Table 3. Catalytic Performance of Transition Metal SACs in ECO2RRa.
Catalyst | Electrolyte | Main product | Faradaic efficiency (%) | Overpotential (V) | Current density (mA cm–2) | Ref |
---|---|---|---|---|---|---|
Fe-N-C | 0.1 M KHCO3 | CO | ∼80 | 0.5 | ∼4 | (265) |
Mn-N-C | 0.1 M KHCO3 | CO | ∼80 | 0.45 | ∼3 | (265) |
FeMn-N-C | 0.1 M KHCO3 | CO | ∼85 | 0.4 | ∼2 | (265) |
Fe-N4-C | 0.1 M NaHCO3 | CO | 91 | 0.5 | 4.5 | (261) |
Ni-N4-C | 0.5 M KHCO3 | CO | 99 | 0.71 | 28.6 | (257) |
Ni-N4-C | 0.5 M KHCO3 | CO | ∼70 | 0.9 | ∼10 | (262) |
Ni-graphene | 0.5 M KHCO3 | CO | ∼90 | 0.64 | ∼12 | (266) |
Ni-N-carbon | 0.1 M KHCO3 | CO | ∼96 | 0.65 | ∼10.5 | (255) |
Ni-N-carbon | 1 M KHCO3 | CO | ∼97 | 0.53 | ∼30b | (267) |
Ni(I)-N-graphene | 0.5 M KHCO3 | CO | 97 | 0.61 | ∼24 | (247) |
Ni-N-graphene | 0.5 M KHCO3 | CO | ∼90 | 0.45 | ∼12.5 | (268) |
Ni-N-carbon black | 0.1 M KHCO3 | CO | ∼98 | 0.7 | ∼1.5 | (252) |
Ni-N-carbon black | 0.1 M KHCO3 | CO | ∼90 | 0.55 | 25 | (269) |
Ni-N-carbon dot | 1 M KHCO3 | CO | ∼90 | 0.6 | 40c | (270) |
Ni-N4-F-C | 0.5 M KHCO3 | CO | ∼95 | 0.67 | ∼25 | (271) |
Ni-N-carbon sheet | 0.1 M KOH + 0.5 M K2SO4 | CO | ∼55 | 0.7 | ∼1.5 | (263) |
Ni2-N4-carbon | 0.5 M KHCO3 | CO | ∼96.6 | 0.7 | ∼9 | (272) |
Fe-N-carbon | 0.1 M KHCO3 | CO | 87 | 0.38 | ∼1.3 | (255) |
Fe-N-carbon | 0.1 M KHCO3 | CO | ∼93 | 0.48 | ∼2.5 | (229) |
FeN4-O-C | 0.1 M NaHCO3 | CO | ∼99 | 0.73 | ∼9 | (273) |
Fe-N-carbon | 0.5 M KHCO3 | CO | ∼90 | 0.27 | ∼8 | (224) |
Fe-N5-graphene | 0.1 M KHCO3 | CO | ∼97 | 0.35 | ∼1.8 | (254) |
Fe-N-P-C | 0.5 M KHCO3 | CO | ∼97 | 0.32 | ∼5 | (274) |
Co-N-carbon | 0.1 M KHCO3 | CO | ∼45 | 0.5 | ∼1.3 | (229) |
Co-N-carbon | 0.5 M KHCO3 | CO | ∼90 | 0.53 | ∼17.5 | (264) |
Co-N5-C | 0.2 M NaHCO3 | CO | ∼90 | 0.63 | ∼5 | (275) |
Co-N4-MWCNT | 0.5 M KHCO3 | CO | 99 | 0.49 | 24.8 | (276) |
Co-N-3D carbon | 0.1 M KHCO3 | CO | 91 | 0.8 | 67 | (277) |
Cu-N2-C | 0.1 M KHCO3 | CO | ∼75 | 0.4 | ∼1 | (256) |
Bi-N4-C | 0.1 M NaHCO3 | CO | ∼97 | 0.4 | ∼3.9 | (258) |
Mn-N4-Cl-C | 0.5 M KHCO3 | CO | 97 | 0.49 | ∼10 | (278) |
Cd-N4-C | 0.5 M KHCO3 | CO | ∼92.1 | 0.628 | ∼5 | (279) |
Mg-C3N4 | 0.5 M KHCO3 | CO | ∼90 | 1.078 | ∼32b | (280) |
Cu-Al2O3 | 1 M KOH | CH4 | 62 | 1.37 | 153.0c | (281) |
Zn-N4-C | 1 M KHCO3 | CH4 | 85 | –1.8 V vs SCEd | 39.7 | (282) |
Sb-N4-C | 1 M KHCO3 | HCOOH | 96 | 0.68 | ∼16c | (283) |
Bismuthene | 0.5 M KHCO3 | formate | ∼90 | 1.05 | ∼100 | (284) |
Cu-N4-carbon fiber | 0.1 M KHCO3 | CH3OH | 44 | 0.93 | ∼90 | (285) |
Cu-N4-carbon | 0.1 M CsHCO3 | C2H5OH | 55 | 1.29 | ∼16.2 | (286) |
Cu-N doped carbon | 0.1 M KHCO3 | CH3COCH3 | 36.7 | –0.36 V vs RHE | ∼0.4 | (287) |
Note: The overpotential and current density are mainly calculated according to a long-term electrolysis in a conventional H-cell (with the priority to choose the data with lowest overpotential and high FE) under the optimal conditions shown in the literature for comparisons.
The value is the partial current densities of CO collected at the relevant potential.
The results were collected via a gas diffusion electrode in a flow cell electrolysis.
SCE refers to saturated calomel electrode.