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Abstract 

Plant physiology and metabolism rely on the function of stomata, structures on the surface of above-ground organs 
that facilitate the exchange of gases with the atmosphere. The morphology of the guard cells and corresponding 
pore that make up the stomata, as well as the density (number per unit area), are critical in determining overall gas 
exchange capacity. These characteristics can be quantified visually from images captured using microscopy, tradi-
tionally relying on time-consuming manual analysis. However, deep learning (DL) models provide a promising route 
to increase the throughput and accuracy of plant phenotyping tasks, including stomatal analysis. Here we review 
the published literature on the application of DL for stomatal analysis. We discuss the variation in pipelines used, 
from data acquisition, pre-processing, DL architecture, and output evaluation to post-processing. We introduce the 
most common network structures, the plant species that have been studied, and the measurements that have been 
performed. Through this review, we hope to promote the use of DL methods for plant phenotyping tasks and high-
light future requirements to optimize uptake, predominantly focusing on the sharing of datasets and generalization of 
models as well as the caveats associated with utilizing image data to infer physiological function.

Keywords:   Deep learning, gas exchange, object detection, photosynthesis, semantic segmentation, stomata, water use.

Introduction

An increasing population and corresponding increasing de-
mand for food is putting pressure on farmers and breeders 
to ensure future food security goals are met. This is exacer-
bated by climate change projections, which indicate increased 
warming and drying trends for the upcoming decades (IPCC, 
2022). Crop yield largely depends on the cumulative rate of 
photosynthesis as well as the availability of water. Therefore, 
optimizing both photosynthesis and water use efficiency, the 
balance between carbon gain and water lost, is a key target 

for crop improvement (Long et al., 2006; Furbank et al., 2015; 
Condon, 2020).

As gatekeepers between the plant and its environment, sto-
mata (singular ‘stoma’) play a pivotal role in determining phys-
iological function and metabolism. Here, we refer to stomata 
as the combination of guard cells and the pore, regardless of 
whether they are ‘open’, where the swelling of guard cells 
increases the size of the pore, or ‘closed’, where guard cells 
shrink and pore area reduces (Fig. 1). Although stomata occupy 

Abbreviations:  CNN, convolutional neural network; DL, deep learning; FN, false negative; FP, false positive; GAN, generative adversarial network; R-CNN, region-
based convolutional neural network; TN, true negative; TP, true positive; VGG, visual geometry group; YOLO, you only look once.
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only 0.3–5% of the leaf epidermal surface, they account for 
up to 98% of gas exchange (Lawson and Blatt, 2014). The ap-
pearance of stomata varies across species, with guard cells that 
are dumbbell shaped in monocot grasses, to kidney shaped in 
the dicots. Guard cell morphometry and stomatal density (the 
number of stomata per unit area) are anatomical features that 
are usually defined during organ development and provide 
routes to altering plant metabolism (e.g. Franks et al., 2015).

Stomatal traits can be measured using direct or indirect 
approaches (Beadle et al., 1985). The former generally encom-
passes image-based approaches, and enable the analysis of shape, 
size, and orientation of stomata. These morphometric measures 
are important to support the analysis of photosynthesis, which 
is limited by those traits. In comparison, indirect approaches, 
such as the use of porometers, infrared gas analysers, or leaf 
temperature measurements, informs the function of stomata 
including conductance capacity and opening and closure dy-
namics (e.g. Ceciliato et al., 2019). For a full understanding of 
plant–environment interactions, a combination of both mor-
phometry and functional assessment is required.

The analysis of stomata is a long-standing research area 
(Joseph, 1805); nonetheless, as recently as 2017 biologists had 
few tools to automatically analyse images containing stomata, 
instead relying on manual, labour intensive, and error prone 
methods to extract features. With increases in the accessi-
bility and affordability of computing power, recent years have 
seen a boom in the application of deep learning (DL) models  

(see Box 1) for plant physiological analysis, including the assess-
ment of stomata (Thompson et al., 2017; Balacey et al., 2023, 
Preprint). Various DL models have been proposed, permitting 
the rapid detection of stomata and thus providing a platform 
for automated high-throughput analysis. Most commonly, par-
ticularly in the stomata literature, DL methods can be broadly 
categorized as: (i) object detection, which estimates localiza-
tion and class of an object within a given image, encapsulating 
it within a box, and (ii) semantic segmentation, which oper-
ates at pixel level classifying each individual pixel, for example 
whole stomatal complex, pore, guard cell, or background (Zhao 
et al., 2019; Minaee et al., 2022). Semantic methods provide 
finer-grained information with respect to object detection by 
detecting object boundaries, therefore preserving morphology. 
However, these methods tend to be more computationally ex-
pensive, require larger annotated datasets, and are more sensitive 
to changes in environmental conditions. Additionally, though 
rarely seen in stomata literature, there is (iii) instance segmen-
tation, which identifies the different instances of the same class 
at pixel level (Hafiz and Bhat, 2020). Ultimately, choosing be-
tween each of the model types depends on the required level 
of detail; for example, counts and density would be more suit-
able for object detection, as opposed to finer details such as 
lengths and areas, which require semantic segmentation.

With this paper, we review current publications that apply 
DL to the analysis of stomata. We discuss the different pipelines 
to obtain image data, common preprocessing steps, differences 

Fig. 1.  Diagram of stomatal structure and function in facilitating gas exchange—example of a dicot stoma. (A) Surface and transverse view of a stoma, 
encompassing the guard cells and pore, as denoted by the box, and accompanying epidermal cells (faded out). (B) Internal and external signals confer a 
structural change in the stoma to permit gas exchange when the structure is open, and restrict exchange when closed.
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in the main network structures and the outputs, and post- 
processing steps that lead to stomatal trait measurement. We 
hope to provide an insight into available methods and applica-
tions as well as the future direction for DL-based analysis of 
stomatal traits. Through this review, we hope to encourage the 
uptake of deep learning for analysis of stomata and facilitate 
the first step towards improved collaborative working and pub-
lication of a global dataset.

Pipelines of stomatal analysis

Extracting stomatal morphometry using DL can be broadly 
classified into four processes: data acquisition, pre-processing, 

deep learning and evaluation, and post-processing (Fig. 2). 
Variation exists for each of these steps, with the most common 
methodologies discussed in more detail in the following 
sections.

Data acquisition

Image acquisition of stomata (Fig. 2A, B) can be classified into 
two broad approaches: destructive and non-destructive meth-
ods. The former damages the leaf material impacting func-
tionality or future measurements whilst the latter preserves the 
leaf in its current state. The choice of data acquisition depends 
upon numerous considerations including plant species, hard-
ware access, and study aim. Certain plant characteristics, such 
as thick wax layers, cuticle, or trichomes that protect the epi-
dermal layer, may limit the visibility of stomata in some cases.

The most common method to capture image data is using leaf 
impressions. Silicone, dental resin, and/or nail varnish can be used 
in isolation or combination to capture surface structure (Gitz 
and Baker, 2009). Whilst these methods are most commonly 
cited in the literature, including for the training of DL models 
(see below), it is widely accepted that leaf impressions provide 
an accurate estimate of stomatal density, but permit considerable 
error when estimating pore or stomatal complex dimensions 
(Matthaeus et al., 2020). An alternative non-destructive approach 
is the use of handheld microscopes to directly image the plant 
surface in situ (Pathoumthong et al., 2023). If captured via video 
format, this permit the additional analysis of stomatal behaviour, 
such as dynamic changes in aperture size.

Destructive methods can be used to maximize visibility of 
stomatal structure, and can help to overcome problems associ-
ated with artefacts in image data. This often relies on methods 
to clear the tissue of pigments and/or enhance certain struc-
tures using stains.

Pre-processing image processing and data annotation

Pre-processing of image data constitutes an optional step to 
improve image quality or data consistency prior to analysis. 
Pre-processing may include image processing methods such 
as contrast-limited adaptive histogram equalization (CLAHE), 
noise reduction, and manual editing of data (Fig. 2C).

For DL application, a series of manual measurements or 
annotations must be made to obtain a ground truth for training. 
Annotations can be made using freely available software such as 
LabelImg (https://github.com/tzutalin/labelImg), which is pop-
ular for annotating bounding boxes, and PixelAnnotationTool 
(Bréhéret, 2017) for semantic segmentation. Whilst larger data-
sets are often the most desirable option, this is not always fea-
sible and instead methods to increase the size of small datasets 
are often used. A common approach is to use augmentations, 
applying operations such as blur, flip, and rotate to images (Gibbs 
et al., 2019, 2021). This usually occurs after annotation to save 
time. Such approaches can aid in alleviating overfitting, where 

Box 1. Overview of deep learning and convolutional 
neural networks

Deep learning (DL) is a form of machine learning that 
teaches computers to process data similarly to the 
human brain (Pound et al., 2016). DL models are trained 
to recognize complex patterns and to produce accurate 
insights and predictions, automating tasks that typically 
require human intelligence.

A convolutional neural network (CNN) is a type of DL 
network that is optimized to work with image, or pixel 
level, data (Rawat and Wang, 2017). A CNN takes an 
image as an input, passes it through the contained 
layers, and outputs a prediction that represents the class 
data designated in the training set. As such, CNNs act 
as basic building blocks for the computer vision task of 
image recognition and segmentation. They consist of a 
varying number of layers, each of which has trainable 
parameters. Common layers include:

(i)	 Convolutional layers, which use filters and kernels 
to produce a more abstract representation via a 
feature map. These filters aim to detect patterns 
such as edges. The filter passes over the image like 
a scanner and creates a feature map.

(ii)	 Pooling layers act down sample feature maps by 
summarizing the presence of features in patches 
of the feature map. This reduces the dimensionality 
of the data, with a corresponding reduction in 
computational cost.

(iii)	 Fully connected layers connect neurons in one layer 
to neurons in another layer. This takes the outputs 
from other layers and classifies pixels, computing 
scores for each of the class labels.

The structure of a CNN will vary depending on the data 
used, the application, and the size of the network. This 
leads to a variety of possible network structures.

https://github.com/tzutalin/labelImg
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the DL model tries to entirely fit the training data and so cannot 
be readily applied to new, unseen data. Additionally, generative 
adversarial networks (GANs) can be used to generate artificial 
data, though this requires an initial set of images to train.

Deep learning

Whilst an in-depth insight into each of the deep learning 
architectures is out of the scope of this paper, we do provide 
an overview of common networks and corresponding pub-
lications relevant to stomata in Table 1. All of these models 
take the form of convolution neural networks (CNNs; Box 1). 
These cover both object detection (e.g. AlexNet, YOLO, SSD, 
R3DET, VGG, R-CNN, and MobileNet) and semantic seg-
mentation methods (e.g. Mask R-CNN and UNet).

For all DL models, annotated data are split into train and test 
data, commonly at a 4:1 ratio. The training data are used to train 
the selected network (Fig. 2D; Table 1), whilst the test data are 
used to evaluate the performance of the network. The amount of 
data required will depend on the network selected, the variability 
of the data set, and the number of features present per image.

The performance of DL can be evaluated by a variety of 
methods, the most common of which are discussed in Box 2. 
For semantic segmentation, common evaluation metrics in-
clude pixel accuracy and mean pixel accuracy. F1 score, pre-
cision, recall, accuracy, and intersection over union apply to 
both semantic and object detection- based architectures, whilst 
mean average precision applies only to object detection-based 
architectures. Whilst evaluation metrics provide a good indica-
tion of performance on the dataset in question, the same eval-
uation metrics from different networks are not comparable to 
each other unless the same dataset has been used. Similarly, the 
biological insight that can be obtained from a DL model relies 
on the accuracy or validity of the original data. For example, 
combining datasets collected using different data acquisition 
methods requires consideration of the potential errors associ-
ated with each method.

Post-processing

Post-processing is performed on the output of the trained DL 
model. High throughput methods aim to automate the estima-
tion of stomatal morphometry (Fig. 3) through various post-
processing steps; these include operations such as ellipse fitting, 
level set methods, and contour extraction to attempt to fine 
tune the stomata, guard cell, or pore perimeter. Alternatively, 
methods such as blob detection can be used for counting and 
estimating density. Additionally, calculations may be performed, 
for example estimating conductance (e.g. Gibbs et al., 2021), 
with the results output into a readable format.

Published deep learning methods for the 
study of stomata

A review of the literature indicated a total of 43 publications 
that employed deep learning methods to the assessment of 
stomata over a 6-year period (2017–2023), covering ~25 spe-
cies, or phylogenetic groups, of plants (Table 2). The number 
of publications has steadily risen per year, with a peak in pa-
pers during 2021 (Fig. 4). These are diverse, encompassing DL 
approaches for object detection based on bounding boxes, 
sematic segmentation, and/or other custom outputs (Fig. 5). 
Furthermore, the methods used to capture the initial datasets 
are diverse, although the majority of papers use nail varnish-
based surface impressions (Table 3).

Whilst many of the studies focused on the task of counting 
stomata and estimating density, fewer extracted morphological 
traits, and even fewer performed comprehensive measurements 
of these traits (Table 4). Equally, despite a vast number of high-
quality approaches to the detection and analysis of stomata, 
researchers have primarily focused on plant or species-specific 
implementations, with relatively few studies (e.g. Andayani 
et al., 2020; Gibbs et al. 2021; Dey et al. 2023; Pathoumthong 
et al., 2023) combining datasets from multiple species.

Fig. 2.  Overview of the pipeline for the assessment of stomata. (A) data acquisition encompassing either leaf sampling or taking surface impressions, 
(B) image capture, (C) optional pre-processing of image data, (D) training of a deep learning model, or application of a pre-trained model, and (E) post-
processing of network outputs.
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Object detection is sufficient for counts and 
classification but provides limited information on 
stomatal morphometry

You only look once (YOLO) networks are commonly chosen 
for object detection (i.e. the combination of localization and 
classification) due to their efficiency and accuracy. Indeed, for 
stomata detection, YOLO is the most common architecture 
used (Table 1).

YOLO is available in several versions, spanning the orig-
inal network to the most recent YOLO-X. Most of these have 
been applied, or adapted, to stomata (e.g. Casado-García et al., 
2020; Ren et al., 2021; Sultana et al., 2021; Yang et al., 2021; 
Dai et al., 2022, Preprint; Zhang et al., 2022; Li et al., 2023). 
Example network adaptations include changes to the loss func-
tion (Ren et al., 2021); adjustments to the network backbone 
to increase specificity (Zhang et al., 2022); label smoothing to 

Table 1.  An overview of the main deep learning networks applied to stomata analysis

Name Type Description Papers Inc.

AlexNet Object detection AlexNet, a CNN with eight layers, is primarily used for classification and 
recognition. It is considered one of the most influential papers published 
in computer vision and was heavily behind the surge in DL approaches for 
vision tasks being the first to employ a CNN on a GPU

Millstead et al. (2020)

YOLO Object detection YOLO, often used for real time detection, is one of the most popular DL 
models due to its speed and accuracy. YOLO predicts localization and 
class probabilities simultaneously.
Several versions of YOLO exist including those that can be used in combi-
nation with segmentation algorithms

Casado-García et al. (2020), Ren et al. (2021), 
Sultana et al. (2021), Yang et al. (2021), Dai et 

al. (2022, Preprint), Zhang et al. (2022), Li et al. 
(2023), Pathoumthong et al. (2023), Takagi et 

al. (2023), Wang et al. (2024a)
SSD Object detection SSD is much like YOLO in that it only takes a single pass for detecting 

objects within in image and does not use region proposal, one of the pri-
mary reasons for its speed and efficiency

Toda et al. (2021)

R3Det Object detection R3Det is a refined single-stage detector rotation detector for fast and 
accurate object detection by using a progressive regression approach. It 
works much like YOLO and SSD in that it only uses a single stage; how-
ever it aims to address the issues relating to misalignment of objects

Yang et al. (2024)

VGG Object detection VGG is a standard deep CNN which specializes in localization and clas-
sification of objects. Two popular VGG architectures exist, VGG-16 and 
-19, where the numbers correspond to the number of layers within the 
architecture.

Sakoda et al. (2019), Meeus et al. (2020), Aono 
et al. (2021)

R-CNN Object detection R-CNN is used for classifying and localizing objects. It is a two-stage 
object detection model, proposing a series of regions and then evaluating 
these, determining which class the region lies in.
R-CNN has multiple variations though the most common are Basic 
R-CNN, Fast R-CNN, and Faster R-CNN

Li et al. (2019), Costa et al. (2021), Cowling et 

al. (2021, Preprint), Zhu et al. (2021), Liang et 

al. (2022)

Mask 
R-CNN

Semantic Mask R-CNN extends Faster R-CNN by adding an additional operation 
at the end to predict the object mask. It is a semantic and instance seg-
mentation technique that performs pixel-level segmentation on detected 
objects

Song et al. (2020), Bheemanahalli et al. (2021), 
Costa et al. (2021), Jayakody et al. (2021), Xie 
et al. (2021), Sai et al. (2022, Preprint), Meng 
et al. (2023)

MobileNet Object detection MobileNet is based on a streamlined architecture that uses depth-wise 
separable convolutions to build lightweight networks designed for mobile 
and embedded vision applications. Particularly beneficial when computing 
power is lacking or unavailable

Kwong et al. (2021), Razzaq et al. (2021)

U-Net Semantic U-Net, originally introduced for medical imaging, typically requires less 
training data than other methods to achieve similar results. It produces 
pixel-wise segmentation and classification

Gibbs et al. (2021), Sun et al. (2021, 2023), 
Takagi et al. (2023), X. Zhang et al. (2023, 
Preprint)

Custom 
CNN

Multiple Custom CNN refers to individually made CNNs that combine a series of 
convolutions, pooling, and fully connected layers. Each differ quite sig-
nificantly, so refer to each individual paper for a more in-depth overview. 
Custom CNNs can have any desired output but often require extensive 
expertise. In the papers cited here, outputs were in the form of image clas-
sification, heatmaps, and 2D points

Jayakody et al. (2017), Bhugra et al. (2018, 
2019), Toda et al. (2018, Preprint), Fetter et 

al. (2019), Andayani et al. (2020), Hunt et al. 
(2021), Li et al. (2022), Dey et al. (2023), F. 
Zhang et al. (2023)

CNN, convolutional neural network; DL, deep learning; R-CNN, region-based convolutional neural network; SSD, single shot detector; VGG, visual 
geometry group; YOLO, you only look once.
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Box 2. Evaluation methods for deep learning architectures

Deep learning (DL) models can be evaluated using different metrics that enable a quantitative measure of the performance 
and effectiveness the given model. For semantic segmentation, metrics such as pixel accuracy (PA) and mean pixel accuracy 
(mPA) can provide insight into the accuracy of pixel predictions. PA denotes the percentage of correctly predicted pixels:

PA =

∑k
i=0 pii∑k
i=0 ti�  (1)

where pii is the total number of pixels both classified and labelled as class i and ti is the total number of pixels labelled 
as class i.

Semantic segmentation deals with a minimum of two classes and therefore mPA is often used to represent the class 
accuracy:

mPA =
1
k

k∑
i=0

pii
ti
.

�  (2)

However, it is worth noting that a high-class accuracy does not always guarantee superior performance if it is at the 
expense of other classes.

F1-score, precision and recall are evaluation metrics, used for both semantic and bounding box models. Evaluation is 
based on true positives (TP), where the model correctly predicts the positive class; true negatives (TN), where the model 
correctly predicts the negative class; false positives (FP), where the model incorrectly predicts the positive class; and 
false negatives (FN), where the model incorrectly predicts the negative class. Precision is the ratio of correct annotations 
relative to the total number of annotations (true and false positives):

precision =
TP

TP+ FP
.

�  (3)

Recall is the ratio of correct annotations relative to the total number of ground truth annotations (true positives and 
false negatives):

precision =
TP

TP+ FP
.

�  (4)

F1-score is the harmonic mean of precision and recall, allowing a balance between the two, thus providing a greater 
insight into the measure of incorrect annotations:

F1 =
2× (precision× recall)

precision+ recall�  (5)

Accuracy describes how the model performs across all classes, calculated as the ratio between the number of correct 
predictions to the total number of predictions:

Acc =
TP+ TN

TP+ TN+ FP+ FN�  (6)

The intersection over union (IoU) is a number between 0 and 1 that specifies the amount of overlap between predicted 
and ground truth (i.e. manual) annotations. A value of 0 indicates there is no overlap, whilst 1 indicates a perfect union of 
ground truth and prediction.

IoU =
Area of overlap
Area of union�  (7)

For object detection methods only, mean average precision (mAP) is a common evaluation metric calculated using IoU, 
a confusion matrix (including TP, FP, FN), precision, and recall:

mAP =
1
n

k=n∑
n=1

APk

�  (8)

Where APk is the average precision of class k and n is the number of classes.
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reduce overfitting and integration; and an attention mech-
anism, a layer to direct attention to specific parts of the data, 
to aid classification (Li et al., 2023). Evaluation metrics differ 
between studies, but the majority report average precision or 
accuracy values exceeding 93%.

YOLO networks have been applied to a variety of dif-
ferent species including wheat (Triticum aestivum; Yang et al., 
2021; Zhang et al., 2022), maize (Zea mays L.; Ren et al., 2021; 
Yang et al., 2021CJML_BIB_J_0048), barley (Hordeum vulgare; 
Casado-García et al., 2020), beans (Casado-García et al., 2020; 
Sultana et al., 2021; Li et al., 2023), and black poplar (Dai et al., 
2022, Preprint). A comparison of three versions of YOLO 
(v3, v4 and v5) applied to soybean (Glycine max) found that 
YOLOv5 was the most accurate but that YOLOv3 was the 
most time efficient, reflecting the common trade-off between 
time and accuracy for DL methods (Sultana et al., 2021).

Whilst the majority of studies are specific to a single target 
plant species, LabelStoma (Casado-García et al., 2020) aims to 
provide a more generalized model, enabling augmentations and 
transfer learning for new datasets, thus reducing the number of 
new images required. Furthermore, their published tool aims 
to make DL methods more accessible for less technical users 
via a user-friendly interface.

An alternative to the YOLO networks are region-based 
convolutional neural network (R-CNN) architectures, which, 

instead, use a two-stage approach. Single stage detection 
offers more efficient processing making it more suitable for 
real-time detection, but for the case in stomata, real-time pro-
cessing speeds are generally not required. Cowling et al. (2021, 
Preprint) applied a Faster R-CNN to African rice (Oryza gla-
berrima), achieving a comparable accuracy scores to the YOLO-
based methods. Similarly, a visual geometry group (VGG) is a 
standard deep CNN that specializes in localization and classifi-
cation of objects, yielding comparable accuracy when applied 
to stomatal analysis (Sakoda et al., 2019; Meeus et al., 2020; 
Aono et al., 2021).

With advances in hardware and in DL development, light-
weight architectures, i.e. those capable of running on devices 
with less computational power such as handheld devices, 
have been generated. Kwong et al. (2021) use MobileNetv1 
to estimate stomatal density in oil palm (Elaeis guineensis) and 

Fig. 3.  Overview of typical measurements performed on image data 
containing stomata—example of a representative dicot leaf. (A) Detection 
of stomata in images can be used for counting stomata or assessment 
of stomatal density. (B) Extraction of individual stoma can be used to 
calculate morphometry measurements including areas and dimensions. 
(C) Depending on the deep learning network used, bounding box methods 
may lead to incorrect morphometry measurements if the stomata are not 
orientated along the major axes. Note that this diagram has been slightly 
re-sized to emphasize the difference.

Table 2.  Overview of plant species that have been studied using 
deep learning approaches to analyse stomatal traits

Type Paper

Apricot Millstead et al. (2020)
Arabidop-
sis

Li et al. (2022), Sai et al. (2022, Preprint), Takagi et al. (2023), 
Yang et al. (2024)

Barley Casado-García et al. (2020), Hunt et al. (2021), Sai et al. (2022, 
Preprint)

Broad-
bean

Li et al. (2023)

Common 
bean

Casado-García et al. (2020)

Dayflower Toda et al. (2018, Preprint)
Gingko Fetter et al. (2019), Jayakody et al. (2021)
Grapevine Jayakody et al. (2017), Millstead et al. (2020)
Hardwood 
trees

Wang et al. (2024b)

Haskap Meng et al. (2023)
Herbarium 
samples

Meeus et al. (2020)

Lettuce X. Zhang et al. (2023, Preprint)
Maize Aono et al. (2021), Ren et al. (2021), Xie et al. (2021), Yang et 

al. (2021, 2024), Liang et al. (2022), F. Zhang et al. (2022, 2023)
Oil palm Kwong et al. (2021)
Orange Millstead et al. (2020), Costa et al. (2021)
Periwinkle Millstead et al. (2020)
Poplar Li et al. (2019), Song et al. (2020), Gibbs et al. (2021), Jayakody 

et al. (2021), Dai et al. (2022, Preprint), Wang et al. (2024a)
Quinoa Razzaq et al. (2021)
Rice Bhugra et al. (2018, 2019), Cowling et al. (2021, Preprint), 

Pathoumthong et al. (2023)
Orange Bheemanahalli et al. (2021)
Soybean Sakoda et al. (2019), Casado-García et al. (2020), Sultana et 

al. (2021)
Sundar-
bans (F)

Dey et al. (2023), Pathoumthong et al. (2023)

Tomato Pathoumthong et al. (2023)
Turmeric Andayani et al. (2020)
Wheat Gibbs et al. (2021), Sun et al. (2021, 2023), Toda et al. (2021), 

Yang et al. (2021), Zhu et al. (2021), Pathoumthong et al. (2023)
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utilize image splitting to reduce the memory requirements 
of the network. Alternatively, Razzaq et al. (2021) combined 
MobileNetv2 with a single shot detector (SSD) for detection 
and classification of stomata within pre-processed images of 
quinoa (Chenopodium quinoa). This latter network has also been 
applied within a portable set-up consisting of a microscope 
feed directly connected to a Jetson Nano (a portable GPU; 
NVIDIA, Santa Clara, CA, USA), for real-time detection in 
wheat (Toda et al., 2021). Together, these published methods 
present potential for an increase in the affordability and acces-
sibility of DL methods, as well as more flexible and portable 
set-ups, which are likely to permit in situ analysis.

Applications of object detection-based methods are varied 
but often include counts and/or density; classification as open 
or closed; prediction of stomatal area via post-network image 
processing; width and height measurements; and estimates of 
stomatal conductance (Fig. 3; Table 4). However, object de-
tection methods present limitations in regards to accuracy 
of obtaining morphological traits. For example, if stomata 
are not orientated along the horizontal or vertical axes, trait 
measurements may be distorted (Fig. 3C). To overcome this, 
an approach called RotatedStomataNet was proposed, which 
allows bounding boxes to have any rotation, ensuring a tighter 
fit around the stomata (Yang et al., 2024). Alternatively, image 
analysis methods have been applied; for example, histogram 
of gradients utilized by Toda et al. (2018, Preprint) in their 
method DeepStomata.

Semantic methods provide more information of 
stomatal morphology

Semantic segmentation results in pixel-level classification of 
images. This permits the preservation of boundaries, or shapes, 
which, in turn, can lead to more in-depth trait analysis (Fig. 
3B). Unlike object detection-based methods, these have often 
been used to segment pore and/or guard cells, thus permitting 
more precise area measurements. For example, over 30 stomatal 

traits including guard cell and stomatal area, length, width, and 
orientation, and stomatal evenness, divergence, and aggregation 
index can be yielded in the tool StoManager1, presented by 
Wang et al. (2024a). StoManager1 is based on a YOLO net-
work that has been subsequently adapted to perform semantic 
segmentation.

Another popular semantic network is Mask-RCNN, which 
has been applied to numerous problems in stomata literature 
(Table 1; Song et al., 2020; Bheemanahalli et al., 2021; Costa 
et al., 2021; Jayakody et al., 2021; Sai et al., 2022, Preprint; 
Meng et al., 2023). Target species are varied including sor-
ghum (Sorghum bicolor; Bheemanahalli et al., 2021), sweet or-
ange (Citrus sineensis; Costa et al., 2021), black poplar (Populus 
nigra; Song et al., 2020), Arabidopsis, and barley (Sai et al., 2022, 
Preprint).

Similarly to many of the proposed object detection-based 
networks, adaptations have been applied to semantic net-
works to improve specificity for stomatal detection. For ex-
ample, Jayakody et al. (2021) expanded on their previous 
work (Jayakody et al., 2017), combining 16 datasets from 12 
sources, to produce a more generic method for stomatal as-
sessment using a Mask R-CNN. They proposed a three-stage 
approach to detecting stomatal boundaries, encompassing 
(i) pre-processing of images to remove colour space biases, 
which occur when images are captured in different condi-
tions; (ii) estimation of the stomatal boundaries using a Mask 
R-CNN with transfer learning; and (iii) reduction in the 
number of false positives using a statistical filter based on the 
average stomatal size and confidence scores. The proposed 
method achieved an accuracy of 95.1%. Similarly, X. Zhang 
et al. (2023, Preprint) adjusted the U-Net architecture by 
altering the encoder, to introduce an attention mechanism, 
and fine-tuning the optimizer to detect stomata in lettuce 
(Lactuca sativa).

Fig. 4.  Bar graph presenting the number of deep learning publications 
applied to stomata over the last 7 years.

Fig. 5.  Bar graph presenting the breakdown of deep learning network 
types applied to stomata.
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Whilst the majority of the reported papers present methods to 
extract traits, few have applied this to answering biological ques-
tions, such as determining the impact of irrigation of crop per-
formance or predicting potential gas exchange capacity. Bhugra 
et al. (2019) used a combination of networks to investigate the 
impact of irrigation on rice cultivars by estimating count and 
density of stomata along with pore length, width, and area. Liang 
et al. (2022) investigated the opening and closure of maize sto-
mata under varying levels of drought using time lapse imaging. 
Gibbs et al. (2021) proposed a method to automatically estimate 
stomatal morphometry (encompassing both guard cell and pore 
morphometry) in order to estimate anatomical maximum stom-
atal conductance (gsmax, e.g. Franks and Beerling, 2009).

Modern microscopes permit the real time detection or 
analysis of stomata and so can be used to analyse patterns of 
opening and closing. This was proposed by Sun et al. (2021), 
alongside an easy-to-use interface, to study changes in stom-
atal aperture. Sun et al. (2023) subsequently improved this 
method and proposed StomataTracker, a tool to analyse the 
circadian rhythm (temporal pattern of opening and closing 
of stomata) applied to wheat. They captured videos of the 
wheat epidermis, which were then separated into their 
constituent frames for analysis. StomataTracker consists of a 
three-stage process: (i) multi object tracking using improved 
version of the simple online and real-time tracking (SORT) 
algorithm, which applies a lightweight detector (YOLOv3) 
to detect stoma and assign unique IDs; (ii) binary classifica-
tion of each stoma as open or closed, which permits esti-
mates of rest time and circadian rhythm; and (iii) semantic 
segmentation to obtain a mask image, enabling morpholog-
ical traits, namely stomatal length, width, area, and perimeter, 
to be estimated (Sun et al., 2023).

Less common are methods to estimate the stomatal index 
as they require the detection of both stomata and surrounding 
epidermal cells. This was addressed by Zhu et al. (2021), who 
obtained stomatal impressions of two wheat varieties. They uti-
lized a Faster R-CNN model to count stomata, and a U-Net 
model to segment the epidermal cell network. Following post-
processing steps to address artifacts in the cell network, they 
were able to estimate the number of epidermal cells and thus 
calculate stomatal index (Zhu et al., 2021).

Whilst this review primarily focuses on stomatal morphom-
etry analysis, additional literature on pavement cell segmenta-
tion is also worth noting. LeafNet (Li et al., 2022) is one such 
example, where a DCNN was proposed for the detection of 
stomata and a region merging algorithm to segment the pave-
ment cells in Arabidopsis. Comparisons with other pavement 
cell segmentation methods are also discussed (Li et al., 2022).

Alternative deep learning networks can overcome 
issues in datasets or provide an alternative route to 
phenotyping

Some published DL methods fail to classify as object detection 
or semantic, but still allow stomatal traits to be analysed. These 
have been applied to a variety of tasks including counting 
(Fetter et al., 2019; Hunt et al., 2021), species identification 
(Andayani et al., 2020; Dey et al., 2023), and data improvement 
(Bhugra et al., 2018). For example, Fetter et al. (2019) devel-
oped StomataCounter, a DCNN based on AlexNet, to estimate 
stomatal count; it was trained using four datasets. As opposed to 
a bounding box detection, the DCNN produced a heatmap of 
potential stomata, with 94% accuracy when applied to unseen 
species, indicating generalization of the method.

Table 3.  Overview of methods used to generate image data for deep learning analysis of stomata

Data 
collec-
tion type

Method Paper

Non-
destruc-
tive

Nail varnish-
based surface 
impressions

Jayakody et al. (2017, 2021), Meeus et al. (2020), Millstead et al. (2020), Bheemanahalli et al. (2021), Costa et al. (2021), Cowling et al. 
(2021, Preprint), Gibbs et al. (2021), Hunt et al. (2021), Kwong et al. (2021), Razzaq et al. (2021), Ren et al. (2021), Toda et al. (2021), 
F. Zhang et al. (2022, 2023), Dey et al. (2023), Meng et al. (2023), Pathoumthong et al. (2023), Yang et al. (2024), Wang et al. (2024a)

Direct mi-
croscope 
imagery

Bhugra et al. (2018), Li et al. (2019), Andayani et al. (2020), Song et al. (2020), Sun et al. (2021, 2023), Yang et al. (2021, 2024), Dai et 

al. (2022, Preprint), Liang et al. (2022), Sai et al. (2022, Preprint), Pathoumthong et al. (2023), Takagi et al. (2023)

Destruc-
tive

Epidermal 
separation

Casado-García et al. (2020), Aono et al. (2021), Zhu et al. (2021), Li et al. (2022), X. Zhang et al. (2023, Preprint), Yang et al. (2024)

Use of leaf 
discs

Toda et al. (2018, Preprint)

Freezing 
samples in 
liquid nitrogen

Bhugra et al. (2019)

Leaf clearing Fetter et al. (2019), Sultana et al. (2021)
Optical 
topometry

Xie et al. (2021)

Printing Sakoda et al. (2019)
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Bhugra et al. (2018) proposed a 13-layer CNN for the de-
tection and segmentation of pores in rice. They focused on the 
recovery of missing information caused by occlusions by using 
an inpainting algorithm to fill in the missing data. Their pro-
posed method addresses many of the challenges experienced 
when working with microscopic images of surface impressions. 
Features such as image artefacts, overlapping epidermal struc-
tures such as trichomes or papillae, feature-rich backgrounds, 
and small stomatal sizes make analysis challenging. Other chal-
lenges include presence of dust or air bubbles, and blur within 
images, which can similarly be addressed using DL approaches 
(Jayakody et al., 2021).

Current limitations of deep learning 
methods and future directions

Literature often reports that the bottleneck in plant anal-
ysis and improvement arises due to long timeframes associ-
ated with phenotyping. Recent interest in DL methods, such 
as those presented here, has led to a great reduction in these 
timeframes. However, a bottleneck now exists in relation to the 
availability of datasets, and the ability to equally evaluate meth-
ods. DL models require an initial annotated dataset for training, 
which can be time-consuming, expensive, and the generation 
of image data can lead to large storage requirements. In addi-
tion, variability in the dataset will determine how generalized 
it is, and thus what other datasets it can be applied to; i.e. a 
dataset encompassing only a single species captured using a 
single set up is unlikely to be applicable to another species or 
set-up, unless similar; a DL model can only ‘see’ what it has 
‘seen’ before.

Variations exist in the pipeline used to generate and analyse 
data on stomata, encompassing all steps from data acquisition 
to post-processing. For example, for the data acquisition stage, 
Pathoumthong et al. (2023) indicate improved efficiency of 
using a handheld microscope over nail varnish based surface 
impressions. However, they did not identify a trend as to which 
acquisition method produced better overall estimates of mor-
phology, suggesting species and case specific benefits to each 
method. Therefore, further work is required to determine the 
optimal pipeline for each species and physiological aim.

Despite the capabilities of DL methodologies, they are not 
applicable to a wide variety of situations and, as such, there 
still remains a bottleneck in their development. In part this 
could be addressed through the use of GANs, which can be 
used to generate artificial datasets and thus increase the amount 
of available data (Goodfellow et al., 2014, Preprint; Creswell 
et al., 2018). Future methods also require development of tech-
niques to accurately and appropriately evaluate the proposed 
networks. For example, Dey et al. (2023) performed an em-
pirical comparison of nine deep learning models for the iden-
tification of stomata from 11 different tree species, spanning 
eight families. They introduced a normalized leverage factor, 

which combines accuracy, precision, recall, and F1-score to 
create a more uniform evaluation function to rank approaches. 
However, in order to advance and facilitate widespread and 
rapid stomatal analysis, more shared resources need be made 
available. Pipelines require alternative steps to ensure that they 
are more generic.

Future research directions require advancements in terms of 
the biological implications of the results, with a move away 
from object detection based methods towards semantic seg-
mentation, instance segmentation, and real-time detection and 
monitoring of stomatal behaviours. There is also a need for the 
exploration of the 3-dimensional (3D) traits of the stomatal 
structure, using data collected from sources such as confocal 
microscopy, optical tomography, and surface topography mea-
surements (Thompson et al., 2017; Xie et al., 2021; Davaasuren 
et al., 2022). Initial attempts have been made towards this goal. 
Optical tomography was applied by Xie et al. (2021) to acquire 
a 3D model of the leaf epidermis of maize. Their pipeline in-
volved multiple steps, initially flattening the 3D model into a 
single 2D image using Gaussian filters and then employing a 
mask R-CNN architecture to segment the stomata and pave-
ment cells. From this, stomatal density, width, length, and area 
were estimated, but 3D information was lost.

Despite the extensive research on stomatal biology, current 
knowledge is poorly translated into the context of field ex-
perimentation. This stage will be integral for future yield im-
provement strategies. This is partly due to the nature of the 
publications; the majority are targeted as method development, 
with very few applying the proposed method towards an-
swering a biological question.

However, a number of caveats arise from advancing DL 
methods for application in biological analysis. Whilst DL 
architectures become more advanced in terms of their capa-
bilities, there is still a need to ground-truth these gener-
ated measurements with actual conductance measurements 
in order to accurately correlate the results with physiolog-
ical function. This step cannot be underestimated, poten-
tially requiring modification of gas exchange equipment 
for simultaneous capture of stomatal apertures. Care must 
also be taken over which method is used to capture the re-
quired data on stomatal complexes, for example restricting 
the use of leaf impressions for density measurements as they 
do not permit sufficient resolution for analysis of dimensions 
(Matthaeus et al., 2020).

Thus, despite the potential capabilities of semantic based 
methods, it may be that biologically relevant or useful infor-
mation is currently limited towards more basic phenotypic ex-
traction such as density, which can be readily obtained using 
object detection-based methods. For example, in one of the 
few published works that link stomatal structure to function, 
Hunt et al. (2021) investigated the impact of manipulating light 
and CO2 concentration on stomatal density and conductance 
of barley. Whilst they measured stomatal conductance using a 
gas exchange system, density was estimated through DL via 
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custom CNNs to locate and then classify image crops as to 
whether they contain stomata.

Moving forward, it is encouraged to advocate a stronger link 
between computer scientists and biologists and expand beyond 
stomatal detection to instead produce methods that reliably 
measure multiple traits. A global dataset will help to eliminate 
this redundancy and improve effectiveness and efficiency. As 
such, we have generated StomataHub (www.stomatahub.com), 
a free online resource to encourage collaborations and the 
sharing of datasets. We hope that StomataHub, or other similar 
resources such as that produced by Wang et al. (2024b) (encom-
passing a dataset of 11 000 annotated hardwood images), will 
address this and provide a free open-source approach moving 
forwards.

Conclusion

In conclusion, DL provides a promising approach for plant 
phenotyping tasks. Here we have presented details of the 
43 published works to date that apply DL to the analysis of 
stomata. We discussed the variation in the pipeline required, 
from data generation through to post-processing analysis, and 
described some of the major networks that have been ap-
plied. Whilst the species studied and measurements generated 
are diverse, current restrictions lie in the availability of data, 
evaluation of methods, and generalization of different studies. 
Future advances will therefore require a shared global effort 
in providing datasets, innovations to link the corresponding 
phenotypic measurements to underlying physiology, as well 
as enhanced collaboration between biologists and computer 
scientists.
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