Skip to main content
. 2024 Jul 5;124(21):11767–11847. doi: 10.1021/acs.chemrev.4c00155

Table 3. Catalytic Performance of Transition Metal SACs in ECO2RRa.

Catalyst Electrolyte Main product Faradaic efficiency (%) Overpotential (V) Current density (mA cm–2) Ref
Fe-N-C 0.1 M KHCO3 CO ∼80 0.5 ∼4 (265)
Mn-N-C 0.1 M KHCO3 CO ∼80 0.45 ∼3 (265)
FeMn-N-C 0.1 M KHCO3 CO ∼85 0.4 ∼2 (265)
Fe-N4-C 0.1 M NaHCO3 CO 91 0.5 4.5 (261)
Ni-N4-C 0.5 M KHCO3 CO 99 0.71 28.6 (257)
Ni-N4-C 0.5 M KHCO3 CO ∼70 0.9 ∼10 (262)
Ni-graphene 0.5 M KHCO3 CO ∼90 0.64 ∼12 (266)
Ni-N-carbon 0.1 M KHCO3 CO ∼96 0.65 ∼10.5 (255)
Ni-N-carbon 1 M KHCO3 CO ∼97 0.53 ∼30b (267)
Ni(I)-N-graphene 0.5 M KHCO3 CO 97 0.61 ∼24 (247)
Ni-N-graphene 0.5 M KHCO3 CO ∼90 0.45 ∼12.5 (268)
Ni-N-carbon black 0.1 M KHCO3 CO ∼98 0.7 ∼1.5 (252)
Ni-N-carbon black 0.1 M KHCO3 CO ∼90 0.55 25 (269)
Ni-N-carbon dot 1 M KHCO3 CO ∼90 0.6 40c (270)
Ni-N4-F-C 0.5 M KHCO3 CO ∼95 0.67 ∼25 (271)
Ni-N-carbon sheet 0.1 M KOH + 0.5 M K2SO4 CO ∼55 0.7 ∼1.5 (263)
Ni2-N4-carbon 0.5 M KHCO3 CO ∼96.6 0.7 ∼9 (272)
Fe-N-carbon 0.1 M KHCO3 CO 87 0.38 ∼1.3 (255)
Fe-N-carbon 0.1 M KHCO3 CO ∼93 0.48 ∼2.5 (229)
FeN4-O-C 0.1 M NaHCO3 CO ∼99 0.73 ∼9 (273)
Fe-N-carbon 0.5 M KHCO3 CO ∼90 0.27 ∼8 (224)
Fe-N5-graphene 0.1 M KHCO3 CO ∼97 0.35 ∼1.8 (254)
Fe-N-P-C 0.5 M KHCO3 CO ∼97 0.32 ∼5 (274)
Co-N-carbon 0.1 M KHCO3 CO ∼45 0.5 ∼1.3 (229)
Co-N-carbon 0.5 M KHCO3 CO ∼90 0.53 ∼17.5 (264)
Co-N5-C 0.2 M NaHCO3 CO ∼90 0.63 ∼5 (275)
Co-N4-MWCNT 0.5 M KHCO3 CO 99 0.49 24.8 (276)
Co-N-3D carbon 0.1 M KHCO3 CO 91 0.8 67 (277)
Cu-N2-C 0.1 M KHCO3 CO ∼75 0.4 ∼1 (256)
Bi-N4-C 0.1 M NaHCO3 CO ∼97 0.4 ∼3.9 (258)
Mn-N4-Cl-C 0.5 M KHCO3 CO 97 0.49 ∼10 (278)
Cd-N4-C 0.5 M KHCO3 CO ∼92.1 0.628 ∼5 (279)
Mg-C3N4 0.5 M KHCO3 CO ∼90 1.078 ∼32b (280)
Cu-Al2O3 1 M KOH CH4 62 1.37 153.0c (281)
Zn-N4-C 1 M KHCO3 CH4 85 –1.8 V vs SCEd 39.7 (282)
Sb-N4-C 1 M KHCO3 HCOOH 96 0.68 ∼16c (283)
Bismuthene 0.5 M KHCO3 formate ∼90 1.05 ∼100 (284)
Cu-N4-carbon fiber 0.1 M KHCO3 CH3OH 44 0.93 ∼90 (285)
Cu-N4-carbon 0.1 M CsHCO3 C2H5OH 55 1.29 ∼16.2 (286)
Cu-N doped carbon 0.1 M KHCO3 CH3COCH3 36.7 –0.36 V vs RHE ∼0.4 (287)
a

Note: The overpotential and current density are mainly calculated according to a long-term electrolysis in a conventional H-cell (with the priority to choose the data with lowest overpotential and high FE) under the optimal conditions shown in the literature for comparisons.

b

The value is the partial current densities of CO collected at the relevant potential.

c

The results were collected via a gas diffusion electrode in a flow cell electrolysis.

d

SCE refers to saturated calomel electrode.