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Abstract 

Accurate and complete gene annotations are indispensable for understanding how genome 
sequences encode biological functions. For twenty years, the GENCODE consortium has 
developed reference annotations for the human and mouse genomes, becoming a foundation for 
biomedical and genomics communities worldwide. Nevertheless, collections of important yet 
poorly-understood gene classes like long non-coding RNAs (lncRNAs) remain incomplete and 
scattered across multiple, uncoordinated catalogs, slowing down progress in the field. To address 
these issues, GENCODE has undertaken the most comprehensive lncRNAs annotation effort to 
date. This is founded on the manual annotation of full-length targeted long-read sequencing, on 
matched embryonic and adult tissues, of orthologous regions in human and mouse. Altogether 
17,931 novel human genes (140,268 novel transcripts) and 22,784 novel mouse genes (136,169 
novel transcripts) have been added to the GENCODE catalog representing a 2-fold and 6-fold 
increase in transcripts, respectively - the greatest increase since the sequencing of the human 
genome. Novel gene annotations display evolutionary constraints, have well-formed promoter 
regions, and link to phenotype-associated genetic variants. They greatly enhance the functional 
interpretability of the human genome, as they help explain millions of previously-mapped “orphan” 
omics measurements corresponding to transcription start sites, chromatin modifications and 
transcription factor binding sites. Crucially, our targeted design assigned human-mouse orthologs 
at a rate beyond previous studies, tripling the number of human disease-associated lncRNAs with 
mouse orthologs. The expanded and enhanced GENCODE lncRNA annotations mark a critical 
step towards deciphering the human and mouse genomes.  
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Introduction 

In 2001, the first drafts of the human genome were published1,2. Twenty years later, the complete 
reference sequence has been finalized, and millions of individual genomes have been sequenced. 
This data has had an enormous impact on our understanding of human biology and on our 
capacity to understand and treat disease. However, this data would have been of little value 
without a reliable map of genes and transcripts, making it nearly impossible to interpret the effect 
of genetic variation on phenotypes. Early estimates of the number of human genes were highly 
imprecise: between 30,000 and 40,000, according to the Human Genome Project consortium2, 
and between 27,000 and 39,000, according to Celera Genomics1. Shortly after the publication of 
the first human genome drafts, the ENCyclopedia Of DNA Elements (ENCODE) project3 was 
initiated to identify all elements in the human genome that confer biological function. As part of 
this broader effort, GENCODE, the encyclopedia of genes and transcripts, was launched to 
produce a definitive catalog of all human genes and transcripts4. Over the years4–8, GENCODE, 
an international partnership of manual annotation, computational biology, and experimental 
groups has established itself, together with RefSeq9–12, as the primary reference gene annotation 
catalogs.  
 
For the past fifteen years, the number of annotated human protein-coding genes in GENCODE 
has remained quite stable. The number of long non-coding RNA (lncRNA) genes, in contrast, has 
been steadily growing since 2007, when they started being systematically annotated13, although 
it appears to be reaching a plateau (Figure S1). Many of these lncRNAs have been shown to 
participate in important biological functions and to be implicated in diseases. However, while the 
GENCODE/RefSeq protein-coding gene set has been driven towards convergence by 
collaborations such as MANE (Matched Annotation from NCBI and EMBL-EBI)14 and is believed 
to be reasonably complete, with no alternative catalogs with the same broad use, this is not the 
case for lncRNAs15. A number of catalogs have been developed over the years, using different 
approaches and based on different data sets. For instance, FANTOM CAT16,17 and CHESS18,19, 
which are based on short-read RNAseq data, annotate a larger number of lncRNA transcripts 
than GENCODE. GENCODE does not utilize this data due to concerns that short-read 
connectivity may compromise the fidelity needed to produce reference-quality models13,20,21. As a 
result, despite efforts such as RNA Central22, there is a fragmented landscape of non-
interoperable and partially redundant lncRNA annotations, which slows down progress in the 
field21. Moreover, in GENCODE and elsewhere, lncRNA transcript annotations are often partial, 
lacking the correct 5’ or 3’ ends23. This hampers their biological characterization; for instance, 
poor promoter mapping impacts CRISPR screens, while incomplete 3’ UTRs can significantly 
undermine RNAseq quantification assays.  
 
Thus, during recent phases of GENCODE, we have emphasized producing a reference catalog 
of full-length lncRNAs. Toward that aim, we have specifically employed the Capture Long-read 
Sequencing (CLS) strategy23,24, and designed a capture array with orthologous probes in the 
human and mouse genomes targeting different lncRNA annotations and additional regions of 
these genomes that could also host unknown lncRNAs. We employed a cDNA library preparation 
protocol, CapTrap-Seq25, that enriches for 5’ to 3’ complete RNA molecules. We used this 
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approach in a matched collection of adult and embryonic tissues in human and mouse, selected 
to maximize transcriptome complexity. The resulting libraries were sequenced pre- and post-
capture using PacBio and ONT long-read sequencing technologies. 
 
The manually supervised computational annotation of this data, has led to the inclusion of 17,931 
novel human genes (140,268 novel transcripts) and 22,784 novel mouse genes (136,169 novel 
transcripts) in GENCODE, most of which were identified only post-capture. This is, by far, the 
largest addition to the GENCODE catalogs since the first drafts of the human and mouse genome 
sequences, and it constitutes a substantial advance toward a complete lncRNAs catalog in these 
species. Novel genes and transcripts have features characteristic of “bona fide” genes, including 
properly formed promoter regions, and strongly differing from those exhibited by matching decoy 
transcripts. Overall, they are associated with human phenotypes, as supported by GWAS 
mappings and mammalian sequence conservation. Facilitated by our capture design, we have 
also produced the most complete lncRNAs orthology map between human and mouse to date. 
This is essential to investigate the impact of lncRNAs in human biology by modeling their impact 
in mouse, and indeed, we have found mouse orthologs for many human disease-associated 
lncRNAs.  
 
Our results underline the crucial importance of a complete gene annotation to fully understand 
the biology encoded in a species genome. Indeed, we show that the novel genes and transcripts 
discovered through the CLS approach, greatly enhance the functional interpretability of the human 
genome, as we can assign to “bona fide” well-constructed transcriptional units and their regulatory 
regions, millions of previously “orphan” omics measurements (including tens of thousands of 
CAGE tags, millions of ChIP-seq peaks for hundreds of transcription factors, hundreds of 
thousands of regulatory regions derived from ChIP-seq of histone modifications, etc.), as well as 
tens of thousands of “orphan” genetic variants associated with phenotypes.  

Results 

Targeting and sequencing the long non-coding transcriptome with CapTrap-CLS  
We designed a capture array targeting a large fraction of the putative non-coding transcriptome, 
including the major non-GENCODE lncRNA annotations13,20,21,23,26–29, as well as small non-coding 
RNAs, enhancers30, evolutionarily conserved RNA structures31, regions that host non-coding 
GWAS32,33, that show putative protein-coding sequence conservation34, or that were 
ultraconserved35. Probes were designed in the human genome version GRCh38 using 
GENCODE v27 as reference annotation (Figure 1A, Table S1). Orthologous regions of the 
mouse genome were targeted in a corresponding mouse capture library (GENCODE vM16 on 
GRCm38.p6, Table S2). In total, 176,435 features summing up to 84,103,329 bp were targeted 
in the human genome (2.9%) and 148,965 features (66,937,555 bp) in the mouse genome (2.5%).  
 
We prepared CapTrap-Seq libraries from a matched collection of adult and embryonic tissues, in 
human and mouse (i.e., brain, liver, and heart), plus samples designed to maximize transcript 
complexity. The latter include samples from white blood, testis and placenta, iPSC/ESC cell lines, 
as well as pools of adult tissues and cell lines. Most samples were sequenced pre- and post-
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capture using three different technologies: Illumina, PacBio, and ONT. In total, we produced 104 
data sets (16 short-read, 438 Million reads, and 88 long-read, 736 Million reads Figures 1B, S2, 
Table S3). The post-capture samples showed strong enrichment of reads originating from the 
targeted regions (from 5x to 35x depending on the species, tissue, and platform using the ERCC 
spike-ins36 as a control (Figure S3). 
 
We generated transcript models from the long RNAseq reads using LyRic37, an in-house pipeline 
(Figure S4, Supplement). Models were built for each sample separately, then merged across 
tissues and stages to produce a comprehensive set of CLS transcript models (Figure S5).  
 
Across all samples, ignoring variations in the transcript termini, we generated 526,307 transcript 
models in human and 483,425 in mouse (Figures 1C,D, S6, S7A). Of these, 161,817 were novel 
in human and 178,974 in mouse (with respect to GENCODE versions v27 and vM16, Table S4), 
predominantly detected uniquely in post-capture samples (78.5% in human and 67% in mouse, 
Figure 1C,D). Their yield varied across tissues, with testis being the most productive in both 
human and mouse, followed by brain (both in adult and embryo) in human and the pool of tissues 
in mouse (Figure S7B). The length of transcripts, exons and introns, the number of exons, the 
overlap with repetitive elements and other features of novel transcript models are similar to those 
of lncRNAs annotated in GENCODE (Figure S8, Table S5). Novel transcript models, however, 
are more tissue-specific than those overlapping known loci: 83% of human and 72% of mouse 
models are detected uniquely in one sample (compared with 66% and 62% known loci, 
respectively). Models detected both in adult and embryo tissues are the most broadly expressed 
(Figures 2, S9). 
 
