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Summary 

Recent advances in multiplexed fluorescence imaging have provided new opportunities 
for deciphering the complex spatial relationships among various cell types across diverse 
tissues. We introduce CytoSpatio, open-source software that constructs generative, 
multirange, and multitype point process models that capture interactions among multiple 
cell types at various distances simultaneously. On analyzing five cell types across five 
tissues, our software showed consistent spatial relationships within the same tissue type, 
with certain cell types like proliferating T cells consistently clustering across tissue types. 
It also revealed that the attraction-repulsion relationships between cell types like B cells 
and CD4-positive T cells vary with tissue type. CytoSpatio can also generate synthetic 
tissue structures that preserve the spatial relationships seen in training images, a 
capability not provided by previous descriptive, motif-based approaches. This potentially 
allows spatially realistic simulations of how cell relationships affect tissue biochemistry.  
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Introduction 

The functions of a tissue are often determined by the type and arrangement of its 
constituent cells. Distinct shapes, sizes, and molecular properties of cell types lead to 
specialized functions within a tissue [1-5]. However, spatial relationships among various 
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cell types within diverse tissues are often more complex, and their impact on tissue 
functions is not fully understood.  

Traditional imaging techniques, such as confocal microscopy, electron microscopy, and 
computed tomography (CT), have allowed scientists to investigate the spatial 
relationships between specific cell types within particular tissues [6-9]. However, these 
approaches typically required manual annotations of cell types. Therefore, they faced 
challenges of subjectivity in cell type annotations, limited scalability of conclusions across 
tissues, and most notably, the inability to capture complex spatial relationships due to the 
restriction on the number of identifiable cell types. 

Recent advances in multiplexed imaging approaches for spatial transcriptomics and 
proteomics offer an unprecedented opportunity for researchers to explore the spatial 
relationships between a diverse range of cell types simultaneously [10-14]. By employing 
biomarkers targeting distinct RNA transcripts or proteins within cells in a multiplexed 
manner, various cell types can be concurrently visualized in tissue samples [15-17].  

This advancement has motivated researchers to investigate spatial relationships among 
cell types with a variety of methods, mainly involving quantification and summarization of 
colocalization and correlation between cell types using analytic and statistical methods.  

Behanova et al. [18] summarized and reviewed a variety of spatial statistics methods, 
tools, and software. The primary focus was on testing various hypotheses regarding 
whether cell types are randomly distributed, rather than attempting to construct models 
to capture complex spatial relationships. 

Filipek et al. [19] presented CytoMAP, a spatial analysis platform that quantified local cell 
composition and global tissue structure. This platform defines cell-centered local 
neighborhoods across the tissue, and groups similar neighborhoods together through 
clustering methods. It provides overall correlation and neighborhood composition 
between cell types for colorectal tumor and lymphoid tissues. While CytoMAP is a 
powerful tool for the spatial analysis of cell type relationships in tissue images, it has 
certain limitations. First, choice of the range for cell-centered local neighborhoods would 
be expected to significantly affect results. This could limit the reproducibility of the 
analyses and the comparability of spatial relationships between cell types in different 
tissues. Second, while CytoMAP does offer correlations and neighborhood compositions 
between cell types, it may oversimplify the complexity of spatial relationships among 
various cell types, a common concern shared with spatial statistics. 

Barlow et al. [20] hypothesized that tissues are composed hierarchically from smaller to 
larger components following certain assembly rules. To test this hypothesis, a hierarchical 
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computational framework was devised to systematically identify the characteristic local 
compositions of cell types, known as cellular neighborhoods, map the local interactions 
and co-localization of these neighborhoods into distinct microenvironments, and delineate 
assembly rules that govern the formation of these microenvironments into tissue motifs. 
This hierarchical analysis produced proposed assembly rules for normal lymph node, 
spleen, and tonsil tissue, as well as colorectal cancer tissue. However, like CytoMAP, 
both the specific choices of the hierarchical design and the fixed parameters used to 
define the ranges of neighborhoods and microenvironments were not well justified or 
explored.  The approach was also not incorporated into a probabilistic, generative 
framework to allow estimation of the likelihood of a tissue image being produced by a 
given model and/or the quantitative similarity between different tissues, and to allow 
generation of synthetic tissue images. 

To address the limitations of these existing methods, we sought to employ generative 
statistical models to learn and represent the complex spatial relationships between 
different cell types in different tissues beyond pairwise analyses of colocalization and 
correlation.  

Spatial point process models [21] are generative statistical models designed to learn the 
probability of individual objects (points) occurring at specific locations in space, including 
dependence of that probability on locations of other objects. The collection of points 
(including their locations within a defined region) are referred to as a “point pattern”, and 
models capturing how such point patterns are generated are referred to as “point process 
models.” These models have found widespread application in the analysis of spatial 
relationships across various domains, such as meteorology [22], ecology [23], criminology 
[24], and social sciences [25]. In cell biology, spatial point process models have been 
employed to elucidate the spatial relationships between punctate organelles and various 
cellular components, such as the nuclear membrane and microtubules [26, 27]. They 
have also been used to investigate the assembly of viral ribonucleoprotein complexes [28] 
and to identify prognostic structural features in colon cancer tissues [29]. Although these 
point process models have been successful in revealing spatial dependencies and 
interaction patterns between objects in different contexts, they typically focus on one type 
of object at a time. In these models, the locations of other point types, if they exist, are 
treated as influential "factors" that may affect the spatial distribution of the target point 
type. Consequently, separate models must be trained for each object type. To address 
this limitation, we chose to implement a point process model capable of simultaneously 
learning the spatial relationships between many types of objects, namely multitype point 
process model (or marked point process model) [30-34]. 

In a multitype point process model, when assuming there are interactions between 
different types of points, a common challenge is to determine the maximum interaction 
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distance over which two types of points can influence each other. Conventionally, a range 
parameter was determined either by the distance from the nearest neighbor up to the 
distance of commonly observed interactions between two types of points [35] or by a 
distance distribution of nearest-neighbor between two types of points [36]. While these 
approaches offer a useful approximation, they are highly dependent on empirical 
observations from the data set. If the data set is limited or biased, they might lead to an 
inaccurate estimation of the maximum interaction distance. They might also constrain the 
extent to which models trained on different tissues may be compared. To overcome this 
challenge, we designed multirange models wherein different types of points can influence 
each other differently based on a specific range. This allows greater sensitivity in 
distinguishing different types of interactions. 

In this study, we introduce CytoSpatio, open-source software that constructs generative, 
multirange, multitype point process models. We demonstrate its superior performance 
over single-range models using images from five different tissues containing five distinct 
cell types. We show how the models can be used to compare cell type spatial 
relationships between images from the same tissue or between images of different 
tissues. Additionally, we can use our approach to evaluate heterogeneity in different 
tissue subregions. Perhaps most usefully, we construct interaction network graphs that 
directly exhibit and compare the spatial relationships among cell types.  Lastly, we 
demonstrate that our models can generate synthetic tissue images that preserve the 
spatial relationships observed in real tissue images, enabling rigorous validation of the 
models. Figure 1 illustrates the processes involved in constructing models using our 
approach. 

 

Results 

For this study, we used multiplexed tissue images from the Human BioMolecular Atlas 
Program (HuBMAP) [37]. Images for five tissues were segmented into single cells and 
the cell type of each cell was assigned as described in the Methods.  

Assessing non-randomness of cell type distributions in different tissues 

We began our analysis by exploring whether the cell type distribution in each tissue is 
random, which would imply a lack of meaningful spatial relationships among cell types. 
We posed a null hypothesis that the cell type distribution in a tissue image would be 
equivalent to a distribution with the same cell locations but randomized cell types. For 
each tissue, we randomized the cell types within all images 100 times, generating 100 
sets of point patterns with shuffled cell types. These patterns served as a background 
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distribution for our hypothesis testing. For each set, we trained a multitype Strauss 
Hardcore model (see Methods) with the range that two cell types can affect each other 
(referred to as a Straus radius) set to 100 pixels and the range within which two cells 
cannot come closer to each other (referred to as a Hardcore radius) set to 1 pixel (1 pixel 
equals 0.377 microns). To measure agreement between a model and a set of point 
patterns, we used a metric that quantified the average disparity between each point 
pattern and the predicted intensity from the model (average deviance per cell, see 
Methods).  For each shuffled model, we measured average deviance per cell against a 
randomly selected shuffled point pattern set from the same tissue, and also against the 
unshuffled point pattern from the original image. 

As shown in Figure 2, we consistently observed that the average deviance per cell was 
lower when the models trained on a shuffled pattern set were tested against another 
shuffled point pattern set (red boxplots), as compared to when tested on the original point 
pattern set (green boxplots). As expected, this indicates for each tissue that the shuffled 
pattern sets were more similar to each other than they were to the original (unshuffled) 
pattern set. This strong deviation of the original patterns from randomness was 
statistically significant (p<0.01) for all five tissue types investigated. Interestingly, we 
found that the cell type distributions in thymus, small intestine (SI), and large intestine (LI) 
were particularly non-random, resulting in significantly higher deviance when their 
randomized models were tested against the original patterns. 

