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One Sentence Summary: 
ACPA+ at-risk individuals show RA-like inflammation and multi-compartment immune 
dysregulation during transition to clinically active RA 
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Abstract: Some autoimmune diseases, including rheumatoid arthritis (RA), are preceded by a 
critical subclinical phase of disease activity. Proactive clinical management is hampered by a 
lack of biological understanding of this subclinical ‘at-risk’ state and the changes underlying 
disease development. In a cross-sectional and longitudinal multi-omics study of peripheral 
immunity in the autoantibody-positive at-risk for RA period, we identified systemic inflammation, 
proinflammatory-skewed B cells, expanded Tfh17-like cells, epigenetic bias in naive T cells, 
TNF+IL1B+ monocytes resembling a synovial macrophage population, and CD4 T cell 
transcriptional features resembling those suppressed by abatacept (CTLA4-Ig) in RA patients. 
Our findings characterize pathogenesis prior to clinical diagnosis and suggest the at-risk state 
exhibits substantial immune alterations that could potentially be targeted for early intervention to 
delay or prevent autoimmunity. We provide a suite of tools at 
https://apps.allenimmunology.org/aifi/insights/ra-progression/ to facilitate exploration and 
enhance accessibility of this extensive dataset.  
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Main Text:  
 
In autoimmunity, early diagnosis and therapeutic intervention contribute to reduced disease 
activity (1, 2). Though efficacious for some, current therapeutics often do not return patients to a 
pre-disease state, resulting in poorer quality of life and increased healthcare burden. Patients with 
rheumatoid arthritis (RA), a destructive systemic autoimmune disease estimated to affect 0.5-1% 
of the population, typically follow a course in which disease flare(s) lead to diagnosis and 
treatment with disease-modifying anti-rheumatic drugs (DMARDs), in a reactive response-
dependent manner. Unfortunately, many patients fail treatment or relapse while on best-in-class 
DMARD therapies (3). Building on successes in type 1 diabetes therapy (2), an alternative 
proactive intervention strategy for RA targets prevention of clinical symptom onset in high risk 
individuals. However, this strategy is not broadly utilized because in the absence of data high-risk 
individuals are considered to be healthy and insufficient evidence is available to guide pre-
symptom disease management. 
 
Advances in RA risk stratification established that anti-citrullinated protein antibodies (ACPA) and 
rheumatoid factor (RF) may be detectable an average of 3-5 years prior to the onset of clinical 
RA (4–6), with a positive predictive value of ~30-60% (7, 8). Individuals that are ACPA+ but 
otherwise clinically healthy are considered ‘at-risk’ for future clinical RA (at-risk individuals, ARI) 
and momentum has been building to better understand and modulate disease at this stage. 
Clinical trials in ARI have achieved some success and provide clues about important cell types 
and pathways accompanying transition to clinical RA. In the PRAIRI trial that enrolled ACPA+ and 
RF+ ARI, rituximab delayed the onset of clinical RA but did not reduce the overall rate of clinical 
RA development compared to placebo (9). In contrast, the ARIAA and APIPPRA trials 
demonstrated that abatacept reduced development of clinical RA within the trial periods in ACPA+ 
ARI (10, 11). Together, these trials suggest that adaptive immune responses play key roles in 
transition to clinical RA in ACPA+ ARI.  
 
Cross-sectional comparisons have provided snapshots of changes in effector populations that 
accompany the at-risk state. Expansion of pro-inflammatory CD4 effector populations, including 
antigen-specific Th17 cells, along with lower glycolytic enzyme expression, are suggestive of prior 
activation (12–16). Pro-inflammatory skewing may be facilitated by elevated circulating 
inflammatory cytokines (17–21). Expanded Tph cells and ACPA specificities signify T cell-driven 
autoreactive B cell responses, while increased IgA+ plasmablasts and shared IgA+/IgG+ clonal 
families suggest a mucosal component (13, 19, 22, 23). There are no comprehensive, longitudinal 
multi-omics studies that provide a systemic understanding of the immunological changes leading 
to progression from at-risk to clinical RA and to highlight critical elements for diagnostics and 
proactive therapeutic targeting. 
 
ARI exhibit signs of systemic inflammation prior to the onset of clinical RA 
 
To define molecular and cellular changes that contribute to the development of clinical RA, we 
studied a prospective cohort of 45 clinically-healthy ACPA+ ARI (mean follow-up of 533 days), 11 
‘early’ clinical RA (ERA) patients, and 38 ACPA- healthy controls (CON1; Fig. 1A, S1A, tables 
S1-2). During the study, 16 ARI progressed to clinical RA (‘converters’) (fig. S1B, table S3). 
Baseline (i.e. initial) ACPA levels and distribution were similar in ARI and ERA, while rheumatoid 
factor (RF) IgM and IgA were elevated in ERA alone (Fig. 1B, S1C). To understand the global 
immune state in ARI, we compared the plasma proteome from their baseline visit to CON1. We 
found 275 differentially abundant proteins (DAPs) in ARI (252 (92%) higher in ARI, 23 lower) (fig. 
S1D, table S4). Enrichment analysis using these DAPs identified pathways related to 
inflammation and cytokine, chemokine signaling (fig. S1E, table S5). To determine whether the 
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baseline plasma protein alterations observed in ARI are similar to those in patients with clinical 
RA, we correlated the effect size changes of ARI and ERA, each relative to CON1 (table S6). A 
positive Spearman correlation between the two indicated that systemic changes in the ARI 
circulating proteome overlap significantly with those observed in active disease, despite absence 
of active arthritis in ARI (fig. S1F), suggesting that some molecular features of RA begin prior to 
clinical manifestation.  
  
To evaluate heterogeneity of the identified inflammatory signature between individuals, we 
performed unsupervised k-means clustering of all participants (ARI, ERA, CON1) using the DAPs 
in ARI and ERA. This yielded 6 clusters (Prot C1-C6) in which 71.4% (40/56) of ARI or ERA 
segregated into Prot-C4, -C5, and -C6 (Fig. 1C, S1G, table S7). Clusters Prot-C6 and Prot-C1 
were the most distinct in composition and exhibited the widest differences in protein abundance. 
Direct comparison of these two clusters uncovered additional inflammatory mediators significantly 
increased in ARI and ERA (Fig. 1D, S1H, table S8). We validated this on a subset of the identified 
inflammatory proteins in plasma samples from participants in clusters Prot-C1 and Prot-C6 (Fig. 
1E). Together, these results demonstrate the presence of systemic inflammation in many ACPA+ 
ARI despite having no evidence of clinical RA. The observation that some ACPA+ ARI and ERA 
lack this proteomic signature and segregate into clusters consisting of controls highlights the 
heterogeneity within the ACPA+ population.  
 
Immune cells exhibit inflammatory gene programs in clinically healthy ARI 
  
We hypothesized that exposure of immune cells to the inflammatory milieu in ARI would be 
associated with wide-ranging changes. To understand the transcriptional state of immune cells 
from ARI, we performed scRNA-seq on PBMCs. Three hierarchical levels of immune cell subsets 
were defined in the scRNA-seq data using a recently released Allen Institute for Immunology 
Immune Cell Atlas (24) and confirmed by manual review (fig. S2A-C; see Methods). We 
observed limited changes in relative frequencies of immune cell subsets between ARI and CON1 
(fig. S2D, table S9). Despite limited changes in cell abundance, we found significant 
transcriptional changes in several immune cell types demonstrated by the number of differentially 
expressed genes (DEGs) in ARI compared to CON1 (Fig. 1F, table S10). The presence of 
numerous transcriptional changes in naive populations suggests the potential of a primed state 
that may contribute to disease risk, similar to that described in clinical RA (25). To determine how 
global and cell type specific transcriptional changes impact known pathways, we utilized Spectra 
(26) to analyze level 1 cell subsets (fig. S2A, table S11). We identified increased signaling 
downstream of inflammatory receptors specifically in CD4 T cells (fig. S2E) and global enrichment 
of glycolysis (fig. S2F) and oxidative phosphorylation pathways (fig. S2G, table S12). Taken 
together, the breadth of plasma proteomic and transcriptional changes in circulating immune cells 
are indicative of an ongoing inflammatory state in ACPA+ ARI. 
 
Progression from at-risk to clinical RA is marked by systemic immune changes and 
emergence of inflammatory monocyte activity 
 
Based on previous proteomic studies (4–6, 17–19), we hypothesized that a significant immune 
triggering event would drive imminent onset of clinical RA in ARI. We focused on the 13 female 
ARI who progressed to clinical RA due to the availability of pre-diagnosis longitudinal samples 
(Fig. 2A). Across these samples, there was a variable range of baseline ACPA concentrations 
(fig. S3A). Twelve ARI had no appreciable longitudinal increase in ACPA levels prior to and 
including the time of diagnosis of clinical RA. Among clinical labs, only platelet counts increased 
during progression to clinical RA (fig. S3B, table S1). These observations prompted us to 
evaluate global gene expression differences. We modeled transcriptome variability over time in 
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ARI who progressed to clinical RA relative to data from a longitudinal cohort of ACPA- healthy 
controls (CON2) (24) (fig. S3C, table S13). Intra-donor coefficient of variation (CV) for all detected 
transcripts demonstrated that 24/27 cell types had more genes with increased variability in ARI 
during progression to clinical RA compared to CON2 over a similar timeframe (Fig. 2B, table 
S14). In contrast, most ARI cell populations exhibited few DEGs associated with time to diagnosis 
(Fig. 2C-D, table S15). Similarly, few DAPs were associated with time to diagnosis in the plasma 
proteome (table S16). Notably, naive and central memory (CM) CD4 T cells showed the largest 
degree of transcriptional reprogramming, with an accompanying trend of increased abundance 
by flow cytometry (Fig. 2C, S3D-F, table S17-18). 
 
In clinical RA, cellular and transcriptional changes precede RA flares (27). To determine if similar 
changes accompany clinical RA diagnosis in converters, we compared paired samples collected 
at the last ‘at-risk’ pre-clinical visit (average 122 days before clinical RA diagnosis) with samples 
collected at the time of clinical RA diagnosis (Fig. 2E). Most cell types had minimal transcript 
changes at clinical RA diagnosis but CD16 monocytes exhibited a spike in TNF expression, ISG+ 
CD16 monocytes showed increased CXCL10 (Fig. 2F), and CD95+ memory B cells showed 
increased IGHA1 and JCHAIN expression (fig. S3G, table S19). The highest expression of TNF 
and other pro-inflammatory genes was found in IL1B+ CD14 monocytes (28, 29) (Fig. 2G, S3H) 
that exhibit a gene signature resembling FOLR2+ ICAM+ macrophages from RA synovial tissue 
(30) (Fig. 2H). TNF expression did not increase between visits in these cells (fig. S3I), but we 
found increased abundance of IL1B+ CD14 monocytes within total monocytes at the onset of 
clinical RA (Fig. 2I, table S20). Together, these data suggest a landscape of broad and deep 
changes in systemic immunity with distinct pathogenic features emerging at the time of early joint 
pathology. 
 
B cells exhibit pro-inflammatory skewing during progression to clinical RA 
 
Both naïve and memory ARI B cells had a large number of transcriptional changes compared to 
CON1 B cells (Fig. 1F). The presence of autoantibodies and the finding of increased circulating 
inflammatory proteins suggested that this may reflect chronic B cell activation before onset of 
clinical RA. We first focused on memory B cells (MBC), particularly CD27- effector B cells often 
enriched in RA. Clustering ARI MBC scRNA-seq data, excluding immunoglobulin heavy (IgH) and 
light chain (IgL) genes, revealed expansion of a particular cluster of effector B cells (Beff-C9) 
during progression to clinical RA (Fig. 3A-B, table S21). This CD27- effector cluster was defined 
by genes corresponding to ‘age-associated’, Tbet+, or atypical B cells, including ITGAX, TBX21, 
and ZEB2 (31), and notably shared a gene profile analogous to FCRL5+ B cells that have been 
associated with long-lived humoral responses (32) (Fig. 3C, S4A). In contrast, the other CD27- 
effector B cell cluster (Beff-C8) did not exhibit longitudinal changes. For comparison, a 
transcriptionally-related effector B cell cluster from CON2 remained stable over 2 years (fig. S4B-
C). Beff-C9 also had a higher proportion of class-switched isotype cells (Fig. 3D) and higher 
median expression of class-switched IgH genes compared to Beff-C8 (fig. S4D). These data 
suggest CD27- atypical B cells with an activated profile expand in ARI as clinical disease 
approaches. 

We hypothesized that chronic activation may influence B cell receptor (BCR) class-switching in 
ARI. We analyzed IgH gene expression and found higher class-switched IGHG3 expression 
among ARI B cells including CD27- effector and core memory cells (fig. S4E). Interestingly, 
IGHG3 expression differences were also observed in naive ARI B cells (Fig. 3E). These were 
confirmed to be naïve by their canonical naïve marker gene expression and by high expression 
of IGHM (fig. S4E-G), suggesting that elevated IGHG3 is caused by germline transcription (GLT) 
due to increased transcriptional priming at that locus, despite not being class-switched.  We noted 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.10.25.620344doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620344
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

that GLT was detected from all class-switched IgH genes (fig. S5). In IgMD+ naive cells, IGHG3 
GLT was the only IgH germline transcript showing a significant difference between ARI and CON1 
(Fig. 3F). This suggests a greater likelihood that naïve B cells will class-switch to the IgG3+ 
isotype upon activation, an intriguing finding given that patients with RA and other select 
autoimmune diseases are reported to have higher total IgG1 and IgG3 levels (33). Detailed 
evaluation of B cells by flow cytometry revealed a subset of naïve B cells (Bnve-S5) that expanded 
during progression to clinical RA in ARI (Fig. 3G, S4H), a feature previously reported to correlate 
with reduced PAX5 expression (13). Indeed, PAX5 expression within naive ARI B cells was 
reduced (fig. S4I). A broader evaluation of the transcriptome in naive ARI B cells showed 
enrichment for transcripts associated with cellular responses to external stimuli, antigen 
processing and presentation, and BCR signaling when compared to CON1 (Fig. 3H). 

To determine whether the broadly activated molecular profile of naive ARI B cells represents a 
functionally “primed” state, we stimulated ARI and CON2 B cells with CPG and MEGACD40L to 
stimulate TLR9 and CD40, mimicking microbe-response signals and T cell help. We evaluated 
cytokine expression by B cell subsets using intracellular flow cytometry (Fig. 3I). Naive B cells 
from ARI had higher frequencies of IL-6+, RANKL+, and TNF+ cells compared to controls (CON2) 
after stimulation (Fig. 3J) suggesting they are functionally primed. Using TEA-seq, a tri-modal 
single-cell assay combining CITE-seq (surface proteins and scRNA-seq) and ATAC-seq (34) (Fig. 
3K), we evaluated resting naive B cells for expression of genes potentially associated with our 
observed in vitro activation differences. This showed greater accessibility at the TLR9 promoter 
in ARI vs. CON2 naïve B cells (Fig. 3L). This suggested potential transcriptional changes affecting 
TLR9 but we were unable to confirm this due to transcripts for most TLRs, including TLR9, not 
being well captured in the scRNA-seq data. Collectively, naive B cells of ARI may have enhanced 
BCR signaling and antigen presentation, and are primed for IgG3 class-switching and elevated 
proinflammatory cytokine and RANKL secretion. Together these data show broad activation 
across naïve and memory ARI B cell populations with transcriptomic and functional evidence 
demonstrating that this leads to naïve B cells being in a primed state. 

Tfh17 CD4 T cells expand during progression to clinical RA 
 
Given the role of CD4 T cells in B cell activation and class switching, we next evaluated ARI 
effector T cell populations. In fact, CM CD4 T cells had the highest number of DEGs in converters 
as they progressed to clinical RA (Fig. 2D). Analyzing the transcriptome at the population level 
by pseudobulk analysis, we found a signature of increased T cell activation, including 
downregulation of CD3G and CD247 (CD3Z) and upregulation of genes related to cytokine and 
antigen receptor signaling (STAT5B, STAT2, STIM2, AKT3, CD28 and FOSB) as ARI approached 
disease diagnosis (Fig. 4A-B, S6A, table S22). This was accompanied by a trend of increasing 
abundance of a CD4 memory T cell subcluster by flow cytometry (fig. S3F, table S17-18), 
indicating that T cells are activated during disease development. 
 
To understand how the activation signature impacts effector phenotypes during clinical RA 
development, we projected our CD4 T cell scRNA-seq data from converters onto a human CD4 
gene program reference (35) (Fig. 4C) and analyzed memory clusters for abundance and DEGs. 
Cluster 3 (CD4mem-C3) displayed significantly increased abundance during progression to 
clinical RA (Fig. 4D, table S23). Clusters CD4mem-C7, -C11 and -C14 also trended towards 
increased abundance (fig. S6B). Gene expression suggested CD4mem-C3 contained a subset 
of Tfh cells that share a Th17 gene signature (i.e. Tfh17), as evidenced by PDCD1, CXCR5, and 
CD28, along with CCR6, KLRB1, and RORC expression (Fig. 4E, table S24), but are distinct 
from Th17 cells (CD4mem-C0). CD4mem-C3 was also the predominant cluster expressing genes 
important for Tfh and Th17 differentiation and functionality (36–38) and general TCR signaling 
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(39) (Fig. 4F, S6C). Eighty percent of the CD4mem-C3 population labeled as CM CD4 T cells 
(fig. S7A), overlapping in UMAP space and having similar DEGs (Fig. 4A, 4G, S7B). Further, 
CD4mem-C3 aligned in UMAP space to the Tfh gene program from a reference dataset (35) (Fig. 
4H, S7C-D). These finding suggest that the observed increase of CM CD4 T cell abundance as 
ARI approach clinical RA is driven predominantly by changes in Tfh/Tph cells that share features 
of Th17 cells (Tfh17). Paired with pre-activated primed B cells, these may contribute to 
autoantibody development in RA. 
 
Naive T cells also exhibit activation signatures during progression to clinical RA 
 
Similar to the B cell compartment exhibiting activation of both effector and naïve populations, ARI 
T cells demonstrate a similar pattern (Fig. 1F). In converters, naïve CD4 T cells are one of only 
two populations that show a large number of DEGs accompanying progression to clinical RA, 
suggesting ongoing T cell proliferation and/or activation. Indeed, in naive T cells, we detected 
downregulation of CD3 complex transcripts and upregulation of cytokine and antigen receptor 
signaling components (Fig. 5A-D), the latter including STATs, STIM2, and CD28 (fig. S8A-B). 
Gene set enrichment analysis (GSEA) indicated activation pathways, including NFAT and TGFb 
signaling, in both CD4 and CD8 naïve T cells (fig. S8C-D, table S25). Together, these results are 
indicative of activation and suggest that naive T cells from ARI may be continually subjected to 
immunomodulatory stimuli during progression to clinical RA. 
 
To understand the relevance of T cell changes observed in converters, we compared their 
transcriptomic signatures to a whole blood transcriptome dataset generated in a clinical trial of 
abatacept (ABT; CTLA4-Ig) in patients with active RA (40) (Fig. 5E). ABT is hypothesized to 
dampen T cell costimulation in RA (41). Notably, naive and CM CD4 T cell gene signatures found 
in converters over time were significantly enriched specifically in ABT responders prior to 
treatment (Fig. 5F, fig. S8E-F). Indeed, the majority of genes in the naive and CM CD4 T cell 
gene signatures were inversely correlated between ARI who progress to clinical RA and RA 
responders post-ABT (Fig. 5G-H), suggesting that mechanisms relevant to clinical RA contribute 
to disease pathogenesis in ARI, and that these can be reversed by a therapy targeting T cell 
activation. We highlight ABT-driven changes in genes previously implicated in RA-like disease 
(CD8a, CD99, CDK4, CXCR3, FLT3LG, GZMM, LTB, TNFRSF14) and those related to the Th17 
pathway (IL27RA, NABP1) (Fig. 5G-J, table S26). These results support the hypothesis that T 
cell activation is a critical element in progression of ARI to clinical RA, and provide mechanistic 
evidence supporting the role of ABT in delaying onset of clinical RA (10, 11). 
 
Epigenetic changes in naive CD4 T cells are linked to NFAT-calcium activation and Tfh 
bias in ARI 
 
Given the systemic inflammation and longitudinal increase of Tfh17-like effector cells in ARI, we 
hypothesized that naive CD4 T cells are in a state of heightened activation and are epigenetically 
poised to preferentially differentiate into pathogenic effector cells. We performed TEA-seq on 
PBMCs from a subset of ARI and matched CON2 participants (Fig. 3K, table S1), labeled major 
immune cell types (fig. S9A; see Supplementary methods), then integrated the plasma 
proteome, transcriptome, surface proteins, and TF activities (inferred by motif accessibility) from 
naive CD4 T cells using multi-omics factor analysis (MOFA) (42). Factor 1 explained the highest 
variation in the transcriptome (Fig. 6A) and differentiated ARI from CON2 (Fig. 6B), with 
transcripts encoding calcium responsive proteins (NFAT5, NFATC3, NFATC2) and signaling 
proteins (PPP3CC, PPP3CA, STIM1, STIM2) elevated in ARI (Fig. 6C). Moreover, within Factor 
1, we detected increased NFAT TF motifs and decreased FOX TF motifs in accessible chromatin 
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regions of ARI (Fig. 6D, S9B). These results confirm our earlier observation that naive CD4 T 
cells from ARI are in an activated state. 
 
We next compared accessible regions in naive CD4 T cells between ARI and CON2, and identified 
3,159 differentially accessible peaks, including 2,200 in promoter regions (table S27). Louvain 
clustering on all CD4 T cells based on the ATAC modality alone (Fig. 6E) revealed two CD45RA+ 
naive clusters (CD4nve-T2, -T5) with a higher frequency in ARI (Fig. 6F) and three CD45RO+ 
memory clusters (CD4eff-T6, -T9, -T10) with a lower frequency (fig. S9C). CD4nve-T2 and 
CD4nve-T5 were distinct in the epigenetic space (Fig. 6E), though not in the RNA or ADT space 
(fig. S9D). Clusters CD4nve-T2 and CD4nve-T5 exhibited effector-like phenotypes of lower 
CD62L and CD162 surface protein expression (Fig. 6G), and high chromatin accessibility at the 
CXCR5 and IL21 loci compared to other naive clusters (Fig. 6H). Notably, CD4nve-T2, which had 
evidence for an activated or pre-activated state shared with CD4eff-T1 as indicated by TF motif 
enrichment for SMADs, STATs, and AP1 (fig. S9E, table S28), had the highest ChromVAR 
scores for BCL6 and STAT3 predicted activity (Fig. 6I). Moreover, although minimal IL21 
transcript was detected (fig. S9F), an accessible 500bp intronic region in the IL21 locus was 
present only in naive CD4 T cells from ARI (Fig. 6J). This region was shown to be more accessible 
in human tonsil Tfh cells (43) and overlaps an ENCODE putative enhancer-like structure that 
contains motifs for key TFs that drive Tfh, Tph differentiation, including BCL6 and STAT3 (44) 
(Fig. 6I). These results identify a putative regulatory region in naive CD4 T cells that is permissive 
to induction of IL-21 specifically in ARI, and links naive T cell activation in ARI to Tfh/Tph cell 
differentiation. 
 
Discussion 
 
Development of ACPAs are strongly predictive for development of future clinical RA (4, 5), but 
immune changes underlying progression from the ACPA+ at-risk state to clinical disease remain 
unclear. Here, we significantly expand prior knowledge of immune alterations that precede clinical 
RA, by demonstrating extensive inflammatory changes in ARI using systems immunology applied 
to a longitudinal, prospective at-risk cohort. These proinflammatory features mirror alterations we 
observed in ERA and those reported in active arthritis, including in inflamed synovial tissue (28–
30). Together, these results support the concept that disease begins earlier than clinically 
appreciated, with ACPA+ ARI having many systemic features of active RA-like inflammation 
preceding development of clinical symptoms, with broad implications for understanding 
autoimmune pathogenesis.  
 
As a hallmark of seropositive RA, ACPAs are one of the most extensively profiled features of 
autoimmunity. Nonetheless, we have an incomplete understanding of the role of B cells in the 
development of clinical RA. Prior studies show that autoreactive and activated B cell populations 
contribute to clinical RA symptomology and progression (45, 46), partially attributable to their 
production of autoantibodies and proinflammatory factors. We identified a subset of CD27- 
ITGAX+ effector memory B cells that increase in abundance in ARI during progression to clinical 
RA. This memory subset showed transcriptional features suggestive of chronic BCR engagement, 
including elevated class-switching, and a gene program associated with long-lived humoral 
immunity after vaccination (32). In clinical RA, subsets of CD11c+ (encoded by ITGAX) atypical 
memory B cells are clonally related to expanded plasma cells in the periphery and synovial tissue 
(47, 48), highlighting this population as a potentially interesting target in preventative therapies.  
 
Notably, we found that naive B cells in ARI also showed evidence of activation, previously 
recognized as a harbinger of disease flares in active RA (27). In our study a subset of naive B 
cells increased in abundance during disease progression and total naive cells were primed for 
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IgG3 class-switching. In addition, greater proinflammatory cytokine and RANKL secretion was 
observed following in vitro stimulation of naive B cells, expanding on literature showing activated 
memory B cells in active RA produce more RANKL than controls and promote osteoclastogenesis 
in vitro in a RANKL-dependent manner (49). These data suggest that not only the production of 
ACPA but ongoing B cell activation is a feature of individuals progressing to clinical RA. 
  
Naive T cells also exhibit constitutive activation in clinically recognizable RA (25). We note 
increased activation signatures in naive CD4 T cells from ARI, which we hypothesize result from 
the chronic inflammatory milieu of ARI. In memory T cells we found expansion of a subset that 
has the composite transcriptional features of both Tfh/Tph and Th17 helper T cell subsets similar 
to Tfh17 cells, an IL-17A-producing subset of Tfh. Tfh17 cells efficiently promote B cell function 
and are correlated with circulating autoantibodies in juvenile dermatomyositis and Hashimoto’s 
thyroiditis (50, 51). The Tfh17 cells we identified in ARI expressed MAF, a key transcription factor 
promoting Tfh and Th17 cell fate, including expression of CXCR5 and IL-21 (36, 52, 53). These 
data expand upon literature implicating Tfh, Tph in the pathogenesis of RA (54). 
  
Using a published dataset, we show that the gene signature present in naive and CM CD4 T cells 
in ARI that convert to clinical RA was elevated before treatment in active RA patients that 
subsequently responded to abatacept and decreased after 3 months on therapy (40). Notably, 
the Tfh17 cluster that increased in ARI during progression to clinical RA also expressed the 
highest level of CD28, a subset of Tfh proposed to be a target of CTLA-4 modulation (55, 56). 
These data suggest that the inflammatory T cell signatures we identified may be contributing to 
disease pathogenesis in ARI. Though causative mechanisms can’t be tested with these data, 
these results warrant further investigation. 
  
We sought to understand mechanisms that might link perturbation in naive T cells with changes 
noted in effector T cells. Trimodal profiling of cell surface proteins, transcriptome, and epigenome 
provided the opportunity to better understand molecular mechanisms underlying naive T cell 
activation and Tfh17 expansion in ARI. Pre-existing transcriptional and epigenetic landscapes in 
naive T cells can skew their effector potential towards Tfh development (57). Consistent with 
previous reports in clinical RA (25), naive CD4 T cells in ARI showed activation through calcium 
and TCR signaling. Epigenetically, this was associated with a subcluster of cells that 
demonstrated effector-like chromatin accessibility profiles, including more accessible BCL6 and 
STAT3 motifs, known drivers of Tfh differentiation (58), as well as a more accessible regulatory 
region at IL21. These results suggest a mechanism whereby Tfh17 expansion in ARI may result 
from a pre-existing bias in naive cells, highlighting the possibility that chronic inflammation in ARI 
is a feed-forward process that culminates in joint pathology. Furthermore, the signature of 
heightened T cell activation, Tfh expansion and priming for IL-21 production, captured in the 
periphery, may contribute directly to elevated B cell activation detected in ARI.   
  
Despite a plethora of changes in ARI relative to healthy controls and in ARI over time as they 
progress to clinical disease, we observed limited changes in circulating immune cells at the time 
of RA diagnosis compared to the prior visit (~122 days), despite their emerging clinical symptoms. 
At clinical RA onset, TNF expression in CD16 monocytes spiked while a population of CD14 
monocytes acquired a TNF+IL1B+ phenotype. The IL1B+ monocyte population resembled 
FOLR2+ ICAM+ synovial tissue macrophages (30). Whether the circulating TNF-expressing 
monocytes we identified traffic to the joint prior to clinical symptoms or as a consequence of 
existing joint inflammation remains to be determined and could be informative for understanding 
the initiation of joint pathology. 
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One limitation of this study is participants were predominantly white, non-Hispanic individuals, so 
further studies would be required to generalize the findings to other demographic populations. 
Analysis of paired synovium was not performed as part of this study. We did, however, identify 
signatures of immune populations in ARI PBMC that overlapped those reported in cells isolated 
from active arthritis synovium (29, 30). We modeled longitudinal changes during progression of 
ARI to clinical RA by comparing intra-donor data from pre-symptomatic timepoints through clinical 
disease onset, rather than performing inter-donor comparisons with ARI that have not developed 
clinical RA. The latter group is inherently heterogeneous and lacks a shared timeline in disease 
status, making direct comparisons difficult. 
  
While the underlying drivers of the observed immune activation are not clear, several lines of 
evidence suggest that disruption of mucosal surfaces may lead to increased transit of pathogen 
derived products promoting innate immune cell activation and priming of adaptive cells (59–62). 
This will require future studies. Whether the inflammatory process precedes the development of 
autoantibodies and promotes the break in tolerance, or the autoantibodies develop first, 
subsequently driving an inflammatory response, remains an important topic of future investigation. 
Taken together, these data provide an unmatched, systems view of the immunologic features of 
ACPA+ ARI and provide numerous potential biomarkers that may be used to predict which ARI 
will develop clinical RA. Given that clinical trials for RA prevention are progressing in ARI (9–11, 
63), these findings also suggest additional opportunities and strategies for prevention, potentially 
focusing on interrupting T-B cell interactions, Tfh/Tph or Th17 function, and/or cytokine inhibition, 
such as blocking IL21. 
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Materials and Methods: 
 
Study Design 
Overview of study participants 
The following groups were included in this study: (1) At-Risk Individuals (ARI), defined as having 
serum ACPA positivity using the anti-cyclic citrullinated peptide-3 (anti-CCP3 IgG ELISA, Werfen); 
(2) Early RA (ERA), defined as having on physical examination ≥1 swollen joint consistent with 
synovitis and anti-CCP3 positivity, with their initial study visit taking place within 1 year of the initial 
confirmation of synovitis by a rheumatologist; (3) ACPA- Controls (CON1), defined as being anti-
CCP3 negative and recruited at the University of California San Diego and the University of 
Colorado; (4) Longitudinal healthy ACPA- controls (CON2), defined as being anti-CCP3 negative 
and recruited at the Benaroya Research Institute (24). Clinical data associated with the study 
were finalized as of December 18, 2023. 
  
Group recruitment and enrollment 
ARI, ERA and CON1 participants were identified and recruited by the University of California San 
Diego (UCSD) and the University of Colorado Anschutz Medical Campus (CU) as part of the Allen 
Institute for Immunology-UCSD-CU Transition to Rheumatoid Arthritis Project (ALTRA) Project. 
ARI were identified through anti-CCP3 testing of first-degree relatives of individuals with clinical 
RA, health-fair testing, research outreach to campuses and communities, and through evaluation 
of rheumatology clinic referrals. All ARI were positive at enrollment for the anti-CCP3 test (20 
units) and had no history of or examination evidence of synovitis at the time of enrollment as 
determined by a rheumatologist or trained study nurse’s physical examination of 68 joints (joint 
tenderness in absence of swelling was not an exclusion). Additional exclusions for the ARI 
included use of immunomodulatory therapy other than short courses of corticosteroids for non-
inflammatory arthritis conditions (e.g. asthma, although use of corticosteroids for gout was 
allowed). ERA were recruited from rheumatology clinics at UCSD and CU and included individuals 
with ≥1 swollen joint consistent with synovitis identified by a rheumatologist, and their ALTRA 
study visit occurred within 1 year of their initial diagnosis of clinical RA by a rheumatologist. 
Furthermore, of the enrolled Early RA participants 11/11 (100%) met the 2010 American College 
of Rheumatology/European Alliance for Associations of Rheumatology (ACR/EULAR) RA 
classification criteria. Recruitment of both ARI and ERA was facilitated through use of signage, 
flyers and social media campaigns (64). CON1 were identified as being anti-CCP3 negative 
through testing of first-degree relatives of patients with RA as well as individuals at health-fairs, 
campus and community outreach and rheumatology clinics which are similar venues where the 
anti-CCP3 positive individuals were identified. Exclusion criteria for these participants included 
inflammatory arthritis and/or the use of immunomodulatory agents. 
 
CON2 participants were recruited from the Seattle area by the Benaroya Research Institute as 
part of the Sound Life Project and sampled longitudinally (24). Individuals were excluded if they 
had a history of diagnosed chronic disease, autoimmune disease, severe allergy, or chronic 
infection. All participants had anti-CCP3 levels < 20 units. 
  
Ethical considerations 
All studies were approved by ethical review boards at UCSD, CU, Benaroya Research Institute 
and the Allen Institute for Immunology. All participants provided written informed consent prior to 
participation in these studies. 
 
Sample collection 
Consistency in sample collection and handling between the three sites was through the use of a 
common lab manual, common protocols, on-site training prior to the start of work, and regular 
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coordination meetings. All samples were assayed at the Allen Institute, except for plasma 
proteomics, which was outsourced (Olink). 
 
Blood was drawn into BD sodium heparin (NaHeparin) vacutainer tubes for PBMC or K2-EDTA 
vacutainer tubes for plasma. PBMC isolation and plasma processing were started within 2 hours 
post blood draw. For PBMC isolation, upon arrival at the processing lab all NaHeparin tubes for 
each donor were pooled into a sterile polystyrene pooling receptacle, gently swirled ~30 times 
until fully mixed, and combined with an equivalent volume of room temperature PBS 
(ThermoFisher). PBMCs were isolated using Leucosep tubes (Greiner Bio-One) loaded with 15 
mL of Ficoll-Paque Premium (GE Healthcare) to which a 3 mL cushion of PBS had been slowly 
added on top of the Leucosep porous barrier. 24–30 mL diluted whole blood was slowly added to 
the tube and spun at 1000 x g for 10 min at 20°C with no brake. PBMCs were recovered by quickly 
pouring all supernatant volume above the barrier into a sterile 50 mL conical tube; 15 mL cold 
PBS+0.2% BSA (Sigma; “PBS+BSA”) was added, and the cells were pelleted at 400 x g for 5–10 
min at 4–10°C. The supernatant was quickly decanted, the pellet dispersed by flicking the tube, 
and the cells washed with 25–50 mL cold PBS+BSA. Cell pellets were combined, if applicable, 
and the cells were pelleted as before. PBMCs were resuspended in 1 mL cold PBS+BSA per 15 
mL whole blood processed and counted with a Cellometer Spectrum (Nexcelom) using Acridine 
Orange/Propidium Iodide solution. PBMCs were cryopreserved in 90% FBS (ThermoFisher) / 
10% DMSO (Fisher Scientific) at a target of 5 x 106 cells/mL by slow freezing in a Coolcell LX 
(VWR) overnight in a -80°C freezer followed by transfer to liquid nitrogen. 
 
Assays 
Autoantibody and inflammatory marker testing 
Anti-citrullinated protein antibodies (ACPA) were tested using the anti-cyclic citrullinated peptide 
antibody-3 (anti-CCP3 IgG) assay using an ELISA platform (QuantaLite, Werfen) with a cut-off 
for positivity based on the manufacturer’s suggestion of ≥20 units. Rheumatoid factor (RF) 
immunoglobulin (Ig) A and IgM were tested using an ELISA platform (QuantaLite, Werfen) with 
cut-offs for positivity based on the clinical laboratory’s internal cut-offs set using 80 controls (>1.7 
International Units for RFIgA and >6.7 International Units for RFIgM). High sensitivity C-reactive 
protein (hsCRP) testing was performed using nephelometry with results in milligrams per liter 
(mg/L). Erythrocyte sedimentation rates (ESR) were performed using clinical lab methodologies 
with results in millimeters per hour (mm/hr). Anti-CCP3, RFIgA and RFIgM tests were performed 
on all ALTRA participants (ARI, ERA, CON1) as well as CON2, and all testing for these 
autoantibodies was performed at the University of Colorado in the Exsera Biolabs, a College of 
American Pathologists and Clinical Laboratory Improvement Amendments (CAP/CLIA) certified 
laboratory. hsCRP and ESR testing were performed using local clinical laboratories at UCSD, CU 
and BRI. 
  
Shared epitope testing 
For ALTRA participants, presence of the shared epitope was determined by high resolution 
polymerase chain reaction (PCR) at the University of Colorado ClinImmune Laboratory. Alleles 
considered to contain the shared epitope include: HLA-DRB1 *01:01, *01:02, *04:01, *04:04, 
*04:05, *04:08, *04:09, *04:10, *04:13 and *10:00.  
  
Plasma proteomics  
For plasma isolation, the K2-EDTA source tube was gently inverted 10 times, centrifuged at 2000 
x g for 15 min at 20°C with a brake of 1, and 80–90% of the plasma supernatant was removed for 
immediate freezing at −80°C. Plasma was assayed after the first freeze/thaw. Plasma samples 
were assayed on the Olink Explore 1536 platform, which uses paired antibody proximity extension 
assays (PEA) and next-generation sequencing to measure the relative expression of 1,472 total 
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protein analytes (1463 unique) per sample. Samples were randomized across plates to achieve 
a balanced distribution of age and sex. Longitudinal samples from the same participant were run 
on the same plate. Plasma bridging controls (12) were included in each of 7 batches and used for 
cross-batch normalization.  
 
Mesoscale Discovery (MSD) and LegendPlex Targeted Assays 
Plasma concentrations of IL-6 and TNF were measured using the V-PLEX Human 
Proinflammatory Panel 1 kit (MSD #K15049D-2), IL-1B using the S-PLEX Human IL-1B kit (MSD 
#K151ADSS), and CCL5 using the LEGENDPplex Human Proinflammatory Chemokine 1-plex kit 
(BioLegend #741083) according to the manufacturer's protocol. For MSD assays, 25µl of 
undiluted plasma samples were utilized and plates were read on a Meso Sector S 600MM 
instrument. Sample raw data and standard curves were derived using Discovery Workbench 
v4.0.13. For LEGENDplex assays, 25µl of diluted plasma (1:50 in assay buffer), were utilized and 
samples were analyzed on a Cytek Aurora flow cytometer. Data acquisition and analysis were 
performed according to BioLegend’s instrument setup (for Cytek Aurora) 
(https://www.biolegend.com/Files/Images/BioLegend/legendplex/instructions/Setup_Procedure_
for_Cytek_Aurora_and_Northern_Lights_2_Lasers.pdf) and analysis software suite 
(https://www.biolegend.com/en-us/immunoassays/legendplex/support/software). 
 
Flow cytometry and scRNA-seq 
For prospective flow cytometry and scRNA-seq, PBMCs were assayed after the first thaw 
according to a previously published method (65). In most cases, flow cytometry and scRNA-seq 
data were collected from the same vial of cells. For flow cytometry, cells were labeled with a 
selection of antibodies targeting 56 surface proteins organized into 4 panels and data were 
collected on a Cytek Aurora, as previously described (66). For scRNA-seq, samples were hashed 
and libraries generated using a modified 10x Genomics assay, as previously described (65). 
Hashed data processing was carried out using BarWare (67) to generate sample-specific output 
files. 
 
TEA-seq 
Seven ARI and six age-matched female CON2 donors were selected (table S1). One CON2 
donor, who tested positive for anti-CCP3 (>20 units), was excluded from further analysis. TEA-
seq library preparation was performed as described previously (34, 68). In brief, all samples were 
thawed and stained with the sample specific cell hashing antibodies then processed in the same 
batch. Cells were sorted to remove dead cells, debris, and neutrophils. A panel of 166 target-
specific barcoded oligonucleotide-conjugated antibodies (ADT) (BioLegend TotalSeq™-A Human 
Universal Cocktail, V1.0 and 3 additional antibodies) were used in the present experiment (table 
S29). Individual ATAC, RNA, hashtag oligonucleotide (HTO) and ADT libraries were prepared, 
sequenced and processed as described previously (34). 
 
Intracellular Flow Cytometry 
Cell Assay, Processing and Antibody Staining 
Total PBMCs were suspended in RPMI 1640 supplemented with 20% heat-inactivated fetal 
bovine serum (FBS), 1% penicillin-streptomycin, L-glutamine, HEPES, sodium pyruvate, glucose 
and 2-Mercaptoethanol (Gibco; 50 μM) at 4 × 106 cells/mL and rested for 30 minutes. For each 
subject’s sample, half of the PBMC suspension was then stimulated for 48 hours with CpG ODN 
2006 (Invivogen; 10 μg/mL) and MEGACD40L (Enzo; 100 ng/mL) or the other half was cultured 
without stimulation in a sterile 96-well U-bottom culture plate (Falcon) at 37°C and 5% CO2. 
Phorbol 12-myristate 13-acetate (PMA; 50 ng/mL), ionomycin (1 μg/mL), and Brefeldin A (BFA; 
1x) were added to stimulated PBMCs and BFA alone was added to unstimulated PBMCs for the 
final 6 hours of culture. All PBMC suspensions were then washed with Wash Buffer (Dulbecco’s 
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Phosphate Buffered Saline (DPBS) with 1% FBS) and then incubated with fixable viability stain in 
the dark for 10 minutes at RT to label non-viable cells. PBMC were next suspended in 1:1 TruStain 
FcX blocker (Biolegend) and purified mouse IgG (BioRad) for 10 minutes at RT and then washed. 
PBMC were stained for surface antigens in Wash Buffer and Brilliant Stain Buffer Plus in the dark 
for 30 minutes at RT and then washed with Wash Buffer. PBMC were then fixed with 1.6% 
paraformaldehyde in DPBS for 20 minutes, washed, and permeabilized with FoxP3 Transcription 
Factor Staining Buffer (eBioscience) for 20 minutes at RT. PBMC were stained for intracellular 
antigens in the Transcription Factor Staining Buffer for 40 minutes at RT. Before acquisition, 
samples were washed three times and resuspended at 2.5 × 106 cells/mL in Wash Buffer. Data 
was collected on a Cytek Aurora cytometer (5 Laser; SpectraFlo V3.1.2) and raw spectral data 
was ‘unmixed’ as previously described (66). PBMC stimulation and staining reagents, including 
fluorescent-tagged antibodies, and concentrations are outlined in table S30. 
 
Data Analysis 
For each assay, measurements were taken from distinct samples. An exception to this was Olink 
proteomics, whereby three proteins had repeated measurements. This is detailed under the 
Plasma Proteomics section. 
 
Plasma proteomics 
Protein abundance values were reported as log2 normalized protein expression (NPX) by Olink. 
Data were reviewed for overall quality prior to analysis. For cross-batch data normalization, bridge 
offsets were determined for each batch and each analyte separately by taking the median of the 
per-sample NPX differences between the later batch result and the earliest (reference) batch 
result for the 12 bridging controls. Offsets were subtracted from the analyte measurements of all 
samples in the later batch to obtain the normalized NPX values. Repeated assays (TNF, IL-6, and 
CXCL8) with non-significant Spearman correlations (P > 0.05) across panels and batches were 
excluded from further analysis. Proteins whose NPX values > 2 standard deviations from mean 
when comparing healthy samples from the first and last batches were excluded from analysis. 
 
Ordinary least squares linear regression models were used to detect differences between groups, 
utilizing the stats package in R. Models were adjusted for age, sex, BMI (ARI vs. CON1) or age 
covariates (ERA vs. CON1). The Storey-Tibshirani procedure was employed for multiple testing 
correction, with q-values reported. Repeated assays (TNF, IL-6, and CXCL8) were treated as 
distinct measurements and therefore analyzed separately, as recommended by Olink. For each 
comparison, proteins were excluded from the analyses if > 50% of NPX values were below the 
limit of detection in either group. Longitudinal modeling of abundance changes associated with 
time to clinical RA are described in the Longitudinal Modeling section below. Geneset over-
representation analysis was performed on significant proteins for a custom collection of genesets 
(MSigDB Hallmark v7.2, KEGG v7.2 and Reactome v7.2) using WebGestaltR (v0.4.6, method = 
ORA, 104 permutations) with all protein coding genes as the background geneset. P values were 
calculated using hypergeometric tests, and adjusted using the Benjamini-Hochberg method.  
 
Flow Cytometry 
Data Preprocessing, Clustering and Differential Abundance  
Data from each panel were processed and analyzed independently. After spectral unmixing and 
manual compensation adjustments, cytometry data underwent pre-processing to remove 
technical artifacts, exclude doublets, and eliminate dead cells using a quadratic discriminant 
analysis model trained on manually gated data. A logicle transformation was applied to all 
fluorescent channels.  Pre-trained machine learning models developed from healthy samples 
based on the Cyanno framework (69) were applied to facilitate cell type identification. The major 
populations (T, B, Myeloid, NK cells) were then subsetted from the corresponding target panel 
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and downsampled to 40,000 cells per sample for downstream unsupervised clustering analysis. 
Subsequent dimensional reduction, batch-level harmonization and clustering on clinical samples 
within each panel were performed using Scanpy (70). Leiden clustering was performed at 
following resolutions: B, NK, myeloid cells at 1.0 in (PS, PB, PT, PM panels) and T cells at 2.0 in 
(PT, PS panels). Cluster-level counts and frequencies within each major cell type were calculated 
per sample and panel. Cluster phenotypes were assessed by comparing marker median 
expression across clusters and UMAP visualization. Statistical analysis of cellular abundance is 
detailed in the Differential Abundance Analysis section. 
 
Intracellular Flow Cytometry 
Data Preprocessing, Metaclustering, Positivity Cutoffs and Statistics 
Unmixed spectral data was manually compensated and total single and live cells were gated in 
FlowJo v10.10 Software. The gated data consisting of all live singlet PBMCs within the 
experiment, was then downloaded and further processed with the R programming language 
(http://www.r-project.org) and Bioconductor (http://www.bioconductor.org) software. Data was 
transformed with an inverse hyperbolic sine (asinh) transformation with a cofactor of 220. Each 
marker was scaled to the 99.9th percentile of expression of all cells within an experiment. Total 
live B cells were isolated in silico based on lineage marker expression, and then over-clustered 
into 100 clusters using FlowSOM with all informative surface molecules as input. Clusters were 
then hierarchically clustered based on expression of B cell surface molecules and isotype and 
finally manually assigned to cell subsets, as described previously (71). Cytokine positive 
thresholds for B cells were defined by the 99.9th percentile of expression for each cytokine in 
unstimulated B cells within each experiment (72).  
 
scRNA  
Preprocessing, cleaning, and label transfer 
Data preprocessing for scRNA were conducted per a computational reproducibility framework so 
that the analysis steps can be reproduced in the Human Immune System Explorer (73). High 
quality cells were selected based on the following cutoffs: <10% mitochondrial reads, number of 
genes detected between 200 and 5,000, RNA unique molecular identifiers (UMIs)/cells between 
1,500 and 750,000. Doublets were removed using Scrublet (74) with default settings. The 
transcript of the remaining cells were first normalized, and then followed by variable feature 
selection, scaling, PCA, UMAP embedding as described in Scanpy (70). Cell type label transfer 
was performed using the Celltypist model (75) generated from a recently released AIFI Immune 
Cell Atlas (24) (fig. S10A-C). Following the cell type prediction, a secondary manual step was 
taken to remove the remaining doublet cells. All 71 cell types were individually subsetted and 
corrected for batch- and subject-level variation using Harmony (76), followed by Leiden clustering. 
Subsequently, clusters with gene expression indicative of doublets and high doublet scores, 
resulted in exclusion of 6.7% of cells from further analysis. Clusters with distinct gene profiles 
within the predicted cell type were manually reviewed and assigned unique cell type labels to 
differentiate from predicted cell types. 
 
Pseudobulk differential gene expression analysis 
Differential gene expression (DEG) analysis between groups was conducted using DESeq2 (77). 
For each sample and cell type pair, gene transcripts were aggregated using the get_pseudobulk 
function from decoupleR (78). Sample-cell type pairs with fewer than 10 cells or 1,000 total gene 
counts, as well as genes expressed in fewer than 10% of cells or in less than one-third of samples, 
or with fewer than 15 counts across all samples, were excluded from downstream analysis. Rare 
cell types present in fewer than five samples per group were also omitted from DEG analysis. 
Pseudobulk counts for the remaining cell types were analyzed with DESeq2 to compare ARI and 
CON1 groups with the formula (counts ~ age + sex + BMI + group). Additionally, batch effects, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.10.25.620344doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.620344
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

particularly from batch B182, which exhibited a relatively stronger effect compared to other 
batches across multiple cell types during initial quality control (fig. S10D), were adjusted for in 
the model. For DEG analysis of longitudinal changes associated with time to clinical RA, 
pseudobulk counts were transformed with variance stabilizing transformation (VST) before being 
analyzed using a linear mixed model with the lmerTest package (described below). The Storey-
Tibshirani procedure was employed for multiple testing correction, with q-values less than 0.1 
considered significant. 
 
Differential abundance analysis  
Differential abundance analysis of immune cell populations across cytometry and scRNA data 
was conducted by first extracting counts and frequencies for each cluster or cell subset from all 
samples. To avoid zeros in ratio calculations, a pseudocount of 1 was added to the raw counts. 
Adjusted frequencies were then transformed using the centered log ratio (CLR) to account for the 
compositional nature of cell frequencies, utilizing the composition package in R. A linear 
regression model was employed to compare CLR values between ARI and CON1, adjusting for 
age, sex, and BMI. Multiple hypothesis testing was controlled using the Benjamini-Hochberg 
method as the number of tests were small, with FDR < 0.1 considered significant. Longitudinal 
modeling of DA analysis is performed as described below. 
 
Longitudinal modeling of progression to clinical RA 
Longitudinal analysis of ARI progression to clinical RA across all modalities (proteomic, scRNA, 
flow cytometry) for DEG and DA analyses were conducted using a linear mixed model in R (lmer 
function in lmerTest package), with Satterthwaite p-value approximation. The model was adjusted 
for age and BMI at the time of clinical RA diagnosis with subjects as the random effect (intercept 
only). Given the distinct sex differences and the limited number of samples available at earlier 
time points (fig. S1B), the analysis was restricted to samples from 13 female subjects within 750 
days of clinical RA diagnosis. The model formula was as follows: 

Y ~ time to clinical RA diagnosis + age  + BMI  + (1|subject) 
with the dependent variable (Y) being either the VST-transformed gene expression or the CLR-
transformed cell frequency. The Storey-Tibshirani procedure was employed for multiple testing 
correction, with q-values less than 0.1 considered significant. For visualization, the effect sizes 
were annualized by multiplying by 365.  
 
Longitudinal gene expression variability analysis 
To investigate gene expression variability during ARI progression to clinical RA in comparison 
with the healthy aging process, we calculated intra-donor coefficients of variation (CVs) over time 
in ARI subjects who progressed to RA and matched controls (CON2) in the similar time frame, 
using the PALMO package (79). Pseudobulk gene counts, aggregated by Allen Institute for 
Immunology level 2 cell types, were normalized with variance stabilizing transformation. 
Intradonor CVs were computed using the cvCalcBulkProfile function, setting the time_column to 
"days to clinical RA" for converters and "days to the last visit" for CON2. CVs for each gene in 
each cell type were compared, and the percentage of genes with higher CVs in either group was 
reported. 
 
Paired comparison between the last pre-symptomatic visit and clinical RA diagnosis visit 
11 individuals whose samples are available at both pre-symptomatic visit and clinical RA 
diagnosis were included in the paired comparisons. (Fig. 2E-I) Pseudobulk and filtering steps 
were performed as described above. Paired DEG analysis was performed in DESeq2 (Counts ~  
subject + time point) to compare the gene expression between the two timepoints within the 
individual. 
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Gene program analysis 
Supervised gene program analysis within and across cell types were conducted using Spectra 
(26). scRNA data of cross-sectional samples from ARI, ERA and CON1 were included in the 
analysis and downsample to the equal number of cells (6,366 cells) per sample to avoid sample 
bias in identifying the program. Global and cell-type-specific gene programs were obtained from 
Spectra as described and trimmed to match the major cell types in Fig S2C. RNA transcripts were 
normalized using Scran as suggested (80). Gene program modeling was performed using the 
est_spectra function in default setting. Single cell level factor scores were then extracted from the 
model results and scores above 0.001 were considered meaningful. The average scores per 
sample for each factor and cell type were then calculated and compared ARI and ERA to CON1 
using a linear model, adjusted for age, sex, BMI, and batch effect. The Storey-Tibshirani 
procedure was employed for multiple testing correction, with q-values less than 0.05 considered 
significant. 
 
T cell activation score 
Activation scores for CD4 CM, core CD4 naive, and core CD8 naive cells were calculated by 
calculating the average expression from a manually curated gene set consisting of significantly 
up-regulated genes in the longitudinal model associated with T cell activation compared to the 
average expression of a randomly selected genes in the same size. (Table S22) The average 
scores for each sample were calculated and then the associations with time as ARI progressed 
to clinical RA were tested in linear mixed models (activation score ~ days to clinical RA diagnosis 
+ age  + BMI  + (1|subject) ) as described above in the Longitudinal modeling section. 
 
Pathway analysis 
Gene Set Enrichment Analysis (GSEA) was performed as implemented in the FGSEA package 
to compare between the ARI and CON1 and with ARI progression to clinical RA based on the 
ranks genes list, where all detected genes were ordered by -log10(p)*sign(Log2 fold change). A 
custom collection of genesets was used, as described under Olink proteomics. The pathway 
enrichment P values were adjusted using the Benjamini-Hochberg method and pathways with 
adjusted P values < 0.05 were considered significantly enriched. Overlapping pathways are 
merged based on permutation test of independence by collapsePathways function in FGSEA 
package. 
 
scRNA-seq B cell IgH Isotype Analysis 
scRNA-seq data was used to estimate proportions of switched IgH isotope B cells in study 
samples. First, positive expression for each of the nine IgH genes (IGHM, IGHD, IGHG1-4, 
IGHA1-2, and IGHE) was defined per B cell as a normalized UMI count greater than or equal to 
0.5 (normalized to 10,000 UMI per cell). Cells positive for either or both IGHM and IGHD were 
classified as ‘non-switched’ with isotype assignments of IGHM, IGHD, or IGHMD. The remaining 
cells were classified as ‘switched’ if positive for any other IGH gene. In cases of multi-positivity 
for switched genes, the positive gene located nearest the variable region in the genomic DNA 
was assigned as the isotype to be consistent with class-switch recombination biology (IgH 
Constant region ‘switched’ loci order after the variable region: IGHG3, IGHG1, IGHA1, IGHG2, 
IGHG4, IGHE, IGHA2). Both the switched status and isotype for cells without positive IgH gene 
expression were denoted as ‘undetermined’. After isotype classification, IgH germline 
transcription (GLT) level was defined as the normalized gene counts for those IgH loci 
downstream of the isotype-determining gene (fig. S5). As an example, IgG3+ isotype cells had 
quantifiable GLT from the IGHG1, IGHA1, IGHG2, IGHG4, IGHE, and IGHA2 genes. IgH constant 
region isotype gene GLT resulting in spliced and polyadenylated transcript is a well-established 
phenomenon in B cell isotype class-switching (81–83). Proportions of switched B cells were then 
compared between Memory B cell leiden clusters 8 and 9 using a Fisher’s Exact Test on the 
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contingency table of B cell cluster versus switched status (R, fisher.test). scRNA-seq data was 
pseudobulked by B cell label and isotype to perform differential expression analysis of switched 
IgH genes (minimum 20 cells and 1,000 counts per sample). DESeq2 was used to compare ARI 
to CON1, with the model formula:  
exp ~ sex + age + status, for each cell population with at least 5 individuals per status or group. 

 
Nonnegative matrix factorization (NMF) analysis of the CD4 T cells  
To identify changes in different T helper (Th) subsets in CD4 T cells, we performed  NMF 
projection in total CD4 T cells based on a pre-computed weight matrix comprised of 12 NMF 
factors corresponding to T helper gene programs (35),  which explained 24% of the total variance. 
Four NMF factors (NMF7-IFN, NMF8-CM, NMF9-Thymic-Emi, NMF10-Tissue) had low NMF 
scores across all cells in the dataset and NMF3-Naive is not relevant for memory cells, hence 
were omitted for the downstream analysis. We then subsetted the pan CD4 memory T cells and 
performed leiden clustering based on the remaining NMF factors at 0.4 resolution (Fig. 5B). Top 
differential genes of each cluster were identified using the Wilcoxon rank test in Scanpy.  Relative 
frequency of clusters with the memory compartment for each sample was then calculated, CLR 
transformed, and modeled as described above in the Longitudinal Modeling section. C18 was a 
rare cluster (0.09% of CD4 memory cells) and present in only 68% of the samples, hence omitted 
from the longitudinal modeling. 
 
Abatacept treatment response analysis 
Gene expression matrices of bulk PBMC RNA-seq from 22 RA patients, both before and after 
abatacept (ABT) treatment, were obtained from a published study (40). DEG analysis was 
conducted using DESeq2 (77) to compare gene expression pre- and post-ABT treatment in 
responders and non-responders separately. Over-representation analysis   was performed to test 
whether significant DEGs (FDR < 0.1) in each cell type from our longitudinal models of ARI 
progressing to clinical RA were enriched in ABT treatment responses of the responders and non-
responders, respectively (Fig 5F). Cell type specific gene signatures with more than 10 genes 
were included in the analysis where hyperGeometric enrichment tests were performed in hypeR 
with background set to total expressed genes (84). The concordance of the effect sizes of the 
DEGs in RA progression and ABT responses were tested by McNemar's Chi-squared Test. For 
all DEG analysis, the Storey-Tibshirani procedure was employed for multiple testing correction, 
with q-values less than 0.1 considered significant. 
 
TEA-seq 
Data Preprocessing and Cell Labeling in TEA-Seq 
Data preprocessing was performed as previously described (68). ADT and HTO count matrices 
from BarCounter were combined into a Mudata object (85). High quality cells were selected based 
on the following cutoff: > 250 genes per cell, between 500 and 20,000 RNA UMIs per cell, <10,000 
ADT UMIs per cell, < 30% mitochondrial reads. One well (P1C2W6) was excluded from 
downstream analysis due to abnormally low RNA UMI counts and gene detection. ADT 
normalization is performed using the dsb package, which denoises ADT signals from background 
staining using empty droplets (86). RNA normalization, variable selection, scaling, and UMAP 
embedding were conducted using the standard Scanpy workflow (70). Fragment files for ATAC 
data were processed using the ArchR package (87). LSI reduced dimensions, UMAP and clusters 
generated from ArchR were then imported to the Mudata object for integrated analysis. 3-way 
weighted nearest neighbors and UMAP that incorporated ADT, RNA, and ATAC data were then 
generated using MUON (85). We performed unsupervised clustering within each major cell type 
(T, B, myeloid, and NK cells) and labeled the clusters based on the top differential expressed 
genes and ADTs (fig. S7A). In addition, label transfer based on RNA only was performed using 
the AIFI Immune Cell Atlas as described above in the scRNA section. 
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scATAC Peak Calling and Differential Peak Analysis 
Peak calling for scATAC data in TEA-Seq was conducted using MOCHA (88). In brief, scATAC 
data were aggregated into cell type-sample pseudobulk matrices, and sample-specific 500 base 
pair tiles were identified. Consensus peaks were determined as regions that were open in more 
than 20% of samples. The zero-inflated Wilcoxon test implemented in 
getDifferentialAccessibleTiles function was then used to determine the differential accessible 
peaks between ARI and CON2 samples with settings of minimum median intensity 
(signalThreshold) = 14 and minimum difference in average dropout rates (minZeroDiff) = 0. FDR 
< 0.1 were considered significant. Peaks were annotated based on UCSC hg38 reference 
genome and regions within 2,000 base pairs upstream and 100 base pairs downstream of the 
transcription start site (TSS) were considered as promoter regions. 
 
chromVAR Transcription Factor Activity Analysis 
Single cell and pseudobulk transcription factor (TF) activities were inferred using chromVAR 
package (89). For single-cell TF activity, MOCHA-identified peaks were imported into the ArchR 
object, motifs were annotated using the CIS-BP database, and deviations were calculated using 
the addDeviationsMatrix function in ArchR. For pseudobulk-level analyses, TF deviations within 
CD4 naive T cells were calculated using the computeDeviations function, based on the MOCHA-
identified pseudobulk sample peak matrix, and compared with GC-matched background peaks.  
 
MOFA Analysis 
Multi-Omics Factor Analysis (MOFA) was performed as described (90) to identify integrated 
factors across modalities in the TEA-Seq data. Normalized sample level pseudobulk ADT, RNA 
counts, TF deviation scores, and plasma proteins measured by Olink (described earlier) were 
used to train the MOFA model with the number of factors set to 6. Factor scores were extracted 
and compared between ARI and CON2 samples using a generalized linear model, controlling for 
age. Feature weights from each modality for factor 1 were also extracted to identify top-associated 
genes, TFs, ADTs, and plasma proteins. 
 
Statistical Analysis 
Specific statistical tests for each modality and analysis are described in the Data Analysis section 
above. All statistical tests were two-tailed. 
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Fig. 1: Active inflammation in ARI 
(A) Overview of study and multimodal workflow. CON1, controls; ARI, at-risk individuals; ERA, 
early RA. (B) First sample (baseline) anti-CCP3 measurements from CON1, ARI, ERA. (C) k-
means clustering (k=6) of z-scored normalized protein expression (NPX) values from differential 
proteins in ARI vs. CON1 (FDR < 0.1) and ERA vs. CON1 (FDR < 0.15). Rows denote proteins, 
columns denote baseline samples. (D) Abundance of select inflammatory plasma proteins 
elevated in ARI. Dots represent participant samples in each cluster. (E) Absolute concentration 
of select plasma proteins from participants in Prot-C1 and Prot-C6 clusters as assayed by MSD 
or LegendPlex. (F) Number of differentially expressed genes (DEGs; FDR < 0.1 and absolute 
log2 fold change ≥ 0.1) per immune cell type, elevated in ARI (above 0) or CON1 (below 0). Cell 
types are based on (24). Boxplots show median (centerline), first and third quartiles (lower and 
upper bound of the box) and whiskers show the 1.5x interquartile range of data. Effect sizes and 
P values for C,F were determined by linear regression models. Remaining comparisons were 
made using the Kruskal-Wallis test with Dunn’s post-hoc testing (B) or Wilcoxon rank-sum test 
(D-E). FDR values are indicated for all panels. 
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Fig. 2: Longitudinal changes in naive and CM CD4 T cells dominate progression to clinical 
RA. 
(A) Overview of longitudinal comparison of converters, from ‘at-risk’ to clinical RA. (B) Number of 
genes per Allen Institute for Immunology level 2 cell type with higher average intra-donor 
coefficients of variation (CVs) over time in ARI who progress to clinical RA (orange) or in CON2 
(green). (C) Comparison of the number of differentially expressed genes (DEGs) (y-axis) with the 
change in frequency over time (x-axis; centered log-ratio (CLR) transformed) as ARI progress to 
clinical RA. Bubble size corresponds to the aggregate score calculated by [-log(padj CLR 
frequency changes) x total number of DEGs]. (D) Number of DEGs from longitudinal model 
(FDR<0.1) per level 3 immune cell type, elevated (above 0) or diminished (below 0) in ARI 
progressing to clinical RA. (E-I) Overview (E) of paired comparison in converters at their last ‘at-
risk’ pre-symptomatic visit vs. time of their clinical RA diagnosis. (F) Normalized RNA expression 
of TNF in Core CD16 monocytes and CXCL10 in ISG+ CD16 monocytes. (G) Mean RNA 
expression of select inflammatory genes amongst monocyte level 3 cell types. (H) Gene scores 
calculated by comparing marker genes from FOLR2+ICAM+ RA synovial tissue macrophages 
(Alivernini 2020) among all monocyte cell types. (I) Frequency of IL1B+ CD14 monocytes within 
CD14 monocytes. Effect sizes and P values were determined by linear mixed effect models (C,D), 
paired Wald test (F), or paired Wilcoxon test (I). FDR values are indicated for all panels. 
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Fig. 3: The B cell compartment exhibits a pro-inflammatory skewing during progression to 
clinical RA. 
(A) UMAP plots of memory B cells from ARI and CON1 showing B cell population labels (left) and 
Leiden clusters (right). (B) Centered log-ratio (CLR)-transformed frequencies of Beff-C9 
(P=0.055; FDR=0.111) and Beff-C8 (P=0.359; FDR=0.359) as ARI progress to clinical RA. Each 
participant’s longitudinal series is connected by a gray line, with a group trendline and 95% 
confidence interval in purple. (C)  DEGs for Beff-C8 compared to Beff-C9 in ARI samples with 
selected genes labeled (left). Dot size in heatmap (right) indicates the fraction of cells with positive 
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expression for selected genes. (D) IgH isotype or undetermined (UND) identity, as frequency 
within each population, for Beff-C8 and Beff-C9. (E) IGHG3 gene expression by Naive B cells 
(P=0.03; FDR=0.10) of ARI and CON1. (F) Normalized expression of IgH germline transcription 
(GLT) from IGHMD+ naive B cells in ARI and CON1. (G) CLR-transformed flow cytometry 
frequencies of Bnve-S5 as ARI progress to clinical RA, as in (B). (H) GSEA enrichment analysis 
with the top Reactome pathways among naive B cells of ARI compared to CON1. (I-J) B cells 
were stimulated ex vivo and analyzed by intracellular flow cytometry. Experimental workflow (I) 
and IL-6+, RANKL+, and TNF+ cell frequencies within the stimulated naive B cell populations of 
ARI and CON2 (J). (K) PBMC TEA-seq experiment overview. (L) Chromatin accessibility tracks 
from TEA-seq showing the TLR9 gene in naive B cells of ARI (orange), CON2 (green) and the 
delta between groups (red). The gray box highlights the region containing differentially accessible 
peaks between groups (P=0.02; FDR=0.19). Boxplots show median (centerline), first and third 
quartiles (lower and upper bound of the box) and whiskers show the 1.5x interquartile range of 
data. P values were determined by a linear mixed model (B), Wald test (E,F), Wilcoxon rank-sum 
test (J), or zero-inflated Wilcoxon test (L). FDR values are indicated for all panels. 
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Fig. 4: Expansion of effector and memory T cells with pathogenic signatures during 
progression to clinical RA. 
(A) RNA expression differences in central memory (CM) CD4 T cells over time in ARI (orange) 
who progress to clinical RA (purple). Genes associated with T cell activation are noted. (B) T cell 
RNA activation metric in CD4 CM over time as ARI progress to clinical RA. Each participant’s 
longitudinal series is connected by a gray line, with a group trendline and 95% confidence interval 
in purple. (C) UMAP showing Leiden clustering of non-negative matrix factorization (NMF)-
projected CD4 reference gene weights on pan CD4 memory T cells (CD4mem). Cluster 3 
(CD4mem-C3) is indicated (arrow). (D) Frequency over time in CD4mem-C3 cells as ARI 
progress to clinical RA, as in (B). (E) Mean RNA expression of select genes across CD4mem 
clusters. (F) Normalized RNA expression of genes that promote differentiation to Tfh and Th17 
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cells in CD4mem-C3 (red) vs. remaining CD4mem clusters (blue). (G) Differentially expressed 
genes between CD4mem-C3 (red) and remaining CD4mem clusters (blue). Select genes 
associated with T cell activation are labeled. (H) Cells expressing Tfh gene program are 
distinguished based on the NMF projection using a pre-computed weight matrix of CD4 T cell 
population from Yasumizu et al. 2024. For comparison, a UMAP density plot of cluster CD4mem-
C3 is shown below. P values were determined by linear mixed models (A, B, D) or the Wilcoxon 
rank-sum test (F-G). Nominal P value is indicated for (B). FDR values are indicated for (A, D, F, 
G). 
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Fig. 5: Activation signature in naive T cells during progression to clinical RA. 
(A-B) RNA expression differences in core naive CD4 (A) or CD8 (B) T cells over time in ARI 
(orange) who progress to clinical RA (purple). Genes associated with T cell activation are 
annotated. (C-D) T cell RNA activation metric in core naive CD4 (C) or CD8 (D) T cells over time 
as ARI progress to clinical RA. (E-H) Longitudinal DEGs as ARI progress to clinical RA were 
assessed within the context of RA patients with efficacious (responders) or non-efficacious (non-
responders) clinical response to abatacept (ABT) treatment (from Iwasaki et al. 2024). (E) 
Overview of the analysis strategy. (F) Over-representation of ARI cell type-specific longitudinal 
DEG amongst ABT-treatment response DEG. (G-H) Significant DEGs in ABT responders 
compared to DEG changes over time as ARI progress to clinical RA in core naive CD4 T cells (G) 
and CM CD4 T cells (H). Genes (dots) previously implicated in RA-like disease are labeled. (I-J) 
Normalized RNA expression of NABP1 over time as ARI progress to clinical RA (I) and pre- vs. 
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post-ABT therapy in RA patients (J). P values were determined by linear mixed models (A-D, I), 
hypergeometric enrichment tests (F), McNemar’s Chi-squared test (G-H), Wald test (J). Nominal 
P values are indicated for (C-D). FDR values are indicated for (A, B, F-J).  
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Fig. 6: Epigenetic changes in naive CD4 T cells support activation and Tfh bias in ARI. 
PBMC TEA-seq experiment in a subset of ARI and CON2 samples was performed as in Fig. 3K. 
(A) Percentage of variance in each modality (surface protein, plasma protein, RNA, ATAC) 
explained by Multi-Omics Factor Analysis (MOFA) factors. (B) Factor 1 scores between ARI and 
CON2. (C) Scaled normalized expression of select genes in Calcium–Calcineurin–NFAT pathway 
in ARI and CON2. (D) Inferred accessibility for the top 15 transcription factors (TFs) positively or 
negatively associated with factor 1, ranked by weight. (E) Louvain clusters in CD4 T cells by ATAC 
modality in TEA-seq. (F) Centered log-ratio (CLR)-transformed frequencies of ATAC clusters 
CD4nve-T2 and CD4nve-T5 in CD4 T cells. (G) Mean surface protein expression of select 
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markers differentiating CD4 naive, memory, Treg, and cytotoxic CD4 T cells (CTL) across ATAC 
clusters. (H) ATAC UMAP overlaid with inferred gene activity scores calculated by ArchR for 
CXCR5 and IL21. (I) ChromVAR TF activity z scores of BCL6 and STAT3 in CD4 T cells. (J) 
ATAC signal in ARI (orange), CON2 (green), and delta (red) at the IL21 locus. The gray box 
highlights a 500bp region containing differentially accessible peaks between ARI and CON2 (chr4: 
122,617,500-122,617,999). Black arrows indicate the motif locations of BCL6 and STAT3 binding 
sites. Gene bodies are displayed on the bottom. Boxplots show median (centerline), first and third 
quartiles (lower and upper bound of the box) and whiskers show the 1.5x interquartile range of 
data. P values were determined by linear models (B, F) or zero-inflated Wilcoxon test (J). FDR 
values are indicated. 
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Supplementary Materials: 
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Fig S1; related to data figure 1.  
(A) Consort diagram of groups and data sets used in this study. (B) Longitudinal blood sampling 
frequency of ARI who progressed to clinical RA. Onset of clinical RA is denoted by dashed vertical 
line (time to clinical RA diagnosis = 0). Biological sex is denoted by participant ID color. (C) 
Baseline (initial) RF-IgA and RF-IgM levels from CON1, ARI, ERA. (D) Volcano plot of baseline 
differential plasma protein abundance elevated in ARI (orange) or CON1 (blue). Each dot 
represents a single protein assayed. The 20 proteins with the smallest P values, in addition to 
select inflammatory proteins, are noted in red. (E) Over-represented inflammatory pathways 
(MSigDB Hallmark, KEGG, Reactome) in ARI. Enrichment ratios are shown by color and size. (F) 
Comparison of differential protein abundance between ARI vs. CON1 and ERA vs. CON1 
(Spearman ρ = 0.62). (G) Number of ARI, ERA, CON1 participants comprising each protein 
cluster from Fig. 1C. (H) Z-scored NPX of differentially abundant inflammatory mediators between 
clusters Prot-C1 and Prot-C6. Columns indicate participants. Select proteins (rows) are labeled. 
Boxplots show median (centerline), first and third quartiles (lower and upper bound of the box) 
and whiskers show the 1.5x interquartile range of data. P values were calculated by Kruskal-
Wallis followed by Dunn’s post hoc testing (C), linear regression models (D), or hypergeometric 
tests (E). Nominal P value is indicated for (F). FDR values are indicated for remaining panels. 
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Fig. S2; related to data figure 1.  
(A-C) UMAPs of cell subsets labeled using the Allen Institute for Immunology Immune Cell Atlas 
at levels 1 (A), 2 (B), and 3 (C). (D) Comparison DEG number with the change in frequency 
(centered-log ratio (CLR) transformation) between ARI and CON1 at level 3 cell types. Bubble 
size corresponds to the aggregate score calculated by [-log(padj CLR frequency changes) x total 
number of DEGs]. (E-G) Spectra factor scores for interleukin signaling in CD4 T cells (E), and 
oxidative phosphorylation (F) and glycolysis (G) from ARI, ERA, CON1 across all level 1 cell 
types. P values were calculated using linear regression modeling (D-G). For (E-G), all pairwise 
comparisons were tested and FDR values are indicated for those that are significant. *FDR < 
0.05; **FDR < 0.01. 
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Fig. S3; related to data figure 2.  
(A) Longitudinal anti-CCP3 serum levels in ARI who progressed to clinical RA. Each plot 
represents a different participant, and biological sex is indicated by point shape. Dashed 
horizontal lines indicate the upper limit of normal (ULN; 20 units; green) and 2x ULN (40 units; 
blue). (B) Clinical lab features in ARI who progressed to clinical RA. Each participant’s longitudinal 
series is connected by a gray line, with a group trendline and 95% confidence interval in purple. 
(C) Longitudinal sample inclusion from CON2 for comparison of intra-donor coefficients of 
variation in Fig. 2B. (D-F) PBMC were analyzed by flow cytometry and clustered into subsets (S) 
for abundance comparisons. Significant subsets were manually reviewed and annotated. (D) 
UMAPs annotated for Cyanno cell type labels (top) and clustered subsets (bottom). (E) T cells 
markers in S0 and S4 compared to all other subsets. (F) Centered log-ratio (CLR)-transformed 
frequency changes of subsets annotated as naive CD4 and central memory/effector memory 
(CM/EM) CD4 T cells over time as ARI progress to clinical RA. (G) RNA expression of IGHA1 and 
JCHAIN in CD95 memory B cells. Paired donor samples from their last pre-symptomatic and 
diagnosis of clinical RA visits are connected by lines. (H) Volcano plot comparing genes with 
elevated expression in IL1B+ CD14 monocytes (red) vs. core CD14 monocytes (blue). (I) 
Normalized RNA expression of TNF in IL1B+ CD14 monocytes, as in (G). P values were 
calculated using linear mixed models (B-C), paired Wald test (G,I), or Wilcoxon rank-sum test (H). 
FDR values are indicated for all panels. 
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Fig. S4; related to data figure 3.  
(A) Subset-defining expression among ARI memory B cell leiden clusters from scRNA-seq. (B) 
Subset-defining gene expression for CD27- effector B cell identity clusters. (C) Longitudinal 
centered log-ratio (CLR) transformed frequencies for Beff C9-like cluster in CON2 over a 2-year 
span. Each participant’s longitudinal series is connected by a gray line, with a group trendline and 
95% confidence interval in purple. (D) IGH gene expression levels for Beff-C8 and Beff-C9 from 
ARI. (E) IGHG3 RNA expression by core memory (P=0.02; FDR=0.15) and CD27- effector 
(P=0.004; FDR=0.15) B cells and IGHM expression by naive B cells (P=0.02; FDR=0.05) of ARI 
and CON1. (F) B cell IgH isotype composition, as frequency within population, for all subsets. (G) 
CD27, AIM2, CD24 and IGHD gene expression by B cell subsets in ARI. (H) Flow cytometry 
UMAP plots for B cells showing population labels determined by Cyanno model-based approach 
(top left), Bnve-S5 cells (top right, red dots), and overlaid subset-defining marker expression 
(bottom). (I) PAX5 gene expression in naive B cells from ARI and CON1. P values were calculated 
using linear mixed models (C), Wald test in DESeq2 with Storey-Tibshirani procedure (E), and 
Wilcoxon rank-sum test (I). Nominal P value is indicated for (C). FDR values are indicated (E,I). 
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Fig. S5; related to data figure 3 and methods.  
Log1p-transformed IGH gene germline transcription (GLT) normalized counts for each B cell 
isotype and subset in scRNA-seq data.  
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Fig. S6. related to data figure 4. 
(A) RNA expression of select genes associated with activation in central memory (CM) CD4 T 
cells as ARI progress to clinical RA. Genes were selected based on Fig. 4A. Each participant’s 
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longitudinal series is connected by a gray line, with a group trendline and 95% confidence interval 
in purple. (B-C) CD4mem Leiden clusters were derived from non-negative matrix factorization 
(NMF)-projected CD4 reference gene weights from Yasumizu et al. onto CD4mem T cells (see 
Fig. 4C). (B) Centered log-ratio (CLR)-transformed frequency for each cluster is shown over time 
as ARI progress to clinical RA. Group trendlines were determined as in (A). (C) Comparison of 
RNA expression in cluster CD4mem-C3 (red) vs all remaining clusters (blue) over time as ARI 
progress to clinical RA, with mean expression of each gene. P values were calculated using linear 
mixed models (A-B). FDR values are indicated for all panels. 
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Fig S7. related to data figure 4. 
(A-D) CD4mem T clusters were derived as in Fig. S6B. Quantitation (A) and UMAP (B) by Allen 
Institute for Immunology Immune Cell atlas level 3 labels. (C) UMAP density plots for each cluster. 
CD4mem-C3 is shown in Fig. 4H. (D) CD4mem T cells expressing polarized gene programs are 
distinguished based on the NMF projection using a pre-computed weight matrix of CD4 T cell 
population from Yasumizu et al. The Tfh density is shown in Fig. 4H. 
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Fig. S8. related to data figure 5. 
(A,B) Changes in RNA expression of select genes associated with T cell activation over time as 
ARI progress to clinical RA in core naive CD4 (A) and CD8 (B) T cells. Genes were selected 
based on Fig. 5A and Fig. 5C. Group trendlines, derived from linear mixed models, are shown 
with a purple line with 95% confidence interval in the shaded area. (C,D) Enriched pathways 
associated with T cell activation in core naive CD4 (C) and CD8 (D) T cells over time as ARI 
progress to clinical RA. Normalized enrichment scores (NES), by GSEA, are shown. (E,F) 
Volcano plots, derived from reanalysis of Iwasaki et al. (Fig. 5E), showing the differential 
expressed genes in responders (D) and non-responders (E) before and after abatacept (ABT) 
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treatment. P values were calculated using linear mixed models (A-B) or Wald test (E-F). FDR 
values are indicated for all panels. 
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Fig. S9. related to data figure 6. 
(A) Three-way weighted nearest neighbor UMAP of TEA-seq data incorporating surface protein, 
transcript, and chromatin accessibility, colored by cell type label. (B) ChromVAR Z scores of 
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selected transcription factor activities in naive CD4 T cells.  (C) CLR frequency of CD4 T cells 
ATAC clusters. (D) UMAP of CD4 T cells in RNA modality (top) and surface protein (ADT) modality 
(bottom). (E) Heatmap of ChromVAR TF activity scores of 870 TFs among clusters, scaled by 
column. Selected TFs related to T cell activation and differentiation are labeled. (F) Normalized 
RNA expression of IL21 in ARI and CON1. Boxplots show median (centerline), first and third 
quartiles (lower and upper bound of the box) and whiskers show the 1.5x interquartile range of 
data. P values were calculated using the Wilcoxon rank-sum test (B-C). FDR values are indicated 
(B-C). 
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Fig. S10: related to methods. 
Prediction scores of the CellTypist model generated from Allen Institute for Immunology (AIFI) 
Immune Cell Atlas cell types for level 1 (A), level 2 (B), and level 3 (C). Boxplots show median 
(centerline), first and third quartiles (lower and upper bound of the box) and whiskers show the 
1.5x interquartile range of data. (D) Principal component analysis of pseudobulk scRNA data for 
CM CD4 T cells, core memory B cells, and core CD16 monocytes. Each dot represents a sample, 
colored by whether the sample was processed in batch 182 or other batches in the dataset. 
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Supplementary Table S2: Summary of baseline cohort information 
 
Variable ACPA- 

CON1 
(n = 38) 

ACPA+ 
ARI  
(n = 45) 

ACPA+ 
ERA  
(n = 11) 

P value1 

Age at sample collection, mean years (SD) 56 (16) 57 (16) 49 (9) 0.23 
Sex: Female, n (%) 34 (89%) 36 (80%) 10 (91%) 0.52 
Sex: Male, n (%) 4 (11%) 9 (20%) 1 (9%) - 
Ethnicity: Non-Hispanic origin, n (%) 29 (76%) 43 (96%) 8 (73 %) 0.02 
Race: White, n (%) 32 (84%) 37 (82%) 7 (64%) 0.27 
BMI, mean kg/m2 (SD) 28 (6) 27 (5) 30 (8) 0.66 
     
Met ACR/EULAR 2010 criteria, n (%) - - 11 

(100%) 
- 

C-reactive protein, median mg/L (IQR) 1.6 (0.6-
3.4) 

1.5 (0.9-
4.7) 

3.3 (1.0-
10) 

0.39 

Erythrocyte sedimentation rate, median 
mm/h (IQR) 

9 (4-13) 11 (7-20) 20 (11-
33) 

0.07 

Shared epitope present, n (%)2 13 (38%) 18 (40%) 6 (55%) 0.69 
Serum ACPA, median (IQR) 6 (6-6) 62 (44-

195) 
560 (230-
1101) 

<0.01 
(<0.01 Con vs. ARI; 
 <0.01 Con vs. ERA) 

Serum RF IgM, median (IQR) 5 (5-9.7) 0.9 (0.3-
23) 

69 (23-
105) 

0.01 
(<0.01 ARI vs. ERA; 
 0.06 Con vs. ERA) 

Serum RF IgA, median (IQR) 1.7 (1.7-
1.7) 

0.3 (0.3-
5.2) 

21 (1.4-
35) 

<0.01 
(<0.01 ARI vs. ERA;  
 0.08 Con vs. ERA) 

1P values were calculated using the Kruskal-Wallis test for continuous variables. For P < 0.05, a 
Dunn’s post-hoc test with Bonferonni correction was performed and significant results are 
indicated in parentheses. P values were calculated using the Chi-squared test for discrete 
variables. 
2Shared epitope present at any HLA-DRB1 *01:01, *01:02, *04:01, *04:04, *04:05, *04:08, 
*04:09, *04:10, *04:13, *10:00 alleles. We were unable to measure 4 CON1 participants, and 
these were excluded from the percent calculation. 
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Supplementary Table S3: Longitudinal summary of ACPA+ ARI who progressed to clinical RA 
 

 All participants (n = 16) Female only (n = 13) 
Variable Baseline 

Visit 
IA Onset P value1 Baseline 

Visit 
IA Onset P value1 

Age at sample collection, 
mean years (SD) 

51 (16) 52 (16) <0.01 46 (14) 47 (14) <0.01 

Sex: Female, n (%) 13 (81%) - - 13 
(100%) 

- - 

Ethnicity: Non-Hispanic 
origin, n (%) 

15 (94%) - - 12 (92%) - - 

Race: White, n (%) 11 (69%) - - 9 (69%) - - 
BMI, mean kg/m2 (SD) 28 (5) 28 (5) 0.49 27 (6) 28 (6) 0.07 
       
Met ACR/EULAR 2010 
criteria, n (%) 

- 12 (75%) - - 10 (77%) - 

C-reactive protein, median 
mg/L (IQR) 

2.8 (0.8-
6.2) 

2.3 (1.2-
3.3) 

0.98 3.3 (0.8-
8.4) 

2.9 (1.2-
4.1) 

1.00 

Erythrocyte sedimentation 
rate, median mm/h (IQR) 

12 (9-25) 14 (8-23) 0.71 12 (9-23) 13 (9-21) 0.67 

Shared epitope present, n 
(%)2 

6 (38%) - - 5 (38%) - - 

Serum ACPA, median 
(IQR) 

115 (49-
1581) 

171 (42-
875) 

0.11 133 (79-
1557) 

231(51-
1242) 

0.29 

Serum RF IgM, median 
(IQR) 

15 (0.3-
34) 

15 (3.2-
35) 

0.22 16 (0.3-
30) 

16 (3.8-
50) 

0.11 

Serum RF IgA, median 
(IQR) 

0.3 (0.3-
5.6) 

1.7 (0.3-
2.7) 

0.92 0.3 (0.3-
5.2) 

1.7 (0.3-
4.1) 

0.94 

Average duration in the 
study, days (min, max) 

- 467.9 
(106-717) 

- - 497.8 
(163-717) 

- 

1P values were calculated using the paired Wilcoxon rank-sum test for continuous variables. P values 
were calculated using the Fisher exact test for discrete variables. 
2Shared epitope present at any HLA-DRB1 *01:01, *01:02, *04:01, *04:04, *04:05, *04:08, *04:09, *04:10, 
*04:13, *10:00 alleles. 
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Supplementary Table S13: Summary of healthy controls (CON2) with longitudinal 
sampling 
 
Variable CON2 baseline 

visit 
(n=29) 

CON2 last visit 
(n=29) 

P value1 

Age at sample collection, mean 
years (SD) 

47.2 (14.2) 48.0 (14.2) <0.001 

Sex: Female, n (%) 22 (76%) - - 
Ethnicity: Non-Hispanic origin, n (%) 28 (97%) - - 
Race: White, n (%) 23 (79%) - - 
BMI, mean kg/m2 (SD) 27.4 (5.0) 28.2 (4.4) 0.76 
    
Met ACR/EULAR 2010 criteria, n 
(%) 

0 0 - 

C-reactive protein, median mg/L 
(IQR) 

1.9 (1.1-3.0) 1.5 (0.7-2.0) 0.18 

Erythrocyte sedimentation rate, 
median mm/h (IQR) 

2 (2-9) 2 (2-9) 0.25 

Serum ACPA, median (IQR) 0 (0 - 2) - - 
Serum RF IgM, median (IQR) 0 (0 - 3.24) - - 
Serum RF IgA, median (IQR) 0 (0 - 0) - - 
Average duration in the study, Days 
(Min, Max) 

- 354.7 (89 - 557) - 

1P values were calculated using the paired Wilcoxon rank-sum test for continuous variables. P 
values were calculated using the Fisher exact test for discrete variables. 
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