Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Sep 1;487(Pt 2):421–440. doi: 10.1113/jphysiol.1995.sp020890

Membrane properties of the granule cells of the islands of Calleja of the rat studied in vitro.

J V Halliwell 1, A L Horne 1
PMCID: PMC1156583  PMID: 8558474

Abstract

1. Using patch-clamp techniques, we have studied granule neurones from the islands of Calleja in vitro: as isolated cells or as groups of varying numbers following enzymic digestion, or within untreated slices of approximately 100 microns thickness. 2. Recordings were made with patch pipettes in conventional or nystatin-perforated whole-cell mode. Current-clamp recordings indicated that these granule cells are excitable and at resting potential produce irregular spontaneous activity. In voltage clamp the transient inward current underlying these action potentials could be evoked. This current had a threshold for activation of about -50 mV and was sensitive to TTX. In some cells a TTX-resistant transient inward current was observed with a threshold for activation of about -70 mV. 3. Island of Calleja granule cells also exhibited outward currents. A rapidly activating transient current was observed that was resistant to TEA and sensitive to 4-AP, and therefore resembled IA. The current was half-maximally activated at -6 mV and steady-state inactivation was half-complete at -65 mV. 4. More sustained outward currents were also observed. Although some cells appeared to express a Ca(2+)-activated K+ current, the most common finding was a rapidly activating, slowly inactivating, voltage-dependent K+ current that was sensitive to TEA and Ba2+. This current resembled M-current more than delayed rectifier but displayed a number of idiosyncratic kinetic properties. Chief amongst these was the accumulation of an inactivating process when the current was repeatedly evoked from potentials near the cells' resting value by voltage steps that by themselves produced no observable inactivation during the voltage command; this behaviour was similar to the 'C-terminal' inactivation exhibited by lymphocytes and certain expressed K+ channel clones (Kv1.3). 5. These results indicate that the granule cells of the islands of Calleja are excitable and contain a number of additional regulatory conductances. The implications of these findings in, and the usefulness of this preparation to, the elucidation of the function(s) of the islands of Calleja are discussed.