Finally, different target regions produced different yields of novel transcript models. Overall, about 
37% of the targeted regions were detected in human and mouse, the vast majority as a result of 
the capture (Figure S10). Targets from non-coding RNA annotations, PhyloCSF and enhancer 
regions were the most productive both in human and in mouse (Figure S11). 

Incorporating CapTrap-CLS models into the GENCODE annotation 
The set of CLS transcript models was used as input by the HAVANA team of expert manual 
annotators to produce GENCODE releases v47 and M36. Manual curation is a founding principle 
of GENCODE, vital for ensuring the stringency required for ‘reference quality’ gene annotation. 
Transcript models are constructed by expert annotators, whereby the evidence for every potential 
model has been traditionally considered on a locus-by-locus basis. Since this approach is not 
scalable to the one million CLS models produced here, we have deployed a computational 
workflow, manually supervised at key steps, and developed iteratively via extensive testing by 
annotators. In order to produce reference quality annotations, its parameters are set to run a 
minimal false positive rate (i.e., the creation of false annotations) at the expense of an elevated 
false negative rate (i.e., the rejection of true annotations). This workflow is containerized in a 
pipeline called TAGENE (Figure S12, Supplement) 
 
As deployed here, we used TAGENE to first eliminate CLS models that are antisense to protein-
coding genes or located entirely within the genomic bounds of GENCODE pseudogenes. Next, 
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we examined how annotator confidence in a CLS model correlated with the support for its splice 
junctions as judged by recount38 short-read RNAseq data. Conservatively, we opted to filter out 
all CLS models that contained any intron supported by less than 50 recount reads (Figure S13), 
despite the fact that we estimate that ~50% of the models rejected solely on this basis are likely 
to be correct. Finally, we complemented the TAGENE predictions with manually curated 
transcripts to help resolve the cases where new models had the potential to merge existing distinct 
lncRNA genes into single loci.  
 
Using these filters, and additional methodological adjustments, we defined a set of CLS 
transcripts that meet the stringent requirements to be included in GENCODE. Thus, with this 
approach we annotated 140,268 and 17,931 new lncRNA transcripts and genes in human, and 
136,169 and 22,784 in mouse (with respect to v27 and vM16, respectively), the vast majority 
incorporated in the latest releases v47 and vM36 (Table S6). This represents a substantial 
increase over the number of lncRNA annotations present in human GENCODE v46 (>2x) and 
mouse vM35 (6x, Figure 1E), and brings, for the first time, the number of lncRNA loci in human 
(37,127) and in mouse (37,336) to comparable numbers. Collectively, these new annotations 
have increased the transcriptional footprint of GENCODE annotations on the genome by 27.7Mb 
and 28.9 Mb, respectively (compared to v46 and vM35, Table S7). Transcript models that have 
not been incorporated into GENCODE for this initial round of annotation may yet be incorporated 
into future releases as this workflow matures and additional data accumulates to support the 
inclusion of rejected transcripts. 
 
Protein-coding genes/transcripts. Although this study focuses on lncRNAs, around 100,000 
novel CLS models, both in human and mouse, map to known protein-coding genes. These remain 
to be analyzed systematically by the HAVANA team, but initial inspection suggests some will 
contain additional coding exons. Here, we have specifically investigated if some of the novel CLS 
loci actually correspond to previously unknown protein-coding genes. First, we interrogated large-
scale tissue-based proteomics experiments. We found convincing evidence for seven human 
protein-coding genes with multiple peptides that were not annotated as coding. All seven proteins 
have known human paralogues, and four are substantially truncated compared to their parent 
gene (Figure S14). Six proteins were detected principally or wholly in testis. For mouse, analysis 
of proteomics data led to the discovery of 23 protein-coding genes among the novel CLS loci, 
most of which were also testis expressed (Figure S14C-F). Second, we used PhyloCSF34 to find 
open reading frames (ORFs) within CLS transcripts most likely to contain evolutionarily conserved 
novel protein-coding regions. Manual examination of over 800 of the top candidates identified one 
novel protein-coding gene in both human and mouse. (Figure S15). Each of these novel genes 
has a novel ortholog in the other species. In examining the top candidates, we also discovered 
other 11 and 47 likely novel protein-coding regions in human and mouse, respectively, including 
many cassette exons, novel first or last exons, and exon extensions.  
 
Pseudogenes. As in the case of protein-coding genes, our study was not specifically designed 
to investigate pseudogenes; however, certain regions targeted by probes overlapped with 
pseudogenes (Figure S10A). In total 5,071 pseudogenes in human, and 2,280 in mouse were 
targeted by probes (Table S8.1). As expected, given that pseudogenes are generally transcribed 
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at low levels, our capture strategy enhanced the sensitivity in recording expression changes in 
pseudogenes and their parent genes. Among upregulated pseudogene-parent gene pairs, 1,250 
(61%) showed increased expression post-capture in human (Figures S16A,B) and 790 (71%) in 
mouse. Capturing had a larger impact on the quantification of expression of pseudogenes than of 
parent genes. Nearly half of the parent genes were not upregulated even when their 
corresponding pseudogenes were upregulated (Table S8.2, Figure S16C). Still, capturing had 
an impact on the quantification of parent genes. Over 30% of parent genes were upregulated in 
human (33% in mouse) after capturing, compared to only 18% (20% in mouse) of non-parent 
protein-coding genes. These, in contrast, were largely downregulated (Figure S16D,E, Table 
S8.3). The contrasting behavior between parent and non-parent genes is expected, as protein-
coding genes were not targeted in our design, but parent genes share strong sequence similarity 
with pseudogenes, and could be captured by our design.  
 
Unified lncRNA catalog. The driving aim of our work was to advance towards a complete catalog 
of human and mouse lncRNAs, partially informed by other existing catalogs (Figure S17A). 
Through the CLS approach, we increased the proportion of lncRNAs from non-GENCODE 
catalogs from 15% in version v27 to 29% in version v47 (Figures 3A, S17B). The CLS models 
did not only increase the size of the GENCODE lncRNAs catalog, but also its quality, as reflected 
across various metrics21 (Figure 3B). Despite the inclusion of many models, a significant number 
of lncRNAs from these catalogs remain absent from GENCODE v47 (77,835 do not overlap 
annotated loci in v47, Figure S17B). While expanding the range of tissues that we have monitored 
here is likely to bring in additional candidates, lncRNAs not incorporated into GENCODE are 
generally weaker compared to those identified through the CLS approach: they have lower 
recount support (Figure S17A) and they are more catalog specific (Figure S17C). 
 
An orthology map of lncRNAs between human and mouse. Assigning gene orthology 
between species is crucial for understanding their evolutionary history and, in the case of human, 
for developing animal models to study and test therapies for human diseases. LncRNAs have 
been particularly challenging in this regard, due to their lack of sequence conservation, resulting 
in poor orthology mappings39,40. The CLS capture libraries were designed to address this limitation 
by probing orthologous regions between human and mouse. Coupled with the use of equivalent 
tissues from both species, this significantly enhanced the sequencing of transcripts from 
orthologous loci.  
 
We performed orthology-searching between the GENCODE human v47 and mouse vM36 
lncRNAs, using ConnectOR, an in-house pipeline, that identifies orthologous lncRNAs based on 
correct-strand synteny of their exons41 (Supplement). We predicted 9,153 human lncRNA 
orthologues to 9,142 mouse lncRNAs (25% of all lncRNAs in both human and mouse) using a 
strict reciprocal definition. This is a large increase over the orthologous predicted by ConnectOR 
between v27 and vM16 (13% and 15%, for human and mouse, respectively, Figure S18A,B). 
The higher-than-expected number of orthologous lncRNAs, considering the growth of the 
GENCODE catalog, is likely due to our orthologous probe capture design. The GENCODE catalog 
of human-mouse lncRNA orthologs is significantly larger than for other available catalogs, which 
reach up to only 10%39,40,42. 
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The enhanced detection of orthology has significantly increased the identification of clinically 
relevant lncRNA counterparts in the mouse genome, raising the number of identified lncRNA 
orthologs in LncRNADisease from 527 (9.7%) to 1,405 (26%), and similarly in other lncRNA 
disease databases (Figure 3C). 

Enhancing the functional interpretability of the human genome 
Accurate gene annotations are fundamental to functionally interpreting the activity (transcription, 
chromatin modifications, folding, protein binding) and the sequence variation of genomes. Here 
we show how the GENCODE annotation, extended by incorporation of the CLS data, greatly 
enhances the functional interpretability of the human genome. In general, we have considered 
the novel CLS models with respect to GENCODE v27, although some analyses have been 
restricted to the novel human lncRNA loci in v47, complemented with intergenic spliced CLS 
models not included in this annotation solely because they did not reach the minimal recount 
threshold (9,772 genes, 22,211 transcripts). We have compared them to previously annotated 
lncRNAs (in v27, 8,922 genes, 15,922 transcripts) and protein-coding genes (v27, 19,823 genes, 
146,877 transcripts). For some analyses, we have also employed a set of decoy models (17,223 
genes, 85,283 transcripts) that attempt to mimic the background (non-genic) behavior of the 
genome (Supplement). These analyses also serve to validate the biological relevance of the 
expanded annotation. 
 
Transcription Initiation. In total, we predicted 80,284 novel TSSs in the human genome, 36.2% 
of which either overlap with CAGE clusters from FANTOM516,17 (n=201,802) or have been 
associated with ProCapNet predictions43, a percentage much larger than for decoys (2.4%). 
Remarkably, while the CAGE support for annotated lncRNAs and protein-coding genes is much 
larger than for CLS transcripts, as expected given that these models are mostly seen post-
capture, ProCapNet support, which does not directly depend on available sequencing data, is 
comparable for CLS, lncRNAs and protein-coding genes (Figure 4A). In total we could attach 
novel TSSs to 10,715 orphan CAGE tags (i.e., tags that could not be associated with previously 
known TSSs, 7.2% of all orphan tags).  
 
Histone Modifications. Histone modifications are assumed to play an important role in the 
regulation of gene expression. The ENCODE consortium has recently generated an updated list 
of 2,348,854 candidate cis-regulatory elements (cCREs) in the human genome after integrating 
data from 5,712 experiments (DNase-seq, ATAC-seq, ChIP-seq of histone modifications and 
transcription factors), many of which were performed in the same tissues as those employed in 
the current study44 (manuscript in preparation). About 89% of all novel TSSs were supported by 
at least one histone mark-associated cCRE. The proportion was similar to the TSSs of protein-
coding genes (93%) and previously annotated lncRNAs (85%), but larger than for decoy models 
(59%) (Figures 4B, S19A,B). However, while known TSSs were mostly supported by proximal 
cCREs (promoter-like signatures, PLS, and proximal enhancer-like signatures, pELS), novel 
TSSs were more supported by distal cCREs (distal enhancer-like signatures, dELS), largely 
reflecting the fact that the ENCODE cCREs classification depends on the proximity to TSSs. 
Among novel TSSs, support by distal cCREs was particularly strong for tissue-specific TSSs, in 
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contrast to ubiquitously expressed TSSs, suggesting that the latter may co-opt regulatory 
elements of already known genes (Figure S19B).  
 
We have re-classified cCREs in the ENCODE registry taking into account the enhanced collection 
of TSSs. As a result, more than 153,000 cCREs previously classified as dELS (about 10%) have 
been reclassified as pELS, bringing down the proportion of dELS in the human genome from 63% 
to 56% and increasing, conversely, the proportion of pELS from 11% to 17%. Decoy models, in 
contrast, produce only a marginal increase (to 13%, Figures 4C, S19C).  
 
Transcription factor binding. Binding of transcription factors (TFs) triggers initiation of 
transcription. The ChIP-Atlas database45 collects ChIP-seq data for more than 1,800 human TFs 
from about 30,000 experiments. These have been used to generate a set of 64,122,399 unique 
ChIP-seq peaks along the human genome. We found 89% of the CLS TSSs covered by at least 
one peak. This number is comparable to that of protein-coding genes (87%) and lncRNA TSSs 
(82%), and much larger than for decoy models (58%). Similarly, we found overlapping peaks for 
an average of 121 different TFs for CLS TSSs; a number comparable to protein-coding TSSs 
(131) and larger than for lncRNA TSSs (76). In decoy TSSs, this average is five. We have 
additionally computed the fraction covered by ChIP-Atlas peaks of a 500 bp sliding window 
running -5000 bp to +5000 bp from each TSS region, individually for every TF, and aggregated 
over all TFs (Table S9, TSS centered window). The density profile, increasing as we approach 
the TSS, is almost identical for CLS TSSs and lncRNA TSSs, and somehow weaker than for TSSs 
of protein-coding genes. The profile is flat, as expected, for decoy models (Figure 4D). Overall, 
the novel CLS transcripts help to assign to promoter regions 2,747,086 ChIP-Atlas peaks (4%) 
previously mapping to intergenic regions. 
 
Non-canonical translation. LncRNAs are known to host small non-canonical ORFs (ncORFs) 
that can be translated. Ribo-seq data can typically be employed to assess the translatability of 
ncORFs46. We have used available Ribo-seq data from three human tissues that we have also 
monitored here (brain, liver and testis47) to investigate ncORF translation in the novel CLS 
transcripts. Overall, we identified 45,198 ncORFs with translation signatures in the CLS 
transcripts. We found that 27,188 out of 151,611 (18%) CLS transcripts contained one or more 
translated ncORFs, comparable to annotated lncRNAs (26%), expectedly lower than for protein-
coding genes (79%), but much higher than for decoy models (0.02%). The number of translated 
ncORFs was larger in testis and brain than in liver (Figure S20).  
 
GWAS hits. GWAS allows us to connect variants in the genome with organismic phenotypes. By 
identifying the genes affected by these variants we can hypothesize the molecular mechanisms 
underlying organismic traits. We computed the density of GWAS hits from the GWAS catalog33 
within the boundaries of intergenic CLS transcripts (novel CLS in intergenic regions, Table S10). 
Overall, we found a density of 4.7 and 10 GWAS hits per 100Kb, within the gene body and within 
exons, respectively. This is larger than the density in intergenic regions (4.19 hits/100Kb), and 
comparable to the one within the annotated lncRNAs (4.6 and 8.9 hits/100Kb, respectively). 
Consistently, the GWAS density within intergenic CLS transcripts is higher than within decoy 
models (p-value 4.98e-51, Figure S21B). We observed a pattern of GWAS density higher at the 
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boundaries but decaying with distance from the gene body, which is characteristic of annotated 
genes, also in the intergenic CLS transcripts (Figure 4E). Prior to this study (GENCODE v27), 
about 65% of the over 262,993 hits in the GWAS catalog mapped within the boundaries of 
annotated loci. Of the remaining 92,863 GWAS hits, 30,900 (33%) map now within the boundaries 
of intergenic CLS transcripts; bringing down the percentage of non-genic GWAS from 35% (v27) 
to 24% (extended v47). 
 
Sequence conservation across mammals. Conservation of lncRNA sequences is generally 
low, although some lncRNAs exhibit strong conservation across placental mammals, and even 
though intron/exon structures can vary, splice junctions often show significant conservation48. We 
evaluated conservation using the Zoonomia 241-way mammalian genomic alignment49,50, 
measuring conservation using the mean per-transcript PhyloP scores51 for exon sequences and 
splice junctions. Decoy models provide a neutral evolution baseline and define the PhyloP scores 
between -1.0 and 1.0 as neutral for sequence conservation (Figure 5A, Table S11). This results 
in 97% of the decoy exons being classified as neutral, with 2% showing sequence conservation. 
GENCODE protein-coding transcripts evaluated using this method show the expected high levels 
of mammalian conservation (Figure 5B), with 84% of exons and 97% of the splice junctions 
classified as conserved. LncRNAs outside of protein-coding loci show significantly weaker 
conservation, although higher than for decoy models (Figure 5C,D). Novel CLS transcripts show 
higher conservation than previously annotated lncRNAs (16% exons and 26% of splice junctions 
are classified as conserved in novel CLS transcripts compared to 6% and 14%, respectively, in 
previously annotated lncRNAs).  
 
CLS precursors of small RNAs. Many classes of small RNAs are processed from long RNAs. 
For instance, of the 1,869 human miRNAs annotated in GENCODE v27, 1,244 (67%) are 
contained within annotated long RNAs in the same genomic orientation. Here, we identified an 
additional 163 orphan miRNAs contained within novel CLS transcripts, bringing the proportion of 
human miRNAs with reliable precursors to 75% (Tables S12, S13). Notably, the host genes of 35 
miRNAs are novel gene loci residing in previously unannotated intergenic space. Figure 5E 
shows the case of a cluster of orphan miRNAs that fall now within the boundaries of a novel CLS 
locus. Similarly, we increased the number of mouse miRNAs with potential long precursors from 
1,175 (53%) to 1,370 (62%), with 62 orphan miRNAs residing in novel loci. Small nucleolar RNAs 
(snoRNAs) are another class of small RNAs processed from long precursors. Similarly, we 
increased the number of snoRNAs with host genes from 572 (61%) to 639 (68%) in human and 
535 (36%) to 657 (44%) in mouse, respectively. We found that splice junctions of host lncRNAs, 
in particular novel CLS transcripts, exhibit much higher conservation than lncRNAs in general 
(39% of exons and 74% of splice junctions were classified as conserved (Figure S22).  

Discussion 

Genes are the basic genomic units responsible for many phenotypic traits. Identifying genes in 
genome sequences, in particular those from eukaryotic species, is challenging. Genes are often 
separated from each other by large intergenic regions, they produce multiple transcripts, and the 
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sequence of these transcripts is interrupted by introns, which are removed to produce the mature 
RNA molecules.  
 
The strong bias in the sequence of the exons and of the splicing signals, and their strong 
evolutionary conservation and constraint facilitates the identification of protein-coding genes by 
computational means. Moreover, many protein-coding genes are broadly and/or highly 
expressed, and transcripts originating from them are well represented in transcriptomic data sets. 
LncRNAs, in contrast, do not exhibit strong sequence composition biases, and are poorly 
conserved across the phylogenetic spectrum. Moreover, they tend to be lowly expressed often in 
a very cell-type specific manner, which makes them difficult to be captured by unbiased 
sequencing approaches. Therefore, they are poorly represented in transcriptomic data sets. All 
these make the annotation of lncRNAs particularly challenging. 
 
There is increasing evidence, however, that lncRNAs are more than non-functional by-products 
of transcription. Growing numbers of carefully documented cases can attest to the bioactivity of 
mature lncRNA transcripts, and their important roles in both healthy and diseased states52–54 .  
 
Thus, because of their growing biological relevance, a number of efforts have been dedicated to 
producing lncRNA catalogs for human and other species13,20,21,26–29. Since lncRNAs can 
essentially be identified only through RNA sequencing, most lncRNA catalogs have been created 
by processing RNAseq data. This data has been so far largely produced using short-read 
technology, from which it is difficult to reliably infer exon connectivity along the entire transcript, 
particularly for lowly expressed transcripts.  
 
As a result, existing lncRNA catalogs contain mostly incomplete and fragmentary models, the 
biological identity of which cannot be firmly established. They overlap only partially, and the lack 
of coordination and of consistent accessioning hinders their use by the community, slowing down 
progress in lncRNA biology. These catalogs are still very useful, however, since they pinpoint 
those regions in the genome that are likely to encode lncRNAs. Indeed, partially informed by these 
catalogs, we have employed a targeted RNA sequencing approach that has successfully led to 
the identification of hundreds of thousands of previously unknown human and mouse lncRNA 
transcripts, the vast majority of them supported by full-length high-quality sequences.  
 
Our highly stringent filtering results in the exclusion of a substantial fraction of transcripts from 
GENCODE versions v47 and vM36. For instance, we included only CLS models supported by a 
minimum of 50 recount reads to each splice junction. This is remarkable, as it indicates that these 
transcripts have been previously detected in short-read RNAseq experiments, albeit in a 
fragmented and scattered way (too weak evidence to reliably infer full-length sequences). Thanks 
to our targeted approach, we have now been able to represent these transcripts as full-length 
models.  
 
Rare and cell type specific transcripts will likely be underrepresented in bulk RNAseq datasets, 
therefore many CLS models not reaching our recount threshold are likely to correspond to “bona 
fide” transcript sequences (we estimate at least 50%, corresponding to tens of thousands of 
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transcripts). Many of these may be incorporated in future GENCODE releases as our manual and 
automated curation workflows improve. Similarly, about 100,000 CLS models overlapping protein-
coding regions were beyond the scope of this study and remain to be analyzed by the HAVANA 
team. These are likely to lead to many alternatively spliced transcripts and novel translations of 
existing genes and to extend annotated models to the correct transcript termini. 
 
Transcript discovery and accurate annotation here have been greatly facilitated by advances in 
long-read RNAseq technologies. However, long-read RNAseq has so far been produced for a 
limited number of cell types and tissues, mostly in samples from European ancestry55,56. Our 
results suggest that the survey of an increasing number of cell types, conditions, developmental 
stages, subcellular compartments, and RNA populations (i.e., polyA- RNAs) in samples from 
individuals of diverse genetic backgrounds, through further advanced long-read sequencing 
technologies, and library preparation protocols through the single-cell level, is likely to uncover a 
substantial number of yet unknown human genes.  
 
Deep learning (DL) and large language models seem particularly appropriate to deal with the 
intrinsic semantic nature of biomolecular sequences, as illustrated by the success in predicting 
protein structures from amino acid sequences57. DL is also being explored to predict genes in 
genome sequences58,59. The accuracy of these methods crucially depends on the size (and the 
quality) of the training data. Our work, the vast amounts of data produced, and the resulting 
annotation, can also be considered an important contribution here. The combination of DL with 
more traditional AI rule-based systems, building on our extensive experience in manual curation, 
could be the basis of automatic methods producing genome annotations of quasi-manually-
curated quality. These methods will be essential to produce high-quality annotations across the 
entire phylogenetic spectrum60, which are essential to maximize the benefit of projects underway 
to sequence the genomes of all eukaryotic species on Earth61–63.  
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MAIN FIGURES LEGEND 
 
FIGURE 1. Targeting and sequencing the long non-coding transcriptome with CapTrap-
CLS. A) Representation of the capture panel; each bar reports the number of targeted regions 
per catalog, for the human and mouse experiments, organized by the class of elements in focus. 
B) Application of CapTrap-CLS in matched adult and embryonic tissues from human and mouse. 
Samples were sequenced using long-read platforms from PacBio and Oxford Nanopore 
Technologies (ONT). Short reads were sequenced with Illumina and highlighted by an asterisk 
when available. An outline of CLS transcripts and their integration to GENCODE is shown for C) 
human and D) mouse. Top panel: final set of CLS transcripts categorized based on the novelty 
status with respect to GENCODE v27 (human) and vM16 (mouse). Bottom panel: CLS transcript 
models added to GENCODE v47 (human) and vM36 (mouse) See Figure S6 for a more detailed 
description E) Representation of GENCODE annotation history to releases v47 and vM36 Number 
of transcripts on primary assembly chromosomes in every year’s last GENCODE release, in 
human (left) and mouse (right), broken down by broad biotype. IG/TR genes excluded. 
 
FIGURE 2. Classification of CLS Transcripts. The panels shows the origin of CLS transcripts 
in A) human and B) mouse. The barplot on the left shows the models yield (from top to bottom) 
pre-capture, post-capture, as well as from adult and embryonic samples (percentage computed 
over the totality of the transcripts generated). The upset plot shows the intersections across these 
categories; the dots are colored according to the developmental stage of origin (whether adult, 
embryo or detected in both), while the bars display the overlap of transcripts between pre-capture 
and post-capture experiments. The barplot above highlights the proportion of shared transcripts 
across tissues.  
 
FIGURE 3. Expansion of the GENCODE lncRNA annotation compared to other lncRNA 
catalogs. A) Gene-level overlap between annotations. The values correspond to the percentage 
of gene loci from the catalogs represented in the x-axis that overlap the annotations represented 
in the box-plot. For instance, 29% of the lncRNAs in the merge of all catalogs (lncRNA-merge) 
are included in GENCODE v47. Conversely, 74% of the lncRNAs in v47 are included in lncRNA-
merge. Overlap is defined as a complete overlap of the gene span within either the x-axis set or 
the corresponding set on the same strand. Both spliced and unspliced genes are included in this 
analysis. See also Figure S17B. B) Comparison of lncRNA catalogs as described in previous 
study21. x-axis: “Comprehensiveness”, representing the total number of gene loci; y-axis: 
“Support”, indicating the percentage of transcript structures whose start is supported by a 
FANTOM (Functional Annotation of the Mammalian Genome) CAGE (cap analysis of gene 
expression) cluster28 within ±50 bases, and whose end includes a canonical polyadenylation 
motif64 within 10–50 bp upstream. Circle diameters show “exhaustiveness”, or the average 
number of transcripts per gene. Pie charts show the proportion of transcripts with all splice 
junctions supported by recount3 data38 (with at least 50 reads). Only spliced models were included 
in this analysis. CLS transcripts here refer to transcripts identified using CapTrap-CLS, which are 
spliced, located on the reference chromosomes, and derived from individual lncRNA catalogs. C) 
The overlap between syntenic lncRNA orthologues in human and mouse genomes and the 
clinically relevant lncRNA genes from three different sources64–66. 
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FIGURE 4. Enhancing the functional interpretability of the human genome. The figure shows 
how the incorporation of CLS data greatly enhances the functional interpretability of omics 
measurements on the human genome, assessed on i) novel CLS transcripts, ii) annotated lncRNA 
as of GENCODE v27, iii) annotated protein-coding genes as of GENCODE v27, and iv) decoy 
models to simulate background signal (from left to right). A) Transcription Start Site (TSS) support 
for novel CLS, annotated lncRNAs, protein-coding and decoy models. Barplots depict the 
proportion of supported TSSs within each set using CAGE clusters, proCapNet predictions and 
either CAGE or proCapNet. B) Barplot showing the proportion (%, y axis) of Transcription Start 
Sites (TSSs) supported by different types of cCREs (x axis). TSSs with cCRE support are those 
for which the distance between the TSS and the center of the cCRE is less than 2 Kb. We 
performed this analysis for unique TSSs of protein-coding genes, previously annotated lncRNAs, 
novel CLS transcript models (TM), and decoy models. The type of cCRE is color-coded; “any 
class” includes additional types of cCREs not shown in the barplot (CA-CTCF, CA-TF, CA, TF). 
C) Alluvial diagram showing the re-classification of TSS-proximity-dependent cCRE categories in 
the ENCODE registry, given the novel TSS models in the expanded annotation. Two pairs of 
categories are shown i) PLS versus H3K4me3 marking in accessible regions (CA-H3K4me3), and 
ii) pELS versus dELS, which share the same histone marking signatures, but relying on different 
proximities to closest TSS (200 bp and 2 kb, respectively). The percentages indicate the 
proportion of cCREs from the entire registry that belong to each category in the original 
classification (on the left) and upon enhancement with novel TSSs (right). D) Peaks of 
transcription factor binding are centered on TSS of known and CLS transcripts. The plot shows 
the average (across 1,800 TFs) coverage by ChIP-Atlas peaks of each consecutive 500 bp 
window around TSS. The coverage increases while we approach the TSS of the real transcripts 
which is not true for decoys. E) GWAS density profile along the gene body and the surrounding ± 
15kb area. 
 
FIGURE 5. Conservation of lncRNAs and hosting of small RNAs. Frequency of per-transcript 
exon and splice junction mean PhyloP scores as computed for A) GENCODE v47 CLS-based 
novel lncRNAs outside of protein-coding loci, B) GENCODE v27 lncRNAs outside of protein-
coding loci C) GENCODE v47 protein-coding transcripts, D) decoy models. The dashed red lines 
indicate the range considered under neutral selection. E) Example of a putative novel miRNA host 
gene. The MEG9 locus is a complex ncRNA locus on chr14. MEG9 is highly conserved between 
mouse and human, with additional exons found in mouse. The microRNA mir-541 cluster and the 
other miRNAs upstream are present throughout mammals. Given that splicing of the intron is 
required for miRNA maturation, we find the splice site of the 5’-most exon of the novel lncRNA to 
be highly conserved across deep mammalian genome alignments (214-way, 470-way). The novel 
transcript is expressed in liver only, as supported by histone modification marks for H3K27ac. 
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