Comparing multirange to single range of Strauss Hardcore 

We next evaluated whether our multirange, multitype Strauss-Hardcore model (see 
Methods) provides a more accurate fit for learning spatial relationships among cell types 
in our tissue images, compared to conventional Strauss Hardcore models with a single 
Strauss radius. For each tissue, we trained Strauss Hardcore models using various single 
radii (in pixels), as well as our multirange model that incorporates five distinct Strauss 
radii ranging from 100 to 500 at 100-pixel intervals. 

An important component of constructing point process models is the creation of “dummy” 
points that have different types than the observed points so that the model can learn not 
only that observed points should have high probability, but that non-observed point should 
in general have low probability (see Methods). In order to compare models for different 
radii, we evaluated each model's goodness-of-fit using the average deviance per real cell, 
per dummy cell, and per both real and dummy cells.  

Figure 3 shows that, compared to the conventional Strauss Hardcore models with five 
single ranges, our multirange model consistently yielded the lowest average deviances 
for all five tissue types. Interestingly, we observed a gradual decline in the performance 
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of the single radius model as the Strauss radius expanded from 100 to 500 pixels. This 
implies that the positioning of specific cell types is primarily influenced by their proximate 
neighboring cells, while cells at greater distances may introduce mixed spatial 
relationships that lower the prediction accuracy. Despite this, the spatial information 
derived from cells at larger distances remains beneficial for predicting cell types, 
contributing to the superior accuracy of the multi-range model across the five tissue types. 

It is important to consider the relationships between the radius ranges used in 
constructing the models, the radii of the cell types being considered, and the size of the 
image pixels.  For images with the same pixel size and similar cell radii, models can be 
directly compared (as we have here).  As long as pixel size of the image (the width and 
height of each pixel in the sample plane; 0.377 microns for the images analyzed here) is 
reasonably smaller than the typical radii of the cell types, it does not significantly affect 
the estimation of cell-cell distances (when expressed in microns).  Models for images of 
different pixel sizes can also be compared as long as the radius ranges (in pixels) are 
adjusted for each image so that they represent the same length (in microns). 

Evaluating differences in cell type spatial relationships within and across tissues 

We next asked, using two distinct approaches, whether spatial relationships among cell 
types were more similar within the same tissue than they were between different tissues. 
Both approaches used sets of models for each tissue that were derived from a leave-one-
out cross-validation process (see Methods). 

The first approach involved calculating the Gaussian kernel similarity between the 
concatenated vectors of interaction coefficients for all radii (which encode the attraction 
or repulsion among cell types) of a pair of models. To provide an overall measure of 
similarity within or between tissues, we averaged similarity values between all pairs of 
models for a given tissue, and between all pairs of models from two tissues (Figure 4A). 
We found that models trained on images from the same tissue yielded similarities very 
close to 1.  The value for lymph node were slightly lower, indicating slightly more 
heterogeneity among the images of that tissue.  All of the same tissue values were 
consistently higher than those comparing models from different tissues. However, spleen, 
lymph node, and thymus tissues were more similar to each other than any of them were 
to either large or small intestine (which we quite similar to each other). 
 
These distinct similarities and dissimilarities might also be a reflection of the organs' 
primary biological systems and functions. The spleen, thymus, and lymph node are 
primarily part of the immune system, which could explain their high intra-tissue similarity. 
Conversely, the large and small intestines mainly serve the digestive system, but they 
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also have immune functions. This dual role might contribute to the distinctive spatial 
relationships we observed between these two and other three tissues.  

For our second approach, we employed the models from leave-one-out cross-validation 
to predict cell types (see Methods) in the held-out images of the same tissue that the 
model was trained on, as well as images from other tissues. We hypothesized that high 
predictive accuracy would indicate similar spatial relationships among cell types in the 
training and prediction images. The prediction accuracy of cell types was quantified using 
the weighted macro Area-Under-the-Curve (wmAUC, see Methods).  

The results (Figure 4B) showed high (<0.7) values for all similarities between predicted 
and original cell types of the same tissue, especially considering the difficulty of predicting 
a single cell type only from the types of its neighbors.  The highest value for comparisons 
among spleen, thymus, and lymph node were not always those for a tissue with itself; this 
does not indicate poor performance of the model but rather reflects the similarity between 
those tissues as already observed above.  Those tissues also had a more consistent 
range of wmAUC values among images from the same tissue compared to those from 
the small and large intestines. This suggests that regions within the spleen, thymus, and 
lymph nodes share greater intra-tissue similarity than the intestines. 

Analyzing heterogeneity within tissue images 

One assumption of point process models is that point patterns are homogeneous; in our 
case this means that spatial relationships among cell types remain consistent at different 
locations within the tissue. However, most tissues have distinct structural and functional 
units within them (such as stem cell niches).  To evaluate whether such organization may 
be reflected in heterogeneity in cell spatial interaction models, we randomly segmented 
subregions (tiles) from the original images at two different sizes (5000x5000 and 
2500x2500 pixels). Tiles were required to contain at least 100 cells of all cell types and 
have at least one-fifth of the average number of cells per tile for that image. We ensured 
that the edges of each tile were at least 500 pixels away from the original image edges, 
since cells too close to the edge cannot have their interactions accurately counted. 

For the same reason, we counted interactions for each cell within a tile with nearby cells 
outside the tiles. We trained and tested our model on each original image and tile, and 
for each tile size, we formed a matrix where each row represents a model for a given tile 
and each column corresponds to a interaction coefficient. Using principal component 
analysis, we extracted the two major modes of variation, enabling visualization of 
heterogeneity between individual tile models (Figure 5A-E). We also transformed the 
interaction coefficients of the model trained on all original images of each tissue using the 
fitted PCA. 
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We also calculated the median of the Euclidean distances between the coefficients of 
models trained on tiles and coefficients of the model trained on all original images of that 
tissue. We used this value as a heterogeneity metric (Figure 5F). 

As discussed above, spleen, thymus, and lymph nodes displayed lower heterogeneity 
across their original images compared to those of the large and small intestines. This 
homogeneity also persists for smaller subregions of those tissues (Figure 5A,B,C) 
compared to intestine (Figure 5D,E).  Figure 5F further quantifies this difference.  It is of 
interest to note that within the three similar tissues, spleen exhibited a much smaller 
increase in heterogeneity for smaller subregions, suggesting largely homogeneous 
spatial relationships among cell types across various region sizes in this tissue.  

Visualizing cell type interaction networks 

The primary goal of this study was to analyze the spatial relationships among cell types. 
To summarize our findings, we constructed interaction networks to visualize the 
interaction coefficients at various ranges in the multirange multitype Strauss Hardcore 
model (Figure 6).  

We began by visualizing the interaction coefficients (𝛿) derived from models trained on 
all images for each tissue type (Figure 6A). These coefficients directly reflect the inherent 
probability that cell types are near each other, which for simplicity we can interpret as 
reflecting either “attraction” or “repulsion” between pairs of cell types. However, it's crucial 
to emphasize that these inferred interactions aren't based on isolated pairwise analyses 
for each pair of cell types. Instead, by integrating the interactions among all cell types in 
a single point process model, they represent interconnected behaviors between a pair of 
cell types factoring in influences from all other cell types concurrently.  

Our analysis unveiled a variety of noteworthy interaction patterns among different cell 
types across several tissues. We detected a strong self-attraction among proliferating T 
cells throughout all the tissues studied (indicated by their larger node diameter). 
Conversely, cytotoxic T cells and CD4-positive cells demonstrated strong self-attraction 
in the small and large intestine tissues, but not in the other three tissues. B cells showed 
moderate self-attraction across all five tissues. As expected, the "other cell" type (cells 
that could not be annotated given the five markers common to all tissues), exhibited the 
weakest self-attraction. This is presumably due to the diversity of cell types within this 
category, with their respective influences offsetting each other. 

As also expected, we found that the most intense interactions between two cell types 
generally occurred within the shortest distance ranges. However, there were a few 
notable exceptions. The interactions between cytotoxic T cells and B cells in small and 
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large intestine, as well as between proliferating T cells and CD4-positive T cells in the 
large intestine, were moderate across a range of distances. 

Our findings show high consistency between these interaction networks and the analysis 
presented in Figure 4B. When comparing the interaction networks for the small and large 
intestines, we discovered high similarity in both the direction of influence (attraction or 
repulsion) and the intensity of these interactions between cell types, with exception that 
B cells and proliferating T cells exhibited a notably stronger repulsion against each other 
within large intestine compared to their counterparts in small intestine. The spleen, 
thymus, and lymph node also demonstrated a high degree of similarity in terms of the 
direction of influence (attraction or repulsion) between cell types, but with variance in 
strength. For instance, thymus displayed stronger repulsion between proliferating T cells 
and B cells than the other two tissues. Lymph node had a stronger repulsion between B 
cells and both cytotoxic T and CD4-positive T cells, whereas the spleen demonstrated 
overall weaker interactions. 

Our analysis also highlighted that in spleen, thymus, and lymph node tissues, B cells and 
CD4-positive T cells displayed a strong repulsive tendency at short distances (less than 
40 microns), while they have a moderate attraction at larger distances. Interestingly, the 
interaction pattern between these two cell types reverses in large and small intestine 
tissues. 

These conclusions are all made by examining the interaction coefficients (𝛿) directly, and 
thus assumes that the frequencies of the two types are approximately the same.  
However, it is worth noting that the extent to which a particular interaction is observed in 
tissue also depends on the base frequencies (𝛽) and the counts (which are also affected 
by the base frequencies). Therefore, in contrast to “inherent” interaction coefficients 
presented in Figure 6A, we also calculated “apparent” interaction coefficients by 
multiplying them with the appropriate base intensities. As shown in Figure 6B, all of the 
interactions of the “other cells” types were increased across all five tissues after 
adjustment, due to the high frequency of that type. We found that the self-interaction of 
cytotoxic T cells in spleen also increased after adjustment. These cells exhibited the 
strongest repulsion with “other cells” at distances less than 100 pixels (<38 microns) and 
the strongest attraction at ranges between 100 to 200 pixels (38 to 76 microns). A 
universal attraction was observed across five tissues between cytotoxic T cells, CD4-
positive T cells, and “other cells” with the attraction strength varied. We noted that the 
repulsion between B cells and both cytotoxic T cells and CD4-positive T cells in the lymph 
node (LN) persisted after adjustment. Furthermore, all cell types in small and large 
intestine, excluding "other cells," displayed minimal self-interaction and minimal 
interactions among each other after adjustment. This is consistent with the relatively low 
frequencies of these immune cell types in the small and large intestine tissues. 
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Simulating artificial tissue images from generative models 

Perhaps the most valuable property of a generative model lies in its ability to create new, 
realistic data samples based on its learned probability density functions. We therefore 
asked whether our models could generate artificial tissue images that maintain spatial 
relationships among cell types.  

To begin the simulation process, we generated cell locations using a Poisson distribution 
that maintained the same total cell density as the original image.  We next randomly 
assigned cell types for all cells based on the density of each cell type in the original image. 
Following this, we randomly and iteratively selected a cell and reassigned its type 
according to the cell type counts for that location and the likelihoods derived from the 
model. This process was continued until the number of sampled cells reached a specified 
percentage of the total cell count in the image. 

We conducted separate trials with different random seeds, and for each trial sampled 
cells from 0 to 400 percent of total cell counts in intervals of 50 percent. We measured 
the wmAUC of the original model with respect to the synthetic images, which reflected 
how well the arrangement of the assigned cell types agreed with the model. We expected 
that the reassignment process would result in increased wmAUC as it converged as cell 
type assignments in agreement with the model.  

As shown in Figure S1, the wmAUC nearly monotonically increased with the resampling 
percentage. This observation suggests that our model is capable of generating synthetic 
images with cell type spatial relationships similar to those in the original images, although 
the wmAUC values are a bit lower than those obtained for the predicting individual cell 
types in original images.  Even higher accuracy synthetic images could presumably be 
generated by using even more resampling for different random seeds and choosing the 
one whose coefficients are most similar to those of the model. 

Figure 7 shows how our models can be used to illustrate the differences in cell type 
arrangement that would result for different tissues if cell locations and sizes were kept 
constant.  To do this, an arrangement of synthetic cells was generated with randomly-
chosen cell positions and with cell shapes created from them using a Voronoi diagram 
truncated at 20 pixels (approximately 7.5 micron radius).  Synthetic images were then 
created from this arrangement using the models trained on all images from each tissue 
(with 300 percent resampling). The results reflect the trends captured by the adjusted 
interaction coefficients in Figure 6B for all spatial relationships between cell types, 
including self-interactions.  In particular, the tendency of cytotoxic T cells to be near each 
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other is preserved in all tissues even as the frequency of those cells changes. Cytotoxic 
T cells and CD4-positive T cells are consistently found near each other across three 
immune tissues spleen, thymus, and lymph node. This proximity is consistent with their 
high attraction as represented in Figure 6B. In lymph node synthetic tissue, B cells and 
CD4-positive T cells exhibit repulsion at short distances whereas attractive to each other 
at longer distance, aligning with the observations in Figure 6B. While B cells generally 
appear to be repulsive to both CD4-positive T cells and cytotoxic T cells at short distances 
in spleen tissue, exceptions can be found Figure 7. This may be attributed to the high 
intensity of both cytotoxic T cells and CD4-positive T cells in spleen. In both small and 
large intestine tissues, fewer B cells and T cell types are observed, which is consistent 
with the low “apparent” interaction strength between these cell types depicted in Figure 
6B after adjustment for cell intensity. Nevertheless, we were able to discern the inherent 
interactions between these cell types in these two tissues, as illustrated in Figure 6A. 

Discussion 

Spatial relationships among cell types are critical determinants of tissue functions. In this 
study, we present CytoSpatio – open-source software that constructs innovative 
generative multitype, multirange point process models to comprehensively learn spatial 
relationships between 5 cell types in 5 tissues. Our model is built upon a baseline 
multitype Strauss Hardcore model, incorporating multiple ranges of Strauss radii in a 
piece-wise manner that captures diverse properties of both signs and strengths of 
interactions among cell types at varying distances. We demonstrated that our model 
successfully captures a higher similarity of cell type spatial relationships between images 
from the same tissue compared to images across different tissues (Figure 4A). 
Additionally, we provided a quantitative measurement of the spatial heterogeneity within 
a tissue, revealing the approximate size of heterogeneous structures in five tissues 
(Figure 5). To visualize the spatial relationships of cell type, we constructed interaction 
networks and discussed the similarities and differences across 5 tissues (Figure 6). 
Furthermore, we showcased the capability of our model to generate synthetic tissue 
images that maintain similar spatial relationships among cell types as those in the original 
tissue images (Figure 7).  

We demonstrated that our multirange, multitype model provides a reasonable 
approximation for capturing complex spatial relationships among cell types, achieving a 
balanced trade-off between computational complexity and the ability to learn spatial 
relationships. In our model, we assumed a maximum range of 500 pixels, or 
approximately 188 microns, as the distance within which two cells could affect each other. 
While this is a sound estimation, extending the range further could potentially provide 
better insight. Furthermore, there is room for refining our model's interaction function, 
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which currently exhibits a sudden shift of influence every 100 pixels, or approximately 71 
microns, due to the piece-wise step function (see Methods). The intervals of our current 
interaction function could benefit from optimization, and interaction functions with smooth 
transitions such as Softcore, Fiksel [38], Diggle-Gratton [39], Diggle-Gates-Stibbard [40] 
might also be worthwhile to explore. In addition, models capturing higher order 
interactions such as area-interaction [41] and Geyer saturated model [42] where the 
interaction functions are determined by the relationships of three or more points may be 
valuable. Currently, the lack of availability of software supporting the multitype versions 
of the interaction functions limits their use, but future implementations could enhance the 
representation of interactions among cell types in different scenarios.  

Recently, multiplexed tissue imaging technologies have been extended to high-resolution, 
three-dimensional images [43]. The addition of a third dimension significantly increases 
the complexity of spatial relationships among cell types and the challenges associated 
with modeling these relationships. Consequently, there is an urgent need for 3D multitype 
point process models, since building models on 2D slices or 2D-projections may not 
capture relationships accurately. We are currently extending our pipeline to model 3D cell 
type spatial relationships, aiming to deepen our understanding of their impact on tissue 
function in a 3D context. 

Our study successfully depicted the spatial relationships among five cell types in five 
distinct tissues, with a majority being immune cell types. Rather than making the 
traditional assumption that these cell types (e.g. B cell, T cell and their subtypes) are 
generally located near one another for close collaboration [44, 45], we have quantitatively 
examined their attraction and repulsion tendencies across varying distances. For example, 
we found a strong preference against B cells and proliferating T cells being closer to each 
other than ~38 microns in spleen, thymus, small and large intestine tissues but the 
opposite tendency at larger distances. Our approach can not only challenge existing 
qualitative perspectives on spatial relationships among immune cell types but can also 
potentially provide valuable quantitative insights into how cell types assemble to form 
tissues. 

CytoSpatio effectively simulated cell type locations, accurately reflecting their spatial 
relationships with one another. We are in the process of upgrading our simulation to 
include cell shape. To achieve this, we require a generative model capable of learning 
and simulating diverse cell shapes. In this regard, a robust version of spherical harmonic 
transform parameterization has been demonstrated as the most effective and accurate 
method for generating cell shapes [46]. This enhancement will enable us to construct a 
more comprehensive and detailed representation of tissue images. 
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Methods 

Tissue images and cellular data 

We used 110 images from the Human BioMolecular Atlas Program (HuBMAP) consortium  
[37] that had been acquired using the CO-Detection by indEXing (CODEX) [11] method. 
A summary of these images is provided in Table S1. They were produced by two Tissue 
Mapping Centers (TMCs): Stanford TMC produced images of the large and small intestine 
with 47 fluorescence channels (markers), and the University of Florida TMC produced 
images of the lymph node, thymus, and spleen with 11 fluorescence channels. Image 
sizes vary, ranging from approximately 5,000 to 15,000 pixels, with each pixel 
corresponding to a tissue region of 0.37745 x 0.37745 micrometers. The images share 
five common channels (CD11c, CD21, CD4, CD8, Ki67) across both TMCs. We 
downloaded files detailing the total intensities of the cell boundary, cytoplasm, nuclear 
boundary, and nucleus of each channel and the coordinates of cell centers from the 
HuBMAP portal (https://portal.hubmapconsortium.org/). These files were generated using 
SPRM (https://github.com/hubmapconsortium/sprm), based on cell segmentations 
created by Cytokit [47]. 

Assigning cell types 

Different cell types typically express varying levels of specific cell marker proteins. For 
instance, proliferating T cells demonstrate high Ki67 levels and low levels of other 
markers, whereas cytotoxic T cells exhibit high CD8 levels. We defined cell types based 
only on the five common channels to ensure comparability across tissue types. This 
decision allows direct comparison of spatial relationships among cell types across various 
tissues in subsequent analyses. 

To compensate for potential differences in channel intensities across tissues, such as 
those that might arise during image acquisition due to experimental variables like 
inconsistencies in staining procedures or tissue preparation, we initially z-scored total 
pixel intensities per cell for each channel within each tissue. 

For cell type assignment, we first performed KMeans clustering on the total pixel 
intensities per cell over the z-scored five common channels across all cells and images 
from the five tissues. Next, we calculated an overall similarity statistic T  based on 
Gaussian Kernel similarity for intensity compositions of cells between 1) each pair of 
clusters from KMeans and 2) each cluster from KMeans and each annotated cell type 
from a lymph node image annotated by Cellar [16] (Figure S2). Using these results as 
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features, we conducted another round of KMeans as meta-clustering to assign the 
clusters to the five cell types annotated by Cellar.   
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where T  is the statistic measuring overall similarity between two cell types, lower T 
indicates higher similarity. 𝑚 and 𝑛 are the number of cells in two cell types, respectively. 
𝑋" and 𝑌# indicate the cell intensity composition of 𝑖() cell in cell type 𝑋 and 𝑗() cell in cell 
type 𝑌. 𝐾 is the Gaussian kernel similarity and σ is the bandwidth of the kernel (we used 
2𝜎! = 0.08; this value was also used for other Gaussian kernel similarity measurements).   

To determine the optimal number of clusters in the initial KMeans, we incrementally 
increased the number of clusters while monitoring the number of cells in each assigned 
cell type. We then selected the number of clusters that yielded the highest match between 
assigned cell types and their corresponding cell types from Cellar (Figure S3). We note 
that this approach enables the extrapolation of cell type determination from lymph nodes 
to other tissues, and it allows for finer distinctions within each cell type (i.e., the 
identification of potential cell subtypes). 

For simplicity, all cells assigned to the type “lymphocytes of B lineage” are referred to 
throughout as simply “B cells.” 

Point pattern and point process model 

For each image across 5 tissues, we formed a point pattern 𝒑  =
 {(𝑥&, 𝑐&), … , (𝑥" , 𝑐"), … , (𝑥', 𝑐')}, where 𝑥"   is a vector of 2-dimensional coordinates (i.e., 
cell center) for cell 𝑖 , 𝑐" is the cell type of cell 𝑖  and 𝑛  is the total number of cells in the 
image. The coordinates were defined separately in each image. The point patterns 
belonging to each tissue were considered as random realizations (instances) from a point 
process model. Our task was to define this point process model. 

We assumed cells influence each other by both attraction and repulsion. Therefore, we 
chose to use the multitype Strauss Hardcore model [21], a kind of multitype Gibbs model, 
as our baseline model since it satisfies this assumption and can model all cell types at 
once. The model consists of an expression that allows estimation of the probability density 
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𝑓(𝒑) of a given point pattern given a set of model parameters (that is, the probability that 
a particular point pattern would have been observed given those parameters)  

𝑓(𝒑)  = 𝛼 L𝛽*!(𝑥")L𝛾*!,*" N𝑑)𝑥" , 𝑥#,P
'

",#

'

"%&

 

where 𝑓 is the probability density of point pattern 𝒑, 𝛼 is a normalizing constant, 𝛽*! is the 
intensity of cell type 𝑐" of point 𝑥", 𝑛  is the total number of cells in the pattern, 𝛾*!,*" is the 
interaction function between cell type 𝑐"  and 𝑐# , 𝑑)𝑥" , 𝑥#,  is the Euclidean distance 
between cell 𝑥" and 𝑥#.  From this we can also write an expression for the conditional 
intensity (probability) of finding a cell of cell type 𝑐" at location 𝑥" given the point pattern 𝒑 

𝜆) (𝑥" , 𝑐") ∣∣ 𝒑 ,  = 𝛽*")𝑥#, L 𝛾*!,*" N𝑑)𝑥" , 𝑥#,P
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which ignores any contribution from the actual type of that cell. 

The interaction function encodes the spatial relationships between two cell types. In 
multitype Strauss Hardcore model, the interaction function is 

𝛾*!,*" N𝑑)𝑥" , 𝑥#,P = S	
0																𝑑 < 𝑟)
𝛿3					𝑟) ≤ 𝑑 ≤ 𝑟3
1																	𝑑 > 𝑟3

 

where 𝑟) is the hardcore radius that stands for the minimum distance that two cells can 
be from each other, 𝑟3 is the Strauss radius which represents the maximum distance over 
which cells can affect each other, and 𝛿3  is the interaction coefficient that captures 
whether two cells may have attraction (𝛿4 	> 	1) or repulsion (𝛿4 	< 	1) between each other. 

One limitation of the conventional Strauss Hardcore model is that the influence between 
cells is uniformly across a certain single range (Strauss radius 𝑟3), whereas for given 
spatial relationships between two cell types it may actually vary with distance. To address 
that, we proposed a multirange multitype model with an upgraded piece-wise interaction 
function [48]: 
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where different interaction coefficients 𝛿3# …𝛿3% are assigned to each distance interval. 
For each pair of cell types, we have 𝜹*!,*" = )𝛿3# …𝛿3%, , which is the same for all 
interactions between cell type 𝑐" and 𝑐#, where 𝑐" , 𝑐# ∈ 𝐶, and 𝐶 is the set of all cell types. 

Training the point process model 

The standard method of fitting point process models to existing data utilizes maximum 
likelihood estimation (MLE). However, it’s difficult to calculate or approximate the 
normalizing constant 𝛼 in the probability density function 𝑓 [49]. As an alternative we 
calculated the log pseudolikelihood: 

log 𝑃𝐿 (𝜽, 𝒙) ='log 𝜆𝜽 ) (𝑥" ,  𝑐") ∣∣ 𝒙 , −'g 𝜆𝜽) (𝑢,  𝑐) ∣∣ 𝒙 ,𝑑𝑢
6*

'
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Where	𝜽	 = 	 (𝜷, 𝜹) is a set of coefficients we need to estimate where 𝜷 = )𝛽*!,, 𝑐" ∈ 𝐶 is 
the first-order term or intensity of each cell type and 𝜹 = (𝜹*!,*"), 𝑐" , 𝑐# ∈ 𝐶 is the set of 
interaction coefficients between each pair of cell types, 𝑊 is the image window, and the 
integration is on all possible points 𝑢 over all possible cell types 𝑐 within this window given 
the point pattern 𝒙. 

The difficulty of estimating maximum pseudolikelihood is it’s computationally infeasible to 
integrate over every location within the image window. Therefore, we applied the Berman-
Turner quadrature scheme [49, 50] to approximate the background distribution of the 
conditional intensity function. Each image was evenly split into subregions (tiles) with 
20x20 pixels. At the center of each tile and four corners of the image, dummy cells for 
each of cell types were created. At the location of each real cell, dummy cells for all cell 
types except the real cell type were also created. This way the integration was converted 
to a sum weighted by the intensity of cells. The intensity of a cell was calculated by the 
ratio of the number of cells in its tile to the size of the tile. In other words, cells in the same 
tile have the same intensity. We therefore had the approximate log pseudolikelihood: 
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where 𝒙7 is the new point pattern generated by the quadrature scheme that includes both 
real and dummy cells,  𝑛7 