Full text

PDF
421

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alheid G. F., Heimer L. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience. 1988 Oct;27(1):1–39. doi: 10.1016/0306-4522(88)90217-5. [DOI] [PubMed] [Google Scholar]
  2. Bardoni R., Belluzzi O. Kinetic study and numerical reconstruction of A-type current in granule cells of rat cerebellar slices. J Neurophysiol. 1993 Jun;69(6):2222–2231. doi: 10.1152/jn.1993.69.6.2222. [DOI] [PubMed] [Google Scholar]
  3. Bourque C. W. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol. 1988 Mar;397:331–347. doi: 10.1113/jphysiol.1988.sp017004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bredt D. S., Glatt C. E., Hwang P. M., Fotuhi M., Dawson T. M., Snyder S. H. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. 1991 Oct;7(4):615–624. doi: 10.1016/0896-6273(91)90374-9. [DOI] [PubMed] [Google Scholar]
  5. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., Adams P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 1980 Feb 14;283(5748):673–676. doi: 10.1038/283673a0. [DOI] [PubMed] [Google Scholar]
  7. Brown D. M-currents: an update. Trends Neurosci. 1988 Jul;11(7):294–299. doi: 10.1016/0166-2236(88)90089-6. [DOI] [PubMed] [Google Scholar]
  8. Bufler J., Opitz T., Hatt H. Electrophysiological and morphological properties of granule cells: patch-clamp recordings of newborn rabbit olfactory bulb slices. Neurosci Lett. 1993 Oct 29;161(2):129–132. doi: 10.1016/0304-3940(93)90276-q. [DOI] [PubMed] [Google Scholar]
  9. Cahalan M. D., Chandy K. G., DeCoursey T. E., Gupta S. A voltage-gated potassium channel in human T lymphocytes. J Physiol. 1985 Jan;358:197–237. doi: 10.1113/jphysiol.1985.sp015548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Choi K. L., Aldrich R. W., Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5092–5095. doi: 10.1073/pnas.88.12.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Connor J. A., Stevens C. F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 1971 Feb;213(1):21–30. doi: 10.1113/jphysiol.1971.sp009365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cull-Candy S. G., Marshall C. G., Ogden D. Voltage-activated membrane currents in rat cerebellar granule neurones. J Physiol. 1989 Jul;414:179–199. doi: 10.1113/jphysiol.1989.sp017683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fallon J. H., Loughlin S. E., Ribak C. E. The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatopallidal system. J Comp Neurol. 1983 Jul 20;218(1):91–120. doi: 10.1002/cne.902180106. [DOI] [PubMed] [Google Scholar]
  14. Fallon J. H., Riley J. N., Sipe J. C., Moore R. Y. The islands of Calleja: organization and connections. J Comp Neurol. 1978 Sep 15;181(2):375–395. doi: 10.1002/cne.901810209. [DOI] [PubMed] [Google Scholar]
  15. Fallon J. H. The islands of Calleja complex of rat basal forebrain II: connections of medium and large sized cells. Brain Res Bull. 1983 Jun;10(6):775–793. doi: 10.1016/0361-9230(83)90210-1. [DOI] [PubMed] [Google Scholar]
  16. Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
  17. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  19. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  20. Inokuchi A., Mooney K. E., Snow J. B., Jr Dopaminergic modulation of bulbofugal projections in the rat olfactory tubercle. Am J Otolaryngol. 1987 Jul-Aug;8(4):214–218. doi: 10.1016/s0196-0709(87)80006-6. [DOI] [PubMed] [Google Scholar]
  21. Isacoff E. Y., Jan Y. N., Jan L. Y. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990 Jun 7;345(6275):530–534. doi: 10.1038/345530a0. [DOI] [PubMed] [Google Scholar]
  22. Marom S., Goldstein S. A., Kupper J., Levitan I. B. Mechanism and modulation of inactivation of the Kv3 potassium channel. Receptors Channels. 1993;1(1):81–88. [PubMed] [Google Scholar]
  23. Mayer M. L., Sugiyama K. A modulatory action of divalent cations on transient outward current in cultured rat sensory neurones. J Physiol. 1988 Feb;396:417–433. doi: 10.1113/jphysiol.1988.sp016970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyer G., Wahle P. The olfactory tubercle of the cat. I. Morphological components. Exp Brain Res. 1986;62(3):515–527. doi: 10.1007/BF00236030. [DOI] [PubMed] [Google Scholar]
  25. Millhouse O. E. Granule cells of the olfactory tubercle and the question of the islands of Calleja. J Comp Neurol. 1987 Nov 1;265(1):1–24. doi: 10.1002/cne.902650102. [DOI] [PubMed] [Google Scholar]
  26. Neher E. Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol. 1971 Jul;58(1):36–53. doi: 10.1085/jgp.58.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Newman R., Winans S. S. An experimental study of the ventral striatum of the golden hamster. II. Neuronal connections of the olfactory tubercle. J Comp Neurol. 1980 May 15;191(2):193–212. doi: 10.1002/cne.901910204. [DOI] [PubMed] [Google Scholar]
  28. Rettig J., Heinemann S. H., Wunder F., Lorra C., Parcej D. N., Dolly J. O., Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature. 1994 May 26;369(6478):289–294. doi: 10.1038/369289a0. [DOI] [PubMed] [Google Scholar]
  29. Ribak C. E., Fallon J. H. The island of Calleja complex of rat basal forebrain. I. Light and electron microscopic observations. J Comp Neurol. 1982 Mar 1;205(3):207–218. doi: 10.1002/cne.902050302. [DOI] [PubMed] [Google Scholar]
  30. Robbins J., Trouslard J., Marsh S. J., Brown D. A. Kinetic and pharmacological properties of the M-current in rodent neuroblastoma x glioma hybrid cells. J Physiol. 1992;451:159–185. doi: 10.1113/jphysiol.1992.sp019159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
  32. Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Sewing S., Pongs O. Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature. 1990 Jun 7;345(6275):535–537. doi: 10.1038/345535a0. [DOI] [PubMed] [Google Scholar]
  33. Stansfeld C. E., Marsh S. J., Gibb A. J., Brown D. A. Identification of M-channels in outside-out patches excised from sympathetic ganglion cells. Neuron. 1993 Apr;10(4):639–654. doi: 10.1016/0896-6273(93)90166-o. [DOI] [PubMed] [Google Scholar]
  34. Storm J. F. An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J Physiol. 1989 Feb;409:171–190. doi: 10.1113/jphysiol.1989.sp017491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Talbot K., Woolf N. J., Butcher L. L. Feline islands of Calleja complex: I. Cytoarchitectural organization and comparative anatomy. J Comp Neurol. 1988 Sep 22;275(4):553–579. doi: 10.1002/cne.902750406. [DOI] [PubMed] [Google Scholar]
  36. Talbot K., Woolf N. J., Butcher L. L. Feline islands of Calleja complex: II. Cholinergic and cholinesterasic features. J Comp Neurol. 1988 Sep 22;275(4):580–603. doi: 10.1002/cne.902750407. [DOI] [PubMed] [Google Scholar]
  37. Vincent S. R., Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience. 1992;46(4):755–784. doi: 10.1016/0306-4522(92)90184-4. [DOI] [PubMed] [Google Scholar]
  38. Zagotta W. N., Aldrich R. W. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol. 1990 Jan;95(1):29–60. doi: 10.1085/jgp.95.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zagotta W. N., Hoshi T., Aldrich R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 1990 Oct 26;250(4980):568–571. doi: 10.1126/science.2122520. [DOI] [PubMed] [Google Scholar]
  40. Zbicz K. L., Weight F. F. Transient voltage and calcium-dependent outward currents in hippocampal CA3 pyramidal neurons. J Neurophysiol. 1985 Apr;53(4):1038–1058. doi: 10.1152/jn.1985.53.4.1038. [DOI] [PubMed] [Google Scholar]
  41. ffrench-Mullen J. M., Plata-Salamán C. R., Buckley N. J., Danks P. Muscarine modulation by a G-protein alpha-subunit of delayed rectifier K+ current in rat ventromedial hypothalamic neurones. J Physiol. 1994 Jan 1;474(1):21–26. doi: 10.1113/jphysiol.1994.sp019998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES