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Abstract
The use of public transport systems is a striking example of complex human behavior. Modeling, planning, and managing public 
transport is a major future challenge considering the drastically accelerated population growth in many urban areas. The desire to 
design sustainable cities that can cope with a dynamically increasing demand requires models for transport networks since we are 
not able to perform real-life experiments before constructing additional infrastructure. Yet, there is a fundamental challenge in the 
modeling process: we have to understand which basic principles apply to the design of transit networks. In this work, we are going to 
compare three scientific methods to understand human behavior in public transport modeling: agent-based models, centralized 
optimization-based models, and minimal physics-based models. As a case study, we focus on the transport network in Munich, 
Germany. We show that there are certain universal macroscopic emergent features of public transport that arise regardless of the 
model chosen. In particular, we can obtain with minimal basic assumptions a common and robust distribution for the individual 
passenger in-vehicle time as well as for several other distributions. Yet, there are other more microscopic features that differ between 
the individual and centralized organization and/or that cannot be reproduced by a minimal nonlocal random-walk type model. 
Finally, we cross-validate our results with observed public transport data. In summary, our results provide a key understanding of the 
basic assumptions that have to underlie transport modeling for human behavior in future sustainable cities.
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Significance Statement

With the increasing human population, public transport systems will be an integral component of cities in the future. In this study, we 
introduce and compare three conceptually different models of human mobility in the context of public transport. These include a 
detailed agent-based simulation, a centralized optimization-based model, and a minimal statistical model. As the underlying public 
transport system, we consider the Munich bus network. It is comprised of almost one thousand stations and thus is representative of a 
public transport system in a major European city. Importantly, by comparing macroscopic observables, such as the time individuals 
spend on a bus during a trip, we show that certain universal emergent features arise regardless of the modeling approach.
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Introduction
How should we organize the public transport systems of the future? 
Should we just build some reasonable infrastructure and then leave 
its usage to agent-based self-organization? Or should we centrally 
optimize paths by specific and adaptive route suggestions provided 
upon the request of a travel demand? As for many other large scale 
complex systems (1), e.g. climate or ecosystems (2), it is difficult to 
answer these questions by experimenting on transport systems. 
We cannot just experimentally test different instances repeatedly 

on a large scale as it is prohibitively costly and time-consuming to 

(re-)design a full public transport network and may result in unin-

tended negative effects. Therefore, developing reliable models and 

design principles a priori is of paramount importance. This raises 

the question of modeling scale and starting assumptions. Perhaps 

it suffices to assume a very simple, potentially statistically universal, 

model of human mobility. In this work, we will compare different 

models of human mobility in the context of public transport net-

works using the city of Munich, Germany as a case study, and 
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cross-validate these models with real-world data. We compare three 
different modeling approaches ranging from an agent-based simula-
tion, and a global-optimization exogenous-controlled setting, to an 
abstract statistical physics random-walk model.

These three modeling approaches effectively span the most 
common techniques and disciplines currently employed to model 
transport dynamics. Fundamentally, agent-based systems are 
micro-simulations (3) where the behavior of each individual is mod-
eled separately. Agent-based models specifically allow for the inter-
action of agents (4), where choices made by one agent may affect 
the choices of other agents. The first agent-based models in trans-
port were proposed by (5), where agents have an activity schedule 
that requires traveling to conduct activities at different locations. 
While some agent-based transport models use trips as the unit of 
analysis (e.g. MITO (6)), others use an activity-based paradigm 
(e.g. ActivitySim (7), OASIS (8), SimMobiliy (9), TASHA (10)). (11) pro-
vides a good overview of the state-of-the-art. In this work, we gener-
ate travel demand with MITO (6) and assign trips to a multimodal 
network with MATSim (12).

Contrary to agent-based models, multicommodity network 
flow (MCNF) problems abstract from an individual’s behavior 
and consider a system-centric perspective, i.e. central control 
over all activities in the network. Such an approach allows lever-
aging techniques from continuous and discrete optimization to 
compute the system optimum, i.e. a globally optimal solution 
under the assumption that all individuals contribute to the sys-
tem’s optimal objective. MCNF problems have been studied in 
the field of operations research for decades, with a multitude of 
solution techniques that range from heuristic (see, e.g. (13)) to ex-
act (see, e.g. (14)) algorithms. MCNF problems have recently often 
been used to analyze transportation systems from a mesoscopic 
perspective (see, e.g. (15)) and are flexible in terms of modeling 
additional characteristics and constraints, e.g. a time dimension 
(16) or intermodal transportation (17). Moreover, MCNF modeling 
approaches allow optimizing transport network design decisions 
with reasonable computational effort at the price of approximat-
ing individual behavior via the system optimum (18).

Finally, in the most abstract level, transport can be modeled us-
ing tools from nonlinear dynamics and statistical physics (19, 20). 
Random walks are among the simplest stochastic processes that 
have been used across a wide range of modeling scenarios and 
they are generally rather well understood (21–24). In the tradition-
al setting, the dynamics are entirely local, meaning that the walk-
er only perceives its immediate neighborhood. Yet, biased and 
nonlocal random walks have been increasingly investigated in 
the last few decades because of their relevance in mobility and 
transportation models and navigation (25–29). While there are 
studies that consider some specific non-Markovian random walks 
(30–33), in the context of modeling mobility, a shortcoming of the 
usual models is their memorylessness. In this work, we therefore 
employ a minimal Inertial Random Walk (IRW) model on a net-
work to account for the tendency of target-oriented movement 
in human mobility in general and public transport in particular.

The paper is structured as follows. First, we provide more details 
on our modeling approaches to human behavior in public transport, 
starting from agent-based endogenous behavior, discussing global 
optimization as exogenous decision support, and finally defining 
suitable minimal statistical physics models. Then, we report our 
main results: These include the emerging universal structures of 
macroscale probability distribution observables but also subtle dif-
ferences between model results. In particular, we discuss the uni-
modal common shape for in-vehicle times and trip distances, as 
well as the high correlation between distributions of passengers at 

stations/stops. Then, we compare these results to public transport 
data from the Munich metropolitan area. Finally, we interpret our 
results for the future design of public transport models and their 
practical implications for building sustainable cities.

Results
Before presenting our main computational and data-based re-
sults, a key aspect of our work is to provide a cross-cutting com-
parison for different models across scales. Therefore, we start 
with a description of our methodology.

As a first component, our work uses agent-based travel de-
mand generated by the model MITO (6). A synthetic population 
was generated for the Munich region (34) that provides a statistic-
ally equivalent representation of each person of the actual popu-
lation. MITO uses discrete choice and hazard-duration models to 
simulate a number of trips, destination choice, mode choice, and 
departure/arrival time choice. This serves as the input travel de-
mand for the first two approaches.

In the first approach, this travel demand is assigned to a multi-
modal network using MATSim (12). MATSim is a multiagent trans-
port simulation system that can be used as a Dynamic Traffic 
Assignment (DTA) model that simulates individual vehicles on 
the road network (35). Every agent optimizes their daily activity 
schedule while competing for space-time slots on the transporta-
tion networks with other agents. MATSim is used to select routes 
on multimodal transport networks, respecting travel demand in-
put by MITO.

Yet, a drawback of purely agent-based models is that they are 
endogenously driven, so that agents aim to self-organize and tar-
get first their own demands. Against this background, one may 
aim to study transportation networks through the lens of a central 
decision-maker that controls all flows in the system. Such a per-
spective is particularly valuable in order to obtain an upper bound 
on the improvement potential that can be reached by global co-
ordination measures or in order to optimize network design deci-
sions under the assumption that once network capacities are 
established, individual behavior will step-wise converge to the 
system optimal behavior. To compute such system optimal solu-
tions, in this approach, we leverage MCNF problems, which re-
ceive origin–destination pairs of all individuals that aim to travel 
in a network as input and compute the optimal flow for each indi-
vidual through the network according to some global cost metric 
that is induced by all resulting flows. Such MCNF problems can be 
subject to additional constraints that influence the difficulty of 
the problem. For example, one can model MCNF problems with 
fractional or integer flows as well as with and without capacity 
constraints on a network’s connections. While the uncapacitated 
problem variant remains computationally solvable in polynomial 
time, the integer flow variant is computationally hard and re-
quires advanced algorithmic solution techniques. Beyond these 
basic differences, MCNF problems can be solved as time-variant 
problems, e.g. by using a temporal network expansion, or as time- 
invariant problems on a flat network.

Agent-based modeling simulation, as well as global optimization, 
can often be costly in terms of model building and simulation time. 
Furthermore, it is difficult to discern in these approaches which role 
certain details of the model and the parameter choices play due to 
the high complexity. On the contrary, nonlinear dynamics and stat-
istical physics provide robust, generic, and simple models for move-
ment, which one can apply to transport problems. In the third 
approach, as a minimal model for human mobility in a public trans-
port network, we constructed a random-walk-type model. However, 
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human mobility tends to be characterized by non-Markovian, i.e. 
not memoryless, dynamics, so a standard random walk does not 
suffice. For instance, where in a standard random walk a walker 
may jump back and forth between adjacent sites, this is very unlike-
ly to be observed in human mobility patterns. Instead, a human 
walker will continue to move in the same direction while traversing 
several stations and only change direction at major transportation 
hubs. Another aspect of human mobility patterns is that excursion 
lengths follow certain empirical distributions that might depend on 
the overall layout of the transport network. Both of these aspects 
are generally incompatible with Markovian dynamics and require 
the walker to have some form of memory of where it came from 
and how long it was already walking. To capture these behaviors, 
in the random-walk-type model we propose, we combine an inertial 
random walk on a public transport network with a resetting mech-
anism that depends on the number of steps previously taken. This 
yields a process that is highly non-Markovian. However, instead of 
directly constructing this process, here we consider a higher-order, 
layered network constructed from the underlying public transport 
network so that a standard random walk on this expanded network 
appears to have the non-Markovian characteristics when projected 
onto the public transport network. In that way, we retain the analyt-
ical and computational simplicity of a random walk, albeit on a 
much larger and more complicated network, and at the same 
time, can produce dynamics that are strictly non-Markovian.

For more technical details on the models, MATSim, MCNF, and 
IRW, refer to the Methods.

Proceeding to our computational results, we want to compare the 
three modeling approaches. We begin by looking at the emerging ac-
cess, passthrough, and egress distributions for each of the three 
modeling approaches (Fig. 1A–C).  The access and egress distribution 
measure the frequency (or probability) with which the different sta-
tions are the access and egress points to the bus network, i.e. the 
start- or endpoint of a bus trip, respectively. The passthrough distri-
bution measures the frequency with which any given station was 
traversed. When comparing the results, we found that the access 
distributions of the MATSim model were slightly flatter than the 
MCNF and IRW models, both of which tended to produce more 
hubs that manifest in longer tails of the marginals (Fig. 1D). Note 
that the MCNF and IRW had the same access distributions (see 
Methods). The passthrough distributions were very similar for the 
MATSim and MCNF models, whereas in the IRW model, the propor-
tion of stations with lowest passthrough frequency is considerably 
lower (Fig. 1E). Finally, the egress distributions of the MATSim and 
MCNF models were again quite similar, except for possibly a few add-
itional hubs in the latter. Conversely, the IRW model egress distribu-
tion was significantly different in its flatter nature (Fig. 1F). The 
overall difference between the passthrough and egress distributions 
of the MATSim and MCNF models versus the IRW model likely stems 
from the latter spreading the trips more evenly across the whole net-
work, leading to the flatter distributions. In contrast, the MATSim 
and MCNF models account for nonuniform travel demand across 
the network area, leading to distributions that are less flat.

Next, we looked more closely at the individual trips that each of 
the models produced. Importantly, the distribution of in-vehicle 
times, i.e. the cumulative time a passenger spent inside a bus, was 
overall relatively similar for all three models (Fig. 2A). However, serv-
ing the same travel demand also allowed a direct comparison of in- 
vehicle times for each individual trip between the MATSim and 
MCNF models. This revealed that the latter produced slightly longer 
trips (Fig. 2B). In terms of trip distances, i.e. the straight line distance 
between the trip’s endpoints, the distributions for MATSim and 
MCNF models were almost the same (due to the same travel 

demand), whereas the IRW model produced trips that covered com-
paratively less distance (Fig. 2C). This is essentially because the IRW 
model implements local dynamics. Lastly, considering the fre-
quency with which different arcs of the network were used along 
trips generated with the three models revealed clear routes that sup-
ported a majority of trips. While there was some overlap where two 
models gave rise to the same routes, distinct differences were evi-
dent between any two models (Fig. 2D). In direct comparison, the 
arc frequencies of the MATSim and the MCNF model were relatively 
similar, with MCNF frequencies slightly higher than the MATSim fre-
quencies overall, while the IRW frequencies were considerably high-
er for almost every arc (Fig. 2E).

Finally, we compared the models’ output with actual data pro-
vided by the Munich Transport and Tariff Association (MVV), the 
Munich transport authority. These data were collected from 2019 
October 7 to 2019 December 20, and encompasses the average 
number of passengers accessing and egressing at each bus stop 
in the network from Monday to Friday, from the start to end of ser-
vice. We compared this with the MATSim, MCNF, and IRW mod-
els. However, since it was not possible to unambiguously map 
these distributions onto the bus network we used before, we in-
stead discretized the area of the network and considered trips be-
tween neighborhood cells rather than individual bus stops and the 
corresponding distributions. Overall, the distributions turned out 
very similar, presenting the same hotspots (Fig. 3A,B). This is also 
reflected in a pointwise comparison (Fig. 3C,D).

In summary, comparing the three modeling approaches on a 
Munich public transport network and cross-validating the results 
against observed transport data, we found as a first key result that 
several features are surprisingly universal. In particular, several 
macro-level probability distributions are in excellent agreement 
between all of them. This includes access (passengers boarding 
transit at a given station), passthrough (passengers remaining 
on the transit vehicle at a given station), and egress (passengers 
alighting at a given station) distributions of the stations/stops. 
Furthermore, the in-vehicle time as well as the trip distance ex-
hibit universal unimodal distributions. In particular, this proves 
that the outcome for key macroscopic observables of public trans-
port are not dictated by the modeling scales/approaches, but are 
essentially shaped by the underlying network structure and travel 
demands. These findings align with the Munich public transport 
dataset. Yet, once we leave the macroscale, the three models 
show certain microscopic differences, e.g. in slight preferences 
for certain routes or variations in in-vehicle time for particular 
trips.

Discussion
Modeling approaches to build new or improve existing public 
transportation infrastructure are clearly of paramount import-
ance to improve city infrastructure. Yet, one might have initially 
conjectured that the wide variety of approaches, such as agent- 
based models, global optimization, and conceptual nonlinear dy-
namics approaches, could significantly influence the outcomes 
relevant for decision-makers. Our study provides a clear indica-
tion that this may not be the case and one obtains very compar-
able results on a macroscopic level. This suggests that the 
assumptions and external constraints to our models should be 
viewed as the key data. In particular, we observed in our case 
study for the Munich network that there is a basic law of “supply” 
(the network topology of the routes) and “demand” (consisting of 
the travel demands of individuals). Once supply and demand 
are fixed, the practical management aspect of routing individual 

Mölter et al. | 3

https://sec:methods


trips should be viewed as fine-tuning the system, highlighting spe-
cifically also the importance of the network topology as discussed 
in (36). Indeed, in this context, all three modeling approaches are 
likely to succeed, when we aim to fine-tune an existing supply– 
demand system of public transportation.

Therefore, our results suggest that accurate and reliable a priori 
estimates for travel demand within a city are crucial for designing or 
re-designing a public transportation network. Once the network 
topology is fixed by certain roads or rail tracks, and the city areas 
are fixed into commercial, residential, recreational, etc., then it 
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Fig. 1. Station distributions. A, B, C) Access, passthrough, and egress distributions, respectively, for the MATSim, MCNF, and IRW models, showing the 
probability with which any station is the startpoint, an intermediate point, and the endpoint of a trip. D, E, F) Comparison of the access, passthrough, and 
egress distributions, respectively, for the individual stations of the MCNF and IRW models with the MATSim model as a reference.  —  r: The Pearson 
correlation coefficient between the sample points; R2, RSE: The coefficient of determination and relative square error, respectively, for a regression of the 
sample points on the 1:1 line.
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will be very difficult to adjust a public transportation network as 
adding additional pathways into highly populated areas tends to 
be extremely costly. Yet, the positive conclusion from our study is 
that utilizing all three modeling approaches can lead to successful 
results if utilized and implemented correctly, i.e. once the input 
data of supply and demand are accurate, it will be possible to use 
models and simulations to find a robust network design.

To finally answer the question of which of the three modeling 
approaches should be used in practice, one needs to specify the 
problem to be studied and the (computing) resources available. 
If one is interested in microscopic details of traffic flows, it is 
worthwhile to consider agent-based models. In contrast, if one ra-
ther takes a macroscopic view and, for instance, only needs an ag-
gregated cost estimate based on the global quantities, the coarser 
models will provide as good of an estimate as an agent-based 
model but come with less computational overhead.

More specifically, our results show that in cases where the deci-
sion maker is only interested in aggregated characteristics, it might 
well likely be sufficient to rely on our MCNF or random walk 

modeling approach, which can be beneficial when modeling trans-
portation networks in a paramount modeling or optimization task. 
For example, one might rely on a random walk model that can be 
coupled with standard epidemic dynamics on (social) networks 
when analyzing the impact of public transport on the spreading of 
an epidemic (37). Similarly, one may rely on an MCNF model to ap-
proximate traffic flow dynamics when accounting for them in a 
game-theoretic context (17) or when making network design deci-
sions. By doing so, one can utilize advanced optimization techniques 
for the paramount planning task. Still, one can afterward use a 
microscopic model to understand the dynamics of the resulting sys-
tem in detail for a posteriori analyses and, if necessary, adaptions.

Methods
Construction of the public transport network
Networks for local public transport buses were acquired from the 
Germany-wide GTFS feeds aggregator (38). Downloadable data 

A B C

D

E

Fig. 2. Trip properties. A) Distribution of in-vehicle times. The overall shape is relatively similar for all three models. B) Direct comparison of in-vehicle 
times per trip of the MATSim and MCNF model showing that the latter produced slightly longer trips. C) Distribution of trip distances, i.e. the straight 
distances between trip endpoints. Due to having the same travel demand, the distributions of the MATSim and MCNF models were essentially the same, 
whereas the IRW model produced trips that covered less distance. D) Arc frequency for the MATSim, MCNF, and IRW models, showing the frequency with 
which different arc were used along trips. In each case, clear favored routes emerge. E) Comparison of arc frequencies for the individual arcs of the MCNF 
and IRW models with the MATSim model as a reference.  —  r: The Pearson correlation coefficient between the sample points; R2, RSE: The coefficient of 
determination and relative square error, respectively, for a regression of the sample points on the 1:1 line.
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included stop locations, lines (in the sequence of stops), and 
journeys (individual services of each line on a selected day). The 
timetable information encompasses a comprehensive all-day 
schedule. The data were subsequently converted using the pt2mat-
sim framework (39).

For the MCNF and IRW models, we derive the flat bus network 
consisting of 986 nodes and 2,228 arcs based on these converted 
data. To do so, we filter for all bus stops with coordinates in the 
polygon of the city of Munich, map the coordinates of the stops 
to the name of the nearest stop in the GTFS data, and merge all 
stops with identical names such that the merged stop nodes’ coor-
dinates represent the center of the, respectively, merged stops. 
We derive the polygon of the city of Munich through OSMnx 
(40). If any bus route exists between a stop pair, we add an arc be-
tween those two stops. This procedure can be reproduced with in-
stance_generator.py in (41).

Models
In the following, we describe the technical details of the three 
models we considered.

Travel demand generation
The travel demand used in the MATSim and MCNF models 
was generated using the agent-based travel demand model 
MITO (Microscopic Transportation Orchestrator) (6). The open- 
source model (https://github.com/msmobility/mito) works as a 
microsimulation and generates travel demand individually for 
every person in every household of a study area’s synthetic popu-
lation. Here, the synthetic population was generated for the 
Munich metropolitan area as documented in (34). The model 
was estimated based on the German national household travel 
survey (42).

A

B

C

D

Fig. 3. Model validation with data. A, B) Access and egress spatial distributions, respectively, for the MVV data and the MATSim, MCNF, and IRW models, 
showing the probability of a neighborhood as the startpoint or the endpoint of a trip. C, D) Comparison of the access and egress spatial distributions, 
respectively, for the individual neighborhoods of the MVV data and the MATSim, MCNF, and IRW models with the MVV data as a reference.  —  r: The 
Pearson correlation coefficient between the sample points; R2, RSE: The coefficient of determination and relative square error, respectively, for a 
regression of the sample points on the 1:1 line.
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MITO consists of four modules that create travel demand. 

1. First, we select the number of trips for a given person using a 
hurdle model. First, the model estimates the probability of 
performing no trips (binary logistic regression model). 
Second, if the person performs any trip, a truncated negative 
binomial regression is used to obtain the count of trips.

2. For destination choice, work, and school locations are defined 
in the synthetic population. All other destinations are se-
lected with a logit-based destination choice model that re-
flects travel distance and attractiveness of destinations. The 
utility between each possible origin and destination relation 
for every trip purpose is defined as follows:

eUi | j = eβ∗·impi | j+ln (attraction) = eβ∗·impi | j · attraction, 

where eUi | j is the exponential utility of choosing destination j 
from origin i for trip purpose p, and impi | j | p is the impedance 

for this trip. The attraction variable is estimated during the 
trip generation phase and represents the quantity of oppor-
tunities available in the destination zone corresponding to 
the specific trip purpose. The magnitude of the impedance 
is determined by the purpose-specific parameter β. 
Impedance is computed as follows:

impi | j = etdi | j · cp, 

with tdi | j being the travel distance between origin i and des-

tination j, and cp being a calibrated parameter for each trip 

purpose p. Travel distances are used for the impedance. The 
parameters β and cp are calibrated to match the distribution 

and the average reported trip distances for each purpose in 
the household travel survey. The parameters β and cp are cali-

brated parameters to align with the distribution and average 
trip distances in the German household travel survey.

3. Mode choice is selected via a nested logit discrete choice mod-
el. The model selects the travel mode for each trip purpose 
based on supply characteristics, trip characteristics, and trav-
eler attributes. The model chooses among modes Auto driver, 
Auto passenger, Bicycle, Bus, Train, Tram/Metro, and Walk, 
with Auto driver and Auto passenger grouped under Auto 
nest and Bus, Train, Tram/Metro grouped under Transit. 
The probability of choosing an alternative is calculated by 
the following equation:

Pr(i) =
eVi

J
j=1 eVj 

where Pr(i) is the probability of choosing alternative i, and Vj is 

the observable component of utility of alternative j. For nested 
modes, the probability is based on the conditional probability 
of choosing the nested mode multiplied with the probability of 
choosing the nest. The observable portion of the utility is cal-
culated as follows:

Vi,t = V(St) + V(Xi) + V(St, Xi), 

where Vi,t is the observable portion of utility of alternative i for 

individual t, V(St) is the part of utility associated with charac-
teristics of individual t, V(Xi) is the utility from the attributes of 
alternative i, and V(St, Xi) is the utility from interactions be-
tween the attributes of alternative i and the characteristics 
of individual t.

4. The preferred arrival time is provided by the synthetic popu-
lation for work and school trips. For nonmandatory trips, the 

preferred departure time is chosen probabilistically based on 
observed arrival time distributions.

The above modules were all calibrated to match the observed 
data. The result of MITO is a list of trips that describe the travel de-
mand of every agent in a given study area. As MITO works micro-
scopically, attributes of individual travelers, such as auto 
ownership, access to car sharing, disability, income, smartphone 
availability, etc., all may influence travel decisions.

For this work, we generated the travel demand by allowing only 
buses as a mode of transport for a weekday between 6 AM and 2 PM 
but restricted the analysis to the time window from 7 AM to 1 PM For 
the comparison with data provided by the Munich Transport and 
Tariff Association (MVV), the Munich transport authority, the travel 
demand was generated again, allowing all possible modes of trans-
port, which includes bus, tram, and subway (although we only com-
pared trips that utilized buses exclusively) again for a weekday 
between 6 AM and 2 PM with an analysis time window from 7 AM 
to 1 PM To keep the simulation times manageable, the population 
was scaled down to 25% and 5%, respectively (43).

I: MATSim
Travel times from point to point were calculated using the SBB rout-
er within MATSim (44) based on GTFS data. For access and egress, 
MATSim considers walking on a road network acquired from 
OpenStreetMap (45). These road networks include freeways, trunk 
roads, and primary, secondary, and tertiary roads. MATSim provides 
very detailed simulation of public transport. Transit vehicles run 
along the predefined transit line routes and pick up and drop off pas-
sengers at stop locations. The transit vehicles operate based on the 
predefined time schedule, while road traffic conditions can also de-
lay the arrival time of transit vehicles (e.g. buses) at stops. In the 
meanwhile, the capacities of transit vehicles are monitored during 
the simulation, which will affect the route decision of passengers.

The simulation generates transit-related events whenever a 
transit vehicle arrives or departs at a stop when passengers enter 
or leave a vehicle, but also when a passenger cannot board a ve-
hicle because its capacity limit is already reached. Passengers in 
MATSim interact with transit vehicles. They must decide their 
routes based on transit services. For selecting the best transit 
route, several steps are carried out for each passenger. First, a 
set of possible access and egress transit stops are generated by 
searching all stops around the trip origin and destination within 
a certain distance threshold. Then more realistic transit routes 
are created based on the combinations of start and end stops. 
After that, a public transport router calculates the best route to 
the desired destination with minimal cost, given a departure 
time. Costs are typically defined as travel time and a small penalty 
for the number of transfers. Travel time of public transport trips 
consists of access time, egress time, waiting time and in-vehicle 
time. Finally, the cost of the best transit route is compared to 
the cost of direct walking from origin to destination, resulting in 
the final route choice of the passenger. As a result, the transit pas-
sengers in MATSim could eventually switch from taking the bus to 
direct walking if the cost of taking the bus is relatively high.

For this work, as key simulation parameters that were set before 
assigning public transport trips in MATSim, we had that access and 
egress stop search radius was 1 km in Euclidean distance from the 
coordination of trip start and end locations, the average walk speed 
used for calculating travel cost was 4 km/h, the penalty of number of 
transfers was 300 s, which means one transfer is equivalent to 5 min 
travel time, and that passengers had a fixed departure time. The 
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capacities for different public transit modes are set to 60, 215, and 
940, respectively, for bus, tram, and subway, according to the public 
transportation provider MVG (46).

II: Multicommodity Network Flow (MCNF)
In this model, we capture network-specific constraints, i.e. routes, 
travel times, and vehicle capacities, in a multilayered time-expanded 
graph and solve the problem of routing all passengers through the 
public transportation system, minimizing total travel time, via a 
minimum-cost multicommodity flow problem. To do so, we utilize 
the price-and-branch (P&B) approach proposed in (18), in which we 
decompose our initial problem into multiple shortest-path problems. 
We enhance our P&B approach with a pricing filter to reduce the num-
ber of solved pricing problems and an admissible distance approxima-
tion to utilize the A∗ algorithm for solving the pricing problems.

Our multilayered time-expanded digraph, representing the 
public transportation system, consists of one route layer for 
each route in the public transportation network, which allows 
passengers to use a vehicle that operates a route. Furthermore, 
waiting layers at each stop in the public transportation system en-
able passengers to wait at a stop for a new vehicle to arrive. 
Transit arcs between route and waiting layers allow passengers 
to enter or leave a vehicle at a stop. Finally, walking arcs between 
distinct waiting layers enable passengers to walk between stops 
within a certain distance. To formulate our problem of minimiz-
ing the total travel time as an optimization problem, we add ac-
cess and egress arcs for each passenger connecting their origin 
and destination with stop layers of the public transportation sys-
tem. For an in-depth explanation of the construction of the multi-
layered time-expanded digraph, we refer to Section 3.1 in (18).

We can now formulate our optimization problem as a standard 
MCNF problem. Accordingly, let G = (V, A) be the digraph repre-
senting our public transportation system with vertices V and 
arcs A. Let P be the set of passengers, where each p ∈ P is associ-
ated with a request tuple ζp = (op, dp, δp) comprising an origin co-
ordinate op, a destination coordinate dp and a departure time δp, 
which is the timestep in which a passenger wants to begin its 
trip. Furthermore, let κij and τij be the capacity, e.g. the capacity 
of a vehicle operating a route, and travel time of an arc (i, j) ∈ A re-
spectively, dp

i be the vertex demand of vertex i ∈ V and passenger 
p ∈ P, and xij ∈ {0, 1} be the decision variable indicating whether 
passenger p ∈ P uses arc (i, j) ∈ A (xij = 1) or not (xij = 0). The vertex 
demand of passenger p ∈ P in vertex i ∈ V is defined as

dp
i =

1 if i = op,
−1 if i = dp,
0 otherwise.

⎧
⎨

⎩

Accordingly, we formulate our optimization problem as

minx



p∈P



(i,j)∈A

τij xp
ij (1a) 

s.t.


j∈N+(i)

xp
ij −



j∈N−(i)

xp
ji = dp

i , ∀i ∈ V, p ∈ P (1b) 



p∈P

xp
ij ≤ κij, ∀(i, j) ∈ A (1c) 

xp
ij ∈ {0, 1}, ∀(i, j) ∈ A, p ∈ P. (1d) 

Here, the objective function minimizes the sum over the travel 
time of all passengers, while Constraints (1b) ensure flow conser-
vation with N+(i)/N−(i) being the outgoing/ingoing neighborhood 
of vertex i ∈ V. Note that an ingoing neighbor of i is a vertex j ∈ 

V such that (j, i) ∈ A; an outgoing neighbor of i is a vertex j such 
that (i, j) ∈ A. Constraints (1c) enforce the capacity constraints of 
all arcs, and Constraints (1d) ensure integer passenger flows.

For large sets of passengers, solving Problem (1) becomes in-
feasible. Accordingly, we reformulate Problem (1) as a set- 
covering problem to solve it via a P&B approach. Here, we utilize 
column generation (CG) to solve the continuous relaxation of 
our MCNF problem and a commercial branch-and-bound solver 
to determine integer solutions. We formulate our set-covering for-
mulation of the MCNF problem as

minλ


p∈P



l∈Lp

λ p
l



(i,j)∈A

cij(y
p
l )ij (2a) 

s.t.


p∈P



l∈Lp

(yp
l )ijλ

p
l ≤ κij ∀(i, j) ∈ A (2b) 



l∈Lp

λp
l = 1 ∀p ∈ P (2c) 

λ p
l ∈ {0, 1} ∀p ∈ P, l ∈ Lp. (2d) 

Here, Lp denotes the set of different paths that exist for a passenger 

p ∈ P. Parameter (yp
l )ij shows whether path l of passenger p utilizes 

arc (i, j) ∈ A ((yp
l )ij = 1) or not ((yp

l )ij = 0) and we use decision variable 

λp
l to select exactly one path l ∈ Lp for each passenger p. As there 

may exist an exponential number of paths for each passenger, we 
relax Constraints (2d) to a nonnegativity constraint, introduce 
dummy path variables, and utilize CG to solve the resulting con-
tinuous relaxation of Problem (2). To do so, we iteratively solve 
the following pricing problem for each passenger p ∈ P.

miny



(i,j)∈A

(cij − w∗ij)y
p
ij − α∗p (3a) 

s.t.


p∈P

yp
ij ≤ κij, ∀(i, j) ∈ A (3b) 



j∈N+(i)

yp
ij −



j∈N−(i)

yp
ji = dp

i , ∀i ∈ V, p ∈ P (3c) 

yp
ij ∈ {0, 1}, ∀(i, j) ∈ A, p ∈ P. (3d) 

Here, w∗ij is the dual variable for the capacity constraints (2b) of arc 

(i, j) ∈ A and α∗p the dual variable for the convexity constraint (2c) for 

passenger p ∈ P. Decision variables yp
ij determine whether the path 

we find for passenger p uses arc (i, j) (yp
ij = 1) or not (yp

ij = 0). 

Furthermore, Constraints (3c) ensure flow conservation for all 
vertices.

Due to our problem structure, we can solve Problem (3) as a short-
est path problem. To do so, we use an admissible distance approxi-

mation that reduces the time-expanded multilayered digraph G to 

a significantly smaller static digraph Gstatic, which allows us to utilize 

the A∗ algorithm. Furthermore, we utilize a pricing filter that signifi-

cantly reduces the number of pricing problems we have to solve in 

each iteration of the CG. Finally, we solve the Restricted Master 

Problem of the last iteration of our CG with integer decision variables 

λ p
l to obtain integer solutions. We refer to Section 3.2 in (18) for an ex-

tensive overview of the entire P&B framework.
For this work, as key parameters, we used vehicle capacities 

based on information from the public transportation provider 
MVG (46), with capacity 60 for buses, 215 for trams, and 940 for 
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subways. Furthermore, passengers can only enter and leave the 
public transportation system at stops within 1 km of their origin 
or destination, respectively. Here, passengers can only enter the 
public transportation system at stops where a vehicle leaves with-
in 30 min of arriving at the stop. Lastly, we only add walking arcs 
between two stops with a maximum distance of 200 m.

III: Inertial Random Walk (IRW)
In this model, we combine an IRW on a public transport network with 
a resetting mechanism that depends on the number of steps previous-
ly taken. This naturally results in a process that is non-Markovian. To 
realize it, we construct a standard random walk on some higher-order 
network together with a projection onto the public transport network 
so that under the projection, the random walk on the higher-order 
network resembles the non-Markovian process.

We assume that the inertial movement can be described by a 
one-step memory transition kernel and that we are given some 
empirical distribution of the excursion lengths of a population 
of walkers as well as of the entry stations.

Then, given a directed, weighted transport network G = (X , A) 
with (weighted) adjacency matrix A and together with a one-step 
memory transition kernel κ, excursion length distribution σ, and ac-
cess distribution α, the Markovian transition network is comprised of 
a void layer, a stations layer, and then stack of an, in general, infinite 
number of transit layers. The void layer consists only of a single node, 
Ω, which will be the origin and end of every excursion, the stations 
layer of two nodes for every node in the underlying transport net-
work, xin, xout : x ∈ X , to track incoming and outgoing walkers, and, 
finally, each transit layer of a node for every link in the underlying 
transport network, (x, x′)(l) : (x, x′) ∈ A for layer l (Fig. 4).

These nodes will be connected via weighted, directed links within 
the same layer as well as between different layers, with the idea 
being that from the void node, there are transitions to the void 
node itself and to the incoming stations’ nodes in the stations layer 
according to the access distribution. From there, there are transi-
tions into the stack of transit layers with transitions between nodes 
in consecutive layers corresponding to adjacent links in the base net-
work. From every node in the stack of transit layers, there are in add-
ition transitions back into the outgoing stations’ nodes in the 
stations layer and from there back to the void node.

If one ignores the fact that the transitions in the stack of transit 
layers are between consecutive layers, one has the transitions of a 
random walk on the adjoint of the base network. This provides the 

space to encode processes with one-step memory (47). Having this 
layered structure on top, allows one to track the number of steps 
already taken and thus arbitrary distributions of that through the 
transitions back into the stations layer.

Altogether, we have 

• links Ω→ xin with weights α(x) for every x ∈ X ,

• links xin → xout with weights 
0 if degoutx > 0,
1 otherwise.



for every 

x ∈ X ,

• links xin → (x, x′)(1) with weights Axx′
ξ

Axξ 
for every x ∈ X ,

• links (x, x′)(l)
→ (x′, x′′)(l+1) with weights (1 − sl)κ(x′′|x′, x) for 

every (x, x′), (x′, x′′) ∈ A,

• links (x, x′)(l) → x′out with weights 
sl if degoutx

′ > 0,
1 otherwise.



for every 

(x, x′) ∈ A and x′ ∈ X , and
• links xout → Ω with weights 1 for every x ∈ X ,

with sl =
σl∞
λ=l

σλ
if
∞

λ=l σλ > 0,

1 otherwise.



and where we assume that 

α(x) = 0 if degoutx = 0.
By construction, this network can be interpreted as a Markov 

transition network. In particular, this means that for every node in 
the network, the sum of the weights of the outgoing links is 1.

For the dynamics of the IRW, we concretely assume that the 
transition kernel is given as

where the persistence q ∈ [0, 1] controls the probability of returning 
to the previous site in the sense that 1 − q is the probability of turning 
around. With the transition kernel for a standard random walk,

κ0(x′′|x′, x) =
Ax′x′′


ξ Ax′ξ
(5) 

we define the transition kernel

κ(x′′|x′, x) = (1 − ν)κ0(x′′|x′, x) + νκinertial(x
′′|x′, x) (6) 

where the parameter ν ∈ [0, 1] allows us to interpolate between the 
random walk with (ν = 1) and without inertia (ν = 0).

Fig. 4. Construction of the IRW Markovian transition network. The 
Markov transition network associated with a base network is comprised 
of a void layer, a stations layer, and an infinite number of transit layers. 
The transitions go from the void node to the incoming stations’ nodes in 
the stations layer and from there into the stack of transit layers, which is 
an unfolding of the adjoint of the base network, with transitions between 
nodes in consecutive layers corresponding to adjacent links in the base 
network and transitions to the outgoing stations’ nodes in the stations 
layer and then to the void node. A node in the Markov transition network 
can be identified with a node in the base network via projection.

κinertial(x
′′|x′, x) =

(1 − q)δx,x′′ + q
Ax′x′′


ξ Ax′ξ − Ax′x

(1 − δx,x′′ ) if degoutx
′ > 1 and

δx,x′′ if degoutx
′ = 1 and

x′ → x is possible

Ax′x′′
ξ

Ax′ ξ
otherwise,

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)   

⎧
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Suppose (X̂n)n is a discrete-time random walk on this Markov 
transition network and let Π be the projection from the Markov 
transition network to a node or link in the underlying transport 
network, i.e. Π(Ω) = Ω, Π(xin) = x = Π(xout), and Π((x, x′)(l)) = (x, x′) 
for every l, then a walker’s trajectory under this mobility model 
is given by a process (Xn)n with Xn : = Π(X̂n) and X̂0 = Ω. Since sl →

1 as l→∞ any trajectory will eventually reach Ω again, producing 
an sequence of the form Ω, x, (x, x′), (x′, x′′), . . . (x′···′, x′···′′), x′···′′, Ω. 
An excursion under this mobility model is the corresponding se-
quence of traversed sites, x, x′, . . . x′···′, x′···′′ we will say that it has 
l steps if it consists of l + 1 sites.

By construction, the transitions along the excursions appear as 
if they were drawn from the transition kernel κ(x′′|x′, x) (6) and the 
probability that any excursion has length l is σl (as long as there are 
no nodes x with degoutx = 0 in the transport network, otherwise 
consider only the excursions that do not end at one of those sites).

For this work, we used the Munich bus network with its 986 no-
des and 2,228 arcs that has been constructed as described above. 
After multiple arcs between the same nodes have been collapsed 
into a single accordingly weighted arc this became the base net-
work. Furthermore, we set parameter values q = 0.95, ν = 1, and 
σl ∝ exp ( − ( l−8.85907

16.0027 )2) for 1 ≤ l ≤ 49 such that 
49

l=1 σl = 1. The latter 
distribution has been found empirically. Moreover, the entry dis-
tribution α was derived from the MCNF access distribution and 
thus linked to the overall travel demand. Finally, to estimate the 
travel time, we assumed an average speed of 25 km/h. Given 
this model, we simulated 107 excursions.
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