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ABSTRACT 29 

Viruses are key drivers of microbial diversity, nutrient cycling, and co-evolution in ecosystems, 30 
yet their study is hindered due to challenges in culturing. Traditional gene-centric methods, which 31 
focus on a few hallmark genes like for capsids, miss much of the viral genome, leaving key viral 32 
proteins and functions undiscovered. Here, we introduce two powerful annotation-free metrics, V-33 
score and VL-score, designed to quantify the “virus-likeness” of protein families and genomes and 34 
create an open-access searchable database, ‘V-Score-Search’. By applying V- and VL-scores to 35 
public databases (KEGG, Pfam, and eggNOG), we link 38−77% of protein families with viruses, 36 
a 9−16x increase over current estimates. These metrics outperform existing approaches, enabling 37 
precise detection of viral genomes, prophages, and host-derived auxiliary viral genes (AVGs) from 38 
fragmented sequences, and significantly improving genome binning. Remarkably, we identify up 39 
to 17x more AVGs, dominated by non-metabolic proteins of unknown function. This innovation 40 
unlocks new insights into virus signatures and host interactions, with wide-ranging implications 41 
from genomics to biotechnology. 42 

MAIN 43 

Viruses are indispensable components of the biosphere. By their sheer abundance in microbiomes 44 
and ecosystems and their high genetic diversity1, viruses have the ability to regulate populations2, 45 
facilitate nutrient cycling3, promote genetic diversity4, and drive co-evolutionary dynamics5. In 46 
spite of their importance, viruses are difficult to culture in the laboratory necessitating advances in 47 
computational approaches to study uncultured viruses. Understanding viral genomes and proteins 48 
is crucial for grasping their diversity and understanding their roles in ecosystems. This knowledge 49 
helps unravel the complexity of life and advances biotechnological applications like vaccines and 50 
phage therapy. 51 

Traditionally, virus-specific genes, including hallmark genes such as for capsid proteins, have been 52 
considered the definitive signatures of viral genomes and used for identifying and characterizing 53 
viral genomes6-8. However, hallmark genes account for a small portion of viral genomes9. Genome 54 
or metagenome fragments often do not contain hallmark genes, making it difficult to identify and 55 
classify viruses using traditional gene-centric approaches. As a result, many viral genomes remain 56 
unidentified, leading to a significant loss of information and a growing recognition of the need to 57 
overcome these limitations in viral discovery and protein annotation.  58 

Annotating viral genes and predicting their functions provide clues about the nature of viral 59 
sequences and protein families. We reasoned that analyzing entire viral genomes, even when 60 
fragmented, with functional annotations could break convention and yield innovative viral 61 
signatures. Here we introduce the concepts of V-scores and VL-scores that are quantitative metrics 62 
to serve as a virus-like signature for differentiating between viral and non-viral protein families 63 
and genomes. We demonstrate specific use cases of V-scores and VL-scores in virus identification, 64 
prophage discovery, annotation of host-derived and metabolic proteins on viral genomes, and virus 65 
genome binning. Finally, to facilitate adoption of our approach, we created a publicly available 66 
database of V-scores and VL-scores associated with every protein cluster or family in five widely 67 
used public databases (https://anantharamanlab.github.io/V-Score-Search/) including Prokaryotic 68 
Virus Remote Homologous Groups (PHROG), Virus Orthologous Groups (VOG), Kyoto 69 
Encyclopedia of Genes and Genomes (KEGG), Protein Families Database (Pfam), and 70 
evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG). We propose 71 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.24.619987doi: bioRxiv preprint 

https://anantharamanlab.github.io/V-Score-Search
https://doi.org/10.1101/2024.10.24.619987
http://creativecommons.org/licenses/by-nc/4.0/


that V-scores and VL-scores will serve as a metric to define the likelihood of protein families being 72 
detected in viruses and enable diverse applications associated with viral genomics, ecology, and 73 
evolution. 74 

RESULTS 75 

Assessment of protein families for virus-like proteins 76 

We used 18,435,589 viral proteins sourced from diverse viruses to construct associations between 77 
viruses and protein families (Fig. 1a). Each protein family (i.e., clusters of similar proteins 78 
represented under a single annotation in databases, which includes proteins of unknown function) 79 
was assigned a V-score and a VL-score, representing metrics of virus association when the protein 80 
family had significant hits to viral proteins (see details in Methods and in Supplementary Tables 81 
S1-5). We identified cutoffs of V-score = 0.01 and VL-score = 0 to define viral proteins with high 82 
certainty. High V-scores and VL-scores indicated a strong association with viral proteins, whereas 83 
low scores suggested a weaker association. Protein families associated with viral proteins 84 
constituted approximately 76.9%, 52.1%, and 38.7% of the total protein families in KEGG 85 
(20,005), Pfam (10,835), and eggNOG (135,509), respectively (Fig. 1b). In contrast, current 86 
estimates of viral protein entries in KEGG, Pfam, and eggNOG are limited, representing a very 87 
small fraction (<10%) (Supplementary Fig. S1). Our analysis substantially increases the number 88 
of protein families in public databases associated with viruses and significantly improves the 89 
overall representation of viral proteins in these databases. This increase in viral representation will 90 
facilitate better understanding of viral roles in ecosystems, their interactions with hosts, and their 91 
evolutionary dynamics. 92 

Next, we hypothesized that the associative nature of V-scores and VL-scores could also reflect 93 
gene frequencies in viral communities. Towards this, we used the PHROG and VOG protein 94 
families that provide valuable resources for characterizing viral proteins. We determined that the 95 
range of V-scores and VL-scores were associated with patterns of gene frequencies with high 96 
scores indicating frequent distributions and low scores indicating infrequent distributions. For 97 
example, according to PHROG and VOG VL-scores, methyltransferase-coding genes were 98 
frequently distributed in viral communities (Fig. 1c), which was also evidenced by the high VL-99 
scores for these protein families in KEGG, Pfam, and eggNOG (e.g., KEGG VL-score = 4.8 and 100 
Pfam VL-score = 4.7). This approach will allow for the identification of new viral hallmark proteins 101 
and other proteins commonly encountered on viruses but whose function is currently not known. 102 
In contrast, protein families with very low V-scores and VL-scores, e.g., host-derived proteins, 103 
metabolic proteins, and hypothetical proteins with V-scores of 0.01, indicated the presence of viral 104 
proteins that are rare in communities and may confer specialized functions more likely to be 105 
involved in niche-specific interactions10. 106 
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Interestingly, VL-scores of eggNOG protein families revealed the likelihood of viral origin of 107 
different protein families. VL-scores revealed a significant difference between viral and non-viral 108 
proteins when comparing viral proteins to those found in plasmids and prokaryotic chromosomes 109 
(Fig. 1d).  The proportion of viral proteins in a protein family increased with higher eggNOG VL-110 
scores, demonstrating a clear relationship between scores and the probability of viral origin (Fig. 111 
1e). High VL-scores (>4) indicated that the protein families are likely virus-specific, while low VL-112 
scores (<2.2) suggest non-viral origin (Fig. 1e). This finding offers a promising approach for the 113 
differentiation between viral and non-viral proteins, extending beyond simple gene presence or 114 
absence and incorporating quantitative assessment. Such metrics could be particularly useful in 115 
cases where traditional methods struggle, such as in distinguishing viral genes embedded within 116 
plasmids11 or identifying viral elements within bacterial genomes12, 13. Additionally, these 117 
quantitative metrics for protein families can also be applied for the differentiation of viral and non-118 
viral genome sequences using combined VL-scores or V-scores across different proteins. 119 

Fig. 1| Concepts of V-score and VL-score. a, Workflow of V-score and VL-score generation. Nine representatives 
of viral taxa are shown here for the diverse viruses used in the study.  A scale for VL-scores and VL-scores is 
displayed by two-sided arrows going from 0 to 10 and <0 to X, respectively, suggesting low scores indicate non-
viral and high-scores indicate viral. b, Frequency of virus-associated annotations with V-score ≥ 0.01 and/or VL-
score ≥ 0. c, Top five annotations associated with viruses based on VL-scores. d, Distribution of eggNOG VL-score 
across proteins from prokaryotic chromosomes (n = 7,561,596), plasmids (n = 437,241) and prokaryotic viruses 
(n = 83,664). The horizontal line that splits the box represents the median, upper and lower sides of the box 
represent upper and lower quartiles, whiskers are 1.5 times the interquartile ranges and data points beyond whiskers 
are considered potential outliers. e, Relationship between the fraction of viral proteins used in (d) and eggNOG 
VL-score. The generation of the fraction of viral proteins from the comparison between plasmids, chromosomes, 
and viruses is illustrated in Supplementary Fig. S10. 
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Generation of AV-scores and AVL-scores for viral differentiation and prediction 120 

To build upon our understanding of V-scores and VL-scores from the protein to genome-scales, 121 
we posited that the association and frequency of V-scores and VL-scores may confer features on 122 
viral genomes that distinguish them from other organisms. To test on this, we investigated a whole-123 
genome catalog of 5,800 viral, 50,523 plasmid, and 4,813 prokaryotic genomes and developed the 124 
concepts of average V-score (AV-score) and average VL-score (AVL-score) (See methods for 125 
details) (Fig. 2a). We proposed that AV- and AVL-scores represented the average scores of protein 126 
families across an entire genome and would thus be representative of the overall virus-like 127 
character of a given genome. We determined that prokaryotic viruses had significantly higher 128 
medians of AV-scores (3.602−9.515) and AVL-scores (1.802−3.830) compared to plasmids and 129 
prokaryotic chromosomes regardless of annotation databases (p-value < 10-5). Interestingly, viral 130 
genome fragments (1−15kb) extracted from whole genomes also displayed significantly higher 131 
medians (see examples of KEGG and Pfam AV-scores and AVL-scores in Supplementary Fig. 132 
S2 and S3, respectively). The higher median scores for viral genomes suggest that this metric could 133 
capture features unique to viruses, making it highly effective for identifying viral genomes in 134 
mixed communities such as metagenomes of viruses, plasmids, and chromosomes. To validate this, 135 
we conducted polynomial regression analyses on the fraction of viral genomes within mixed 136 
metagenomes containing viruses, plasmids, and chromosomes at various cutoffs of AV-scores and 137 
AVL -scores for both whole genomes and genome fragments (Supplementary Tables S6-9). At 138 
the whole-genome level, the fraction of viral genomes increased with higher AV-score and AVL -139 
scores (for VOG) (Fig. 2b). Similarly, at the fragment level, the fraction of viral genomes increased 140 
with higher AV-score cutoffs for KEGG and Pfam (Supplementary Fig. S4 and S5). From 141 
regression analyses (Fig. 2b), whole genomes with AV-scores/ AVL -scores exceeding the 142 
corresponding cutoffs (e.g., a VOG AV-score of 2, which surpasses the VOG AV-score cutoff of 143 
1.93) were predicted to be viral with a 70% probability (likely viral) or a 90% probability (most 144 
likely viral) (see detailed cutoffs in Supplementary Table S10). For genome fragments, only the 145 
AV-scores of VOG, PHROG, KEGG, and Pfam were able to generate cutoffs predictive of viral 146 
genomes with a 70% or 90% probability (Supplementary Fig. S4−7). Given that cutoffs may vary 147 
with fragment size, different cutoffs were established for corresponding sizes (Supplementary 148 
Table S10). Overall, the concepts of AV-scores and AVL-scores offer novel insights into genome 149 
signatures, traditionally defined by k-mer frequency14 or single-copy signature genes15. The cutoffs 150 
for AV-scores and AVL-scores, used to differentiate between viral and non-viral genomes, may 151 
prove valuable for viral identification in metagenomic studies. Overall, these metrics address 152 
limitations of conventional gene-centric and alignment-dependent methods8, 16-18. 153 

Maximizing identification of viral genomes 154 

To evaluate the potential of AV-scores and AVL-scores for applications in metagenomics, we 155 
analyzed a dataset of 39 host-associated metagenomes. By applying AV-score cutoffs (with a 70% 156 
probability of being viral) for genome fragments of varying sizes, derived from KEGG, Pfam, 157 
VOG, or PHROG, we identified 13,167 viral sequences of low, medium, and high quality (Fig. 158 
3a). Of these, 2,064 sequences overlapped with those identified using geNomad which is a virus 159 
identifier dependent on virus-specific markers8 (Supplementary Fig. S8a). Notably, for medium- 160 
and high-quality sequences, the AV-score-based approach outperformed geNomad, identifying 161 
more than 1,000 high-quality viral sequences—approximately seven times more than geNomad 162 
identified (Supplementary Fig. S8b). 163 
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Additionally, the AV-score-based method surpassed other conventional tools, including machine 164 
learning-dependent DeepVirFinder19, VIBRANT17, a hybrid approach incorporating machine 165 
learning and protein similarity, and VirSorter218, in identifying high-quality sequences (Fig. 3a). 166 
Moreover, compared to previous studies on sponge-associated microbiomes20, 21, we identified 129 167 
viral sequences of medium or higher quality—more than 15 times the number of viral genomes (7 168 
sequences) previously predicted using VirSorter27. Most of the high-quality viral genomes 169 
identified by the AV-score approach are specific to AV-score, indicating that this method can 170 

Fig.2 | Concepts of Average V-score (AV-score), Average VL-score (AVL-score), and cutoffs of AV-score and 
AVL-score. a, Distribution of AV-score and AVL-score of prokaryotic chromosomes (n = 4,813) and the genomes 
of plasmids (n = 50,523) and prokaryotic viruses (n = 5,800). The blue boxes denote the AV-scores and AVL-scores 
of VOG and PHROG. The red boxes denote the AV-scores and AVL-scores of KEGG, Pfam, and eggNOG. The 
horizontal line that splits the box is the median, the upper and lower sides of the box are upper and lower quartiles, 
whiskers are 1.5 times the interquartile ranges and data points beyond whiskers are considered potential outliers. An 
ANOVA test was used to show differences between three means are significant (p < 2.2 × 10-16). **** denotes p < 
10-4. b, Relationship between the fraction of viral genomes used in (a) and the AV-scores and AVL-scores. In this 
study, we define the fraction of viral genomes as the probability that a given genome sequence is viral. The dots on 
the dotted line represent the actual values of the fraction of viral genome sequences, while the blue lines indicate the 
predicted values. The process for generating the fraction of viral genome sequences is identical to the method used 
for generating the fraction of viral proteins, as illustrated in Supplementary Fig. S10. 
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uncover viral genomes that other tools may not recognize (Fig. 3a). These findings suggest that 171 
the usage of AV-scores and AVL-scores can detect many viral sequences that traditional, viral-172 
specific gene-dependent methods may overlook. Overall, the application of AV-scores and AVL-173 
scores as metrics for genome differentiation offers a novel and powerful tool for identifying viral 174 
genomes in metagenomic studies. 175 

We further tested the potential of this approach for prophage identification and assessment. The 176 
results showed that over 95% of sequences in a prophage database used by a popular prophage 177 
identification tool, PHASTER22 (65,668 prophages), had AV-scores and AVL-scores above our 178 
suggested cutoffs for whole genomes (70% probability, based on VOG and PHROG scores) (Fig. 179 
3b). Additionally, clear boundaries between a verified Escherichia coli prophage and its adjacent 180 
host sequences were delineated by relatively low V-scores and VL-scores using VOG and PHROG 181 
(Fig. 3c). Furthermore, the higher AV-scores observed for VOG, PHROG, Pfam, KEGG, and 182 
eggNOG families in prophages (see Supplementary Fig. S9) strongly support the idea that AV-183 
scores and/or AVL-scores are useful in identifying prophage boundaries when combined with 184 
sliding window approaches (e.g., a 10 kb sliding window23). In addition to AV-scores and AVL-185 
scores, VL-scores may also be valuable for determining boundaries, as a gene with an eggNOG 186 
VL-score greater than 4 has over a 70% probability of being viral (Fig. 1e). Accurately predicting 187 
prophage boundaries has long been a challenge24, 25, possibly due to the presence of auxiliary 188 
metabolic genes (AMGs) in phages26, 27 or the ability of phages to be transposable and encode 189 
serine-integrases rather than tyrosine integrases24. Given their ability to distinguish viral from non-190 

Fig. 3 | Application of V-scores, VL-scores, AV-scores, and AVL-scores for viral identification in genomes 
and metagenomes. a, Number of sequences identified with AV-scores and AVL-scores and four commonly used 
software. For medium- and high-quality sequences, as assessed by CheckV, the overlap between the five 
approaches was illustrated using Venn diagrams, showing the number of shared and specific sequences identified 
by different methods. b, Fraction of prophages in a database that have AV-scores and AVL-scores above 
corresponding cutoffs for viral-like determination. c, Distribution of V-scores and VL-scores for genes within a 
verified Escherichia coli prophage and its adjacent host sequences. Prophage regions are shaded for emphasis.  
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viral genes and sequences, AV-scores, AVL-scores, and VL-scores may offer highly precise 191 
methods for boundary recognition. 192 

Advancing the identification of auxiliary genes in viral genomes 193 

Despite recent efforts, the vast majority of viral proteins (>80%) have no known function which 194 
has hindered our understanding of the roles of viruses in ecosystems and microbiomes. V-scores 195 
and VL-scores as quantitative metrics display a property of measuring the frequency of individual 196 
protein families among viral genomes in public databases. Leveraging this property through the 197 
development of hidden Markov models for protein families, we assessed their effectiveness in 198 
identifying AVGs, including AMGs on viral genomes. AVGs are virus-encoded genes of 199 
prokaryotic origin that are not essential for viral propagation processes such as genome replication, 200 
lysis, or capsid assembly, while AMGs are auxiliary genes that are associated with metabolic 201 
roles28. Such genes likely provide a fitness benefit to the virus encoding them28-30. Identifying 202 
AVGs is a particularly difficult problem compounded by host-associated contamination and the 203 
host-derived nature of these genes. Given their importance due to the increasing recognition of 204 
auxiliary genes involved in human and environmental microbiomes30-34, we investigated whether 205 
V-scores and VL-scores could effectively identify auxiliary genes. 206 

To test this hypothesis, we evaluated the ability of V-scores, VL-scores, AV-scores, and AVL-207 
scores to identify 17 experimentally verified AMGs. We first distinguished AMGs from host-208 
encoded metabolic genes and non-auxiliary genes by using V-scores and VL-scores (Fig. 4a and 209 
4b). We then averaged the VL-scores of all KEGG or Pfam protein families across entire scaffolds, 210 
establishing a scaffold Pfam/KEGG AVL-score of 3 as optimal for differentiating viral from host 211 
scaffolds (Fig. 4c). Our workflow effectively detected AMGs (Fig. 4d). We achieved a sensitivity 212 
of 97.71% and a false positivity rate of 2.29% using a database of biochemically characterized 213 
AMGs (experimentally verified) for benchmarking (see details in Supplementary Table S11). 214 
Community standards for analyzing AMGs recommend verifying that a virally encoded AMG is 215 
flanked both upstream and downstream by hallmark genes35, 36. This check ensures that metabolic 216 
genes identified from proviral sequences are not in regions of host contamination, however, this 217 
standard hinders AMG recall for non-proviruses. The requirement for verification significantly 218 
reduced sensitivity to 66% (when verified with genes having V-scores of 10) and to 2.67% (when 219 
verified with hallmark genes), while also increasing the false discovery rate to 30% when using 220 
hallmark gene verification (Fig. 4d, Supplementary Tables S11, S12). The ability of V-scores 221 
and VL-scores to confidently identify viral proteins circumvents the need to identify hallmark 222 
proteins. Therefore V-scores offer a novel methodology for verifying that AMGs encoded by 223 
proviruses are not the result of host contamination. 224 
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 225 

Fig. 4 | Application of V-scores, VL-scores, and AVL-scores to auxiliary gene (AVG) detection. a, V-scores 
and VL-scores reveal AMGs in viral genomes and distinguish AMGs from host-encoded metabolic genes. Genes 
with an asterisk (*) were predicted as AMGs using the described workflow (see Methods). b, Establishing optimal 
Pfam VL-score / KEGG VL-score combinations to distinguish viral auxiliary vs. non-auxiliary genes. Points 
represent individual genes in our database of viral and host genomes that had both Pfam5 and KEGG6 annotations 
matching to either the database of the 17 AMGs or 10 non-AMG protein families. Genes marked as potentially 
auxiliary have a maximum KEGG and Pfam VL-scores of 3, as indicated by the vertical and horizontal lines. c, 
Establishing the optimal Pfam/KEGG AVL-score of query scaffolds to distinguish viral vs. host genomes. Points 
represent individual genes, plotted by the AVL-score of all Pfam or KEGG annotations encoded by the gene’s 
origin scaffold. Vertical and horizontal lines represent the chosen scaffold AVL-score used to distinguish viral 
from host scaffolds (> 3: virus, < 3: host). Points are colored by the actual scaffold type of the gene’s origin (host 
or virus). d, Performance of the proposed AMG identification workflow. Performance was evaluated based on the 
confusion matrices in Supplementary Table S12.  
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Leveraging this advantage, we were able to predict a significantly larger number of auxiliary genes 226 
from 5,116 high-quality viral genomes, providing deeper insights into viral functions. Our 227 
workflow (with verified flanking genes with V-score=10) identified a total of 27,442 viral genes 228 
likely to be auxiliary and the workflow without verification predicted 34,015 auxiliary genes (4.85% 229 
of all viral genes in our test dataset and 16.50% of all annotated viral genes) (Supplementary 230 
Table S13). Notably, non-metabolic AVGs comprise a substantial majority, accounting for 89%, 231 
while auxiliary metabolic genes represent a small subset, making up only 11% (Fig. 5a). The 232 
identified AVGs included genes encoding various metabolic enzymes, antibiotic resistance 233 
proteins, transporters, DNA/RNA replication proteins, transposases/recombinases, 234 
nucleases/endonucleases, and uncharacterized/hypothetical proteins. These AVGs serve diverse 235 
functions including metabolism, genetic information processing, environmental information 236 
processing, and cellular processes (Fig. 5b; Supplementary Table S13). Some of the genes have 237 
been considered auxiliary, for example, the genes encoding D-3-phosphoglycerate dehydrogenase 238 
for carbon metabolism26, S-adenosylmethionine decarboxylase for amino acid metabolism37, and 239 
alpha-L-fucosidase for glycan degradation38. Notably, our study predicted numerous auxiliary 240 
genes that were typically overlooked in previous studies of auxiliary genes. For instance, over 700 241 
viral auxiliary genes related to toxin-antitoxin systems were identified. These systems, which are 242 
typically used by hosts as a defense mechanism against viral infections39, 40, may be employed by 243 
viruses to enhance their ability to infect host organisms39, 41, 42, contributing to viral evolution in 244 
the ongoing virus-host arms race. Additionally, the presence of many genes with unknown 245 
functions suggests that there are still numerous unexplored roles for viruses, likely with important 246 
ecosystem or microbiome contexts.  247 

In comparison to other existing approaches, our workflow significantly outperformed widely used 248 
approaches including VIBRANT17 and DRAM-v35, as demonstrated by the identification of AMGs. 249 
When applied to the same set of viral genomes, our V-score workflow identified 3,859 AMGs (Fig. 250 
5c; Supplementary Table S13), while VIBRANT and DRAM-v identified only 1,261 and 1,993 251 
AMGs, respectively (Fig. 5c; Supplementary Tables S14 and S15). Notably, only a small fraction 252 
of Pfam domains or KEGG orthologs of AMGs were commonly identified by three approaches 253 
(Fig. 5d), with most AMGs being unique to each method. This suggests that our V-score workflow 254 
reveals novel functions that are often overlooked by existing AMG detection tools. Some unique 255 
metabolic enzymes uncovered by our method include the serine beta-lactamase-like superfamily 256 
(Pfam clan accession: CL0013), ATP-grasp superfamily, N-acetyltransferase-like superfamily, 257 
and Choline binding repeat superfamily (Fig. 5e). Furthermore, our workflow outperformed 258 
VIBRANT, as shown by the higher number of AMGs identified across all KEGG categories (Fig. 259 
5d). Collectively, these findings demonstrate that the V-score-based approach can detect a greater 260 
number of potential AVGs with high precision. 261 

 262 
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 263 

 

 
Fig. 5 | Auxiliary genes identified in the study and comparison with existing methods. a, auxiliary gene 
composition. AMG: auxiliary metabolic genes. b, Potential functions of auxiliary genes with annotations detected 
using the V-score workflow. Purple bars represent categories within Metabolism, green bars denote Genetic 
Information Processing, blue bars indicate Environmental Information Processing, pink bars correspond to 
Cellular Processes, and orange bars represent unclassified signaling and cellular processes. c, Number of AMGs 
identified by the V-score workflow compared to other existing methods, including DRAM-v and VIBRANT. d, 
Overlap and unique Pfam domains or KEGG orthologs of AMGs identified by the V-score workflow, DRAM-v, 
and VIBRANT. e, Comparison of the number of KEGG or Pfam annotations of AMGs identified using the V-
score workflow, DRAM-v, and VIBRANT. Please note that VIBRANT exclusively outputs results that contain 
KEGG annotations, while DRAM-v mainly generated Pfam annotations for AMGs identified in the study. 
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Signatures of population differentiation and enhancing genome binning strategies 264 

Characterizing new viral species in complex systems is crucial for understanding how microbial 265 
interactions impact the spread of diseases and their development and impact on health43. AV-266 
scores and AVL-scores capture the association and frequency of viral genomes, as well as their 267 
differentiation from other genomes. Leveraging these signatures, we assessed whether AV-score 268 
and AVL-score analyses could effectively recover viral metagenome-assembled genomes (vMAGs) 269 
from a mixed metagenome. Prior to this assessment, we evaluated the ability of AV-scores and 270 
AVL-scores to cluster population genomes, to verify their relevance and effectiveness in the 271 
context of genome binning. We analyzed a dataset of 11 viral species that were available in the 272 
NCBI RefSeq database. We found that the similar viral species had very similar AV-scores or 273 
AVL-scores, while different species exhibited distinct scores (Fig. 6a). This highlights the 274 
reliability and accuracy of these metrics for viral genome classification and identification of novel 275 
species. For instance, changes in the gut phage population have been repeatedly linked to various 276 
gastrointestinal diseases44-46. The application of AV-scores or AVL-scores into gut phage 277 
population studies would provide opportunity to differentiate viral populations in complex host-278 
associated systems and contribute to uncover certain disease-related viral species. 279 

AV-scores and AVL-scores facilitate species clustering and even strain-level differentiation, as 280 
demonstrated by the distinct separation of viral populations based on AV-scores and AVL-scores 281 
of VOG and PHROG (Fig. 6a).  AV-scores and AVL-scores can therefore be effective metrics for 282 
differentiating microbial and viral species or strains and facilitating genome binning in 283 
metagenomic studies. We next tested a host-associated metagenome. The analysis of a deep-sea 284 
snail microbiome using AV-scores, AVL-scores, and sequencing coverage demonstrated the 285 
effectiveness of these metrics in genome binning of microbes and viruses (Fig. 6b). We observed 286 
clear clustering of four phage genome bins and two bacterial chromosome bins, which was 287 
consistent with a prior study47, thereby highlighting the capability of these metrics to differentiate 288 
between viral and bacterial genomes accurately. This approach could complement current tools, 289 
such as vRhyme48, and enhance the construction of vMAGs that more accurately represent the true 290 
composition of viruses within a sample. Significantly, this approach would reduce the 291 
overestimation of viral diversity that can result from the assumption that a single genome fragment 292 
represents an uncultivated viral genome (UViG) or a viral population49, 50.  293 

DISCUSSION 294 

In conclusion, V-scores, VL-scores, AV-scores, and AVL-scores represent powerful quantitative 295 
metrics that describe the virus-like nature and origin of protein families and genomes. These 296 
metrics can serve as the foundation of new tools to advance viral genomics, ecology, and 297 
evolutionary analyses. By enabling open and public distribution of these scores 298 
((https://anantharamanlab.github.io/V-Score-Search/), we propose that they will propagate 299 
broadly in microbiology. Our approach allows for citation of these scores using databases 300 
identifiers like for KEGG, Pfam etc or using protein annotations. For example, a picornavirus 301 
capsid protein (PF00073) has a V-score of 10 implying a strong virus association while a Hepatitis 302 
C virus capsid protein (PF01543) has a V-score of 1 implying a weaker virus association, 303 
presumably because its proteins domains are not specific to capsids. 304 

The versatility of these scores allows for their incorporation into diverse genomics tools such as 305 
for genome binning, genome completion, virus identification in complex datasets, and 306 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.24.619987doi: bioRxiv preprint 

https://anantharamanlab.github.io/V-Score-Search/
https://doi.org/10.1101/2024.10.24.619987
http://creativecommons.org/licenses/by-nc/4.0/


identification of AMGs. These scores can enhance genome binning strategies by providing an 307 
additional layer of resolution in separating viral from non-viral sequences. This capability is 308 
especially valuable in metagenomic studies, where the accurate classification of sequences is 309 
critical for understanding the composition and dynamics of microbial communities. By integrating 310 
metrics like AV-scores and AVL-scores, researchers could develop more refined tools for viral 311 
identification, potentially leading to the discovery of novel viral genomes and a deeper 312 
understanding of virus-host interactions. The broader implication of this approach is that it allows 313 
for more nuanced and data-driven differentiation between viral and non-viral entities at both the 314 
gene and genome levels. This could revolutionize how we identify and characterize viruses in 315 
complex biological systems, offering new insights into viral evolution, diversity, and function. The 316 

 

Fig. 6 | Application of AV-scores, and AVL-scores to metagenomic binning. a, Viral population differentiation 
with AV-scores and AVL-scores. Viral species include Bixzunavirus Bxz1 (n = 13), Campylobacter virus IBB35 
(n = 5), Fibrovirus fs1 (n = 4), Inovirus M13 (n = 8), Kayvirus G1 (n = 15), Otagovirus Psa374 (n = 7), Pegunavirus 
Pg1 (n = 6), Pegunavirus soto (n = 5), Pegunavirus Suffolk (n = 6), Restivirus RSS1 (n = 4), and Wphvirus megatron 
(n = 4). The horizontal line that splits the box is the median, the upper and lower sides of the box are upper and 
lower quartiles, whiskers are 1.5 times the interquartile ranges and data points beyond whiskers are considered 
potential outliers. b, Genome binning with AV-scores, AVL-scores, and sequencing coverage for a snail-associated 
metagenome. SOB: sulfur-oxidizing bacteria; MOB: methane-oxidizing bacteria. 
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quantitative nature of the metrics also opens up possibilities for automating and scaling viral 317 
genome study across large datasets, for example the completeness assessment of linear viral 318 
genome in cases where identifiable terminal repeats are absent6, making it an invaluable resource 319 
in the field of viral (meta)genomics. 320 

 321 

METHODS AND MATERIALS 322 

 323 

Viral protein database construction 324 

Viral protein sequences were downloaded from public databases (accessed January 2024), 325 
including the National Center for Biotechnology Information (NCBI) RefSeq database, the Virus 326 
Orthologous Groups (VOG) database (version 221, https://fileshare.csb.univie.ac.at/vog/), the 327 
Prokaryotic Virus Remote Homologous Groups (PHROG) database51, and the IMG/VR Viral 328 
Resources v4.152. Protein sequences from IMG/VR Viral Resources were filtered and we only 329 
retained high-quality and medium-quality viral sequences that were assessed by CheckV v1.0.153. 330 
To dereplicate proteins, MMseqs2 linclust version 13.4511154 was used with an identity cutoff of 331 
95% (custom parameters: --min-seq-id 0.95 --cluster-mode 2 --cov-mode 1 -c 1.0), and generated 332 
non-redundant 18,435,589 protein sequences. 333 

Annotation profile database selection 334 

To construct a wide range of associations between annotation profiles and viral proteins, a diverse 335 
collection of profile databases was selected. The profile databases included Kyoto Encyclopedia 336 
of Genes and Genomes (KEGG) KOfam (version 2024-01-01)55 that is a customized Hidden 337 
Markov Models (HMMs) profile collection of KEGG Orthologs, Pfam-A (release 36.0)56 database 338 
of a large collection of diverse protein families, and eggNOG (version 5.0)57 that is a database of 339 
non-supervised orthologs created from a large number of various organisms. Two additional 340 
curated viral ortholog collections are the VOG (release 221, vogdb.org) and PHROG both of which 341 
were constructed based on remote homology. 342 

V-score and VL-score generation 343 

The V-score and VL-score for each annotation profile in the KEGG, Pfam, eggNOG, PHROG, and 344 
VOG databases was determined based on the number of significant hits (E-value ≤ 10-5) identified 345 
by hmmsearch (HMMER 3.4)58 and MMseqs2. For V-score, the resulting number was divided by 346 
100, with a maximum limit set at 10 after division.  For VL-score, the resulting number was scaled 347 
down using the common logarithm (base 10) without a maximum limit. In the case of annotations 348 
containing viral keywords including “virus”, “viral”, “phage”, “portal”, “terminase”, “spike”, 349 
“capsid”, “sheath”, “tail”, “coat”, “virion”, “lysin”, “holin”, “base plate”, “lysozyme”, “head”, 350 
“structural”, or “Viral protein families”, protein families/annotations were assigned adjusted V-351 
score of 1 and VL-score of 2 if the original V-score was less than 1 and VL-score less than 2. Each 352 
annotation profile is given a V-score and a VL-score, serving as metrics for virus association. It is 353 
important to note that the V-scores do not consider virus specificity or association with non-viruses 354 
and have been manually adjusted to prioritize viral hallmark genes. 355 
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Databases of chromosomes, plasmids, and viral genomes for AV-score and AVL-score 356 
generation 357 

Databases of prokaryotic chromosomes, plasmid sequences, and prokaryotic viral genomes were 358 
constructed for the generation of AV-score and AVL-score. Prokaryotic genomes (release 214) 359 
were downloaded from the Genome Taxonomy Database (GTDB; gtdb.ecogenomic.org)59, 60. We 360 
assessed the quality of each genome with a quality score (score = completeness − 5 × 361 
contamination − 0.05 × no. scaffolds)8, genomes of each GTDB family with the highest quality 362 
score were selected as family representatives to reduce computational load and taxonomic bias. 363 
As a result, 4,304 bacterial and 509 archaeal genomes were selected to be used in the following 364 
analyses. Then, provirus and provirus-like sequence regions were identified with VirSorter2 365 
version 2.2.4 and VIBRANT version 1.2.1 and removed from the selected prokaryotic genomes. 366 
Additionally, plasmid sequences (sequence headers containing the word “plasmid”) were removed 367 
from the selected prokaryotic genomes. For plasmids and prokaryotic viruses, 50,523 plasmid 368 
sequences were downloaded from the PLSDB database version 2023_11_2361 and viral genomes 369 
were downloaded from the NCBI RefSeq database62 (retrieved in January 2024). To retrieve 370 
prokaryotic viral genomes, the GenBank dabase division PHG was used to filter bacterial and 371 
archaeal viruses in the RefSeq database. Finally, 5,800 genomes of prokaryotic viruses were 372 
retained. 373 

Generation of AV-score and AVL-score 374 

Databases of prokaryotic chromosomes, plasmids, and prokaryotic viruses constructed above were 375 
used to calculate the AV-score and AVL-score for each genome. Each whole genome of 376 
prokaryotic viruses, plasmids, and chromosomes were randomly split into non-overlapping, non-377 
redundant genome fragments at length from 1 to 15 kb to simulate metagenome-assembled 378 
sequences. Proteins of each whole genome and split genome fragment were predicted using 379 
Prodigal V2.6.3 (parameters: -m -p meta)63. Hmmsearch58 (HMMER 3.4, parameter: -E 10-5) was 380 
used to match the proteins of prokaryotic viruses, plasmids, prokaryotes to the HMM profiles of 381 
KEGG, VOG, and Pfam. EggNOG-mapper version 2.1.12 (parameters: -m mmseqs --evalue 10-382 
5)64 was used to annotate the proteins with the eggNOG database. MMseqs2 (parameter: E-value 383 
≤ 10-5) was employed to search the predicted proteins against the PHROG database. Only the hit 384 
with the highest score was kept. Post this, V-score and VL-score of KEGG, VOG, eggNOG, Pfam, 385 
and PHROG were assigned to each protein. For comparison between viruses, plasmids, and 386 
chromosomes, AV-score and AVL-score were calculated for each whole genome and genome 387 
fragment. The AV-score and AVL-score of KEGG, Pfam, and eggNOG were expressed as: 388 

AV-score = (Sum of V-score of Proteins with Significant Hits) / (Number of Proteins with 389 
Significant Hits); 390 

AVL-score = (Sum of VL-score of Proteins with Significant Hits) / (Number of Proteins with 391 
Significant Hits). 392 

The AV-score and AVL-score of PHROG and VOG were calculated as: 393 

AV-score= (Sum of V-score of Proteins with Significant Hits) / (Total Number of Proteins 394 
Encoded in a Genome); 395 
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AVL-score = (Sum of VL-score of Proteins with Significant Hits) / (Total Number of Proteins 396 
Encoded in a Genome). 397 

Generation of cutoffs of VL-score, AV-score, and AVL-score for viral-like protein/genome 398 
determination 399 

To predict the probability of a protein or a genome sequence being viral, the cutoff (see the 400 
definition of cutoff in Supplementary Fig. S10) of the VL-score, AV-score, and AVL-score 401 
generated above was examined to determine the probability. The cutoff of the AV-score was set 402 
from 0 to 10 with steps of 0.2. The cutoff of the VL-score/AVL-score was set from 0 to 5 with step 403 
0.1. The probability of a protein/genome being viral was represented by the fraction of normalized 404 
viral proteins/genomes (Nv) compared with normalized plasmids (Np) and chromosomes (Nc) at 405 
each cutoff. The fraction at each cutoff was expressed as: 406 

For proteins: 407 

Fraction = Nv / (Nv+Np+Nc) 408 

Nv = (Number of viral proteins with scores above cutoff) / (Total number of viral proteins) 409 

Np = (Number of plasmid proteins with scores above cutoff) / (Total number of plasmid proteins) 410 

Nc = (Number of chromosome proteins with scores above cutoff) / (Total number of chromosome 411 
proteins) 412 

For genome sequences: 413 

Fraction = Nv/(Nv+Np+Nc) 414 

Nv = (Number of viral sequences with scores above cutoff) / (Total number of viral sequences) 415 

Np = (Number of plasmid sequences with scores above cutoff) / (Total number of plasmid 416 
sequences) 417 

Nc = (Number of chromosome sequences with scores above cutoff) / (Total number of 418 
chromosome sequences) 419 

Polynomial regression with the smoothing method “lm” was used to predict the best-fit curve that 420 
matches the pattern of the cutoff and probability. The cutoffs for the probability of 70% and 90% 421 
were predicted according to estimated polynomial regression equations. If a protein or genome 422 
sequence has a score above the cutoff for the probability of 70%, this protein or sequence was 423 
determined as a “likely” viral-like protein or sequence.  If a protein or genome sequence has an 424 
AV-score above the cutoff for the probability of 90%, this protein or sequence was determined as 425 
a “most likely” viral-like sequence. 426 

Applying cutoffs to the identification of viral sequences 427 

Metagenomes from host-associated microbiomes were analyzed as a use case to demonstrate the 428 
application of viral genome identification. Raw Illumina reads of one snail-associated 429 
metagenome47,  three sponge-associated metagenomes20, 21, three human-associated 430 
metagenomes65, and 32 coral-associated metagenomes66 were retrieved from NCBI (BioProject 431 
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accessions: PRJNA612619 for snail, PRJNA552185 for sponge, PRJNA763232 for human, 432 
PRJNA574146 for coral). The downloaded reads were then trimmed using Trimmomatic67 433 
(version 0.36) with custom settings (ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 LEADING:3 434 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40). Trimmed reads from the sponge-, human-, 435 
and snail-associated microbiomes were assembled with MEGAHIT68 version 1.2.9 using default 436 
parameters, while reads from coral-associated microbiomes were assembled using SPAdes69 437 
version 3.11.1 with custom settings (--meta, k-mer sizes varied from 51 to 91, with a 10-mer step 438 
size). The assembled metagenomes were then functionally annotated using VOG, PHROG, KEGG, 439 
and Pfam via Hmmsearch (HMMER 3.4, parameter: -E 10-5) and MMseqs2 (E-value ≤ 10-5). 440 
AV-scores for VOG, PHROG, KEGG, and Pfam were subsequently calculated for each sequence. 441 
Predicted viral genomes were identified based on the following criteria: (1) sequences with at least 442 
one AV-score (from VOG, PHROG, KEGG, or Pfam) exceeding the corresponding cutoffs for 443 
each fragment size (e.g., a PHROG AV-score > 4.24 or a VOG AV-score > 4.91 for a 2.5 kb 444 
scaffold; detailed cutoffs by fragment size are provided in Supplementary Table S10). For 445 
sequences larger than 15 kb, cutoffs for 14−15 kb fragments were used. (2) Sequences meeting 446 
criterion (1) were further filtered for completeness >0%, as assessed by CheckV53 v1.0.13. In 447 
parallel, geNomad8 v1.7.411, VirSorter218 v2.2.3, VIBRANT17 v1.2.0, and DeepVirFinder19 v1.0, 448 
(score ≥ 0.75, p < 0.05), were used to identify viral sequences from the host-associated 449 
metagenomes, allowing for a comparison between the V-score-based and specific gene- or 450 
hallmark- or machine learning-based viral identification methods. For consistency, viral sequences 451 
identified by geNomad, VirSorter2, VIBRANT, and DeepVirFinder were also required to have 452 
completeness >0%, as assessed by CheckV v1.0.13. 453 

Applying cutoffs to the assessment of proviral sequences 454 

Cutoffs of AV-scores and AVL-scores of whole genomes in Supplementary Table S10 were used 455 
for the assessment on proviral sequences by estimating the consistency of our method with a 456 
custom prophage database. The custom prophage database developed by Arndt et al.22 were 457 
downloaded from PHASTER (https://phaster.ca/databases). Then prophage sequences in the 458 
database were functionally annotated with VOG and PHROG using Hmmsearch (HMMER 3.4, 459 
parameter: -E 10-5) and MMseqs2 (E-value ≤10-5), followed by the calculation of the AV-scores 460 
and the AVL-scores of VOG and PHROG for each prophage. Any prophage sequences with an 461 
AV-score or AVL-score above their corresponding cutoff were considered consistent with the 462 
prophage database. 463 

To show a potential application in prophage boundary identification, one experimentally verified 464 
provirus, Enterobacteria phage P8870, and its host were selected and downloaded from NCBI 465 
(Escherichia coli GenBank: GCA_001005685.1). Proteins of prophage and host genomes were 466 
predicted using Prodigal V2.6.3 (parameters: -m -p meta)63. Hmmsearch58 (HMMER 3.4, 467 
parameter: -E 10-5) was used to match the proteins of prophages and hosts to the HMM profiles of 468 
VOG. MMseqs2 with a custom parameter (E-value ≤ 10-5) was used to search prophage and host 469 
proteins against the PHROG database. Only the best hit to each protein was retained. Then V-score 470 
and VL-score of VOG and PHROG were assigned to each protein, followed by calculating AV-471 
score and AVL-score for each prophage and adjacent host sequence. The gene feature plots of 472 
prophages were generated and visualized with DNA Features Viewer71. 473 

 474 
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Database construction for benchmarking on AMGs identification 475 

We assembled a database of 17 KEGG and Pfam HMM profiles (VL-scores < 3 for KEGG 476 
annotations or VL-scores < 3 for Pfam annotations) representing AMGs experimentally 477 
demonstrated to affect host metabolism72-76 (Supplementary Table S16) and a database of 10 478 
selected HMMs that represent non-AMGs (Supplementary Table S17). From IMG/VR v452, we 479 
compiled a database of 5,116 high-quality50 viral genomes (Supplementary Table S18) containing 480 
the 17 experimentally verified AMGs,  the 10 non-AMGs, and genomes with neither to obtain a 481 
representative sample. We ensured each viral genome had a known host genus, and compiled a 482 
database of 180 host genomes (containing homologs of the 17 experimentally verified AMGs) 483 
representing the known host genera (Table S13). We used GeNomad8 v1.7.4 to predict viral 484 
scaffolds in the 180 host genomes and removed viral scaffolds binned in host genome assemblies 485 
(Supplementary Table S19).  486 

Open reading frames in all virus and host genomes were identified and translated using pyrodigal-487 
gv8, 63 v0.3.1 (github.com/althonos/pyrodigal-gv). Translated proteins were aligned to Pfam-A56 488 
v36.0 HMMs and KEGG77 KO HMMs using pyhmmer58, 78 v0.10.10 hmmsearch58 with a 489 
maximum e-value of 1e-05. For proteins aligning to multiple HMM profiles within the same 490 
database, the highest scoring alignment was reported. Each protein with a Pfam or KEGG 491 
functional annotation was assigned its corresponding Pfam or KEGG VL-score and V-score.  492 

Workflow for AMGs identification 493 

Using the database of 17 KEGG and Pfam HMM profiles, we identified potential AMGs by 494 
searching for each protein with Pfam VL-score < 3 or KEGG VL-score < 3 and with Pfam and 495 
KEGG V-scores < 10. We distinguished AMGs from host-encoded metabolic genes by averaging 496 
the VL-scores of all KEGG or Pfam annotations in entire scaffolds, establishing a minimum 497 
scaffold Pfam/KEGG AVL-score of 3 as optimal for differentiating viral from host scaffolds. Thus, 498 
for a gene flagged as a potential AMG using our predefined VL-score and V-score cutoffs, we also 499 
required that the scaffold encoding the gene have an AVL-score > 3 for Pfam/KEGG annotations 500 
and AV-score > 4.81 for KEGG annotations or AV-score > 4.39 for Pfam annotations. 501 

It is recommended by community standards for AMG analysis that a potential AMG should be 502 
validated by ensuring it is flanked on both the upstream and downstream sides by hallmark genes35, 503 
36. However, given the poor annotation rate of virus proteins, this also impacts the identification 504 
of AMGs. Here, we conducted our flanking verification approach by running our AMG 505 
identification workflow using viral hallmark genes to verify flanking regions of potential AMGs. 506 
We defined viral hallmark genes in our KEGG and Pfam HMM databases as previously 507 
described79; any HMM profile with an annotation/description containing any of the following 508 
keywords: virion structure (truncated from structure to account for matches to the terms “structure” 509 
or “structural”), capsid, portal, tail, and terminase. A list of KEGG and Pfam HMMs defined as 510 
viral hallmark genes this way are provided in Supplementary Table S20. In parallel, we verified 511 
that AMGs identified with our workflow were flanked on both sides by at least one gene with a V-512 
score of 10 within 10 kb of the AMG, recognizing that viral genes with unknown functions may 513 
still be characteristically viral. The verification approach may not be necessary when analyzing 514 
complete or cultured viral genomes, so we report results with and without flank verification.  515 

 516 
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Assessment on performance of the workflow for AMGs identification 517 

To assess the performance of our workflow, we established true positives and negatives for AMGs 518 
in our test genome dataset. A gene encoded by a viral scaffold with an annotation in the 519 
experimentally verified AMG database was considered a true positive, while any host-encoded 520 
gene in the experimentally verified AMG database was considered a true negative. Genes encoded 521 
on viral scaffolds with annotations matching any of 10 selected HMMs that represent non-AMGs 522 
were also considered true negatives. Any other gene, encoded on a known host or viral genome, 523 
that was not annotated with the experimentally verified AMG database or non-AMG database was 524 
not considered a true positive or negative. 525 

In addition to the true positives and negatives, we predicted positives and negatives. To ensure that 526 
we did not analyze viral genes in host genomes, all genes encoded on host scaffolds predicted as 527 
viral were removed before we predicted the positives and negatives of our AMG identification 528 
workflow. Predicted positives were any gene, encoded on a known host or viral scaffold, that met 529 
the following criteria: (1) the gene has a Pfam VL-score < 3 or a KEGG VL-score < 3, (2) the gene 530 
has a Pfam V-score < 10 or a KEGG V-score < 10, (3) the gene is encoded on a scaffold with a 531 
Pfam AVL-score > 3 or a KEGG AVL-score > 3, (4) the gene is encoded on a scaffold with a Pfam 532 
AV-score  > 4.39 or a KEGG AV-score > 4.81, (5) the gene is flanked to the left and right by at 533 
least one other gene with a V-score of 10 within a 10 kb distance (only applies to results reporting 534 
prediction “with flank verification”). Any gene with an annotation belonging to the AMG database 535 
or the non-AMG database that did not meet these criteria was considered a predicted negative. 536 
Genes without annotations to the non-AMG or the AMG database were not predicted as positives 537 
or negatives. The counts of true positives, true negatives, predicted positives, and predicted 538 
negatives were used to construct the confusion matrices in Supplementary Table S12.  539 

Identification of auxiliary genes using our workflow and other existing approaches 540 

We assembled a dataset of 5,116 high-quality viral genomes from IMG/VR v452 (Supplementary 541 
Table S18). All viral genes were evaluated for potential auxiliary functions using the AMG 542 
identification workflow, both with and without flank verification. Genes annotated under KEGG’s 543 
“sulfur relay system” or “metabolic pathways” category, excluding those related to nucleotide 544 
metabolism or sulfonate transport system substrate-binding proteins, were considered potential 545 
AMGs. Additionally, auxiliary genes with KEGG and PFAM annotations were cross-referenced 546 
against a viral AMG database35, which includes experimentally verified AMGs from previous 547 
studies26, 37, 72-76, 80, 81. PFAM and KEGG accessions associated with AMGs were retrieved, and 548 
ORFs containing these accessions were retained and integrated into the AMG dataset. To compare 549 
our approach with other existing tools to identify AMGs, we ran VIBRANT17 with the 550 
“annoVIBRANT” implementation (github.com/AnantharamanLab/annoVIBRANT) and DRAM-551 
v35 on the same set of high-quality viral genomes. For DRAM-v only the AMGs with a score of 1 552 
were retained, which indicates the presence of at least one hallmark gene on both sides, suggesting 553 
the gene is likely viral.  554 

Visualization of VL-scores, and V-scores of phage and host genomes containing psbA  555 

We visualized the genomic context of one predicted AMG, the photosystem II P680 reaction center 556 
D1 protein (psbA KO K02703), in viral and host genomes. We identified one Prochlorococcus 557 
host genome (GenBank GCA_003214355.1) and two viral genomes 558 
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(IMGVR_UViG_2716884766_000001 and IMGVR_UViG_2716884767_000001) encoding 559 
psbA (Supplementary Table S18) predicted by IMG/VR to be Prochlorococcus phages. We plotted 560 
genes within localized regions of these genomes using the R package gggenomes82 v1.0.0 using 561 
annotations, VL-scores, and V-scores obtained as described above. 562 

Viral species differentiation based on AV-score and AVL-score 563 

Reference prokaryotic viruses were used for assessment on viral population differentiation based 564 
on AV-score and AVL-score. Lineage of the reference viruses was downloaded from virushostdb 565 
(https://www.genome.jp/virushostdb). According to the lineage information of each viral RefSeq 566 
genome, 11 species of reference prokaryotic viruses were selected (each species with ≥ 4 genomes). 567 
Viral species include Bixzunavirus Bxz1, Campylobacter virus IBB35, Fibrovirus fs1, Inovirus 568 
M13, Kayvirus G1, Otagovirus Psa374, Pegunavirus Pg1, Pegunavirus soto, Pegunavirus Suffolk, 569 
Restivirus RSS1, and Wphvirus megatron. Viral genomes were annotated with databases of VOG, 570 
PHROG, KEGG, Pfam, and eggNOG using Hmmsearch (HMMER 3.4, parameter: -E 10-5), 571 
MMseqs2 (parameter: E-value ≤ 10-5), or EggNOG-mapper version 2.1.12 (parameters: -m 572 
mmseqs --evalue 10-5). In the following, the AV-score and AVL-score of each genome were 573 
calculated. Detailed information of NCBI RefSeq accessions and AV-score and AVL-score of viral 574 
genomes was provided in Supplementary Table S21. 575 

Metagenome binning with AV-score and AVL-score 576 

The metagenome of deep-sea snail (Gigantopelta aegis) microbiome47 was analyzed as a use case 577 
to show an application in genome binning. Raw Illumina reads of the snail G. aegis metagenome 578 
were retrieved from NCBI (BioProject accession: PRJNA612619). Then the downloaded reads 579 
were trimmed by Trimmomatic (version 0.36)67 with custom setting (ILLUMINACLIP: TruSeq3-580 
PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40). Scaffolds of 581 
the genomes of two bacterial endosymbionts and four phages infecting the endosymbionts were 582 
mapped to the trimmed reads with Bowtie2 version 2.3.483 and SAMtools version 1.684 to calculate 583 
sequencing coverage. Additionally, the microbial genomes were functionally annotated with VOG, 584 
PHROG, KEGG, Pfam, and eggNOG with Hmmsearch (HMMER 3.4, parameter: -E 10-5), 585 
MMseqs2 (E-value ≤10-5), or EggNOG-mapper version 2.1.12 (parameters: -m mmseqs --evalue 586 
10-5), followed by the calculation of AV-score and AVL-score for each scaffold in a genome. 587 
Finally, we manually binned bacterial and phage scaffolds (length ≥5 kb) following a previously 588 
described approach85 on the basis of AV-score and AVL-score, sequencing depth,  phage hallmark 589 
genes, and bacterial conserved single-copy genes. 590 
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