve 
routinely investigated parameters i.e., CEA, CA19-9, 
CA242, NEUT, HGB, NLR, PLR, ALT, ALP, AST, ALB, 
and PT for CRC were identified and used in this study. 
CRC patients have diverse clinical manifestations, of which 
anemia is one of the most common clinical symptoms. 
HGB, which is an important indicator of anemia, is an 
independent predictor of CRC and can be used to screen 
CRC. HGB has certain clinical value in diagnosing incipient 
CRC (20,21). 

Also, routinely measured tumor markers like CEA, 
which is usually elevated in, nearly 43–69% of CRC, as 
well as CA19-9 and CA 242 were interpreted in the models 
investigated in our study. Although different organs have 
different expression levels of CA19-9 (22). Its levels have 
been shown to correlate with tumor size, the depth of 
invasion, and lymph node metastasis. Thus, CA 19-9 is an 

auxiliary indicator of CRC (17-19,22-24). Similarly, CA242, 
although commonly used to diagnose pancreatic cancer, is 
expressed by CRC in a stage dependent fashion (25).

The nation of combining the three tumor markers is 
backed by data from Rao et al. (26), who reported CEA, 
CA242, and CA199 as important predictors of CRC risk. 
The inflammatory environment provides a favorable 
condition for the tumor growth, invasion, and metastasis 
of CRC (27). Inflammation can affect each stage of CRC 
development and regulate the polarization of tumor cells 
(28,29). The NEUT, PLR, and NLR reflect the severity of 
inflammation, and studies have shown that neutrophils, the 
PLR, and the NLR are related to the prognosis and survival 
of CRC. High levels of inflammatory mediators predict 
the progression of CRC (30,31). Thus, incorporating these 
cellular markers in this study was in accordance with current 
clinical practice.

ALB is an acute phase reaction protein whose level 
decreases in the inflammatory response. Low ALB levels 
indicate tumor-induced malnutrition and prognosticate 
adverse outcomes (32,33). In addition, the liver metastasis 
of CRC accounts for about 70% of CRC metastasis, and the 
levels of ALB, ALT, AST, and ALP can reflect the degree of 
liver dysfunction and exhibit an inverse correlation with the 
risk of CRC (34).

Malignant tumors can increase the risk of venous 
thrombosis. Malignant tumor cells and their products 
interact with host cells to induce a hypercoagulable state, 
leading to thrombosis. Patients with cancer have a four-
to-six-fold increased risk of thrombosis compared with 
patients without cancer, which reduces survival (35-37). 
The 12 indicators included in this study accounted for the 
occurrence and development of CRC, tumor inflammatory 
environment, thrombosis, etc., and had a diagnostic efficacy 
higher than that of traditional tumor markers such as CEA, 
CA19-9, and CA242. These findings are largely in line with 
the clinical experience with regard to the distribution of 
CRC in the general population.

Table 3 Diagnostic efficacy of the RF machine-learning model and tumor markers

Variables AUC Sensitivity Specificity Youden index

CEA 0.740 0.629 0.783 0.412

CEA + CA19-9 + CA242 0.761 0.486 0.983 0.469

RF model 0.864 0.829 0.800 0.629

Data are presented as numerical value. CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; CA242, carbohydrate antigen 
242; RF, random forest; AUC, area under the curve. 
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A major limitation of this study is the small size of the 
experimental population. It is questionable if the results 
recorded in this study may be reproduced in a much 
larger population. Also, a stratification of the results 
generated based on the AJCC/UICC staging system was 
not performed, due to the small size of the respective stage 
groups. Despite these limitations, the potential implication 
of such models in clinical practice should encourage further 
investigations in the field. As previously mentioned, RF 
does not demonstrate a definitive superiority over XGBoost 
in terms of diagnostic performance for CRC, particularly 
in validation datasets. Nonetheless, when considering 
absolute metrics, RF outperforms XGBoost in diagnostic 
accuracy. Additionally, both RF and XGBoost algorithms 
have achieved high levels of accuracy in diagnosing 
CRC, indicating their advantages in this application. The 
significance of machine learning algorithms in the context 
of CRC diagnosis is underscored, and these findings 
represent advancements in clinical practice. The results 
suggest that the RF algorithm, in particular, may offer 
promising prospects for further research and development 
in this area.

Conclusions

In summary, this study used simple routine laboratory data 
to construct a diagnostic model for CRC. We found that the 
RF model had high sensitivity and specificity in diagnosing 
CRC. Thus, it could serve as a non-invasive and efficient 
method for identifying CRC.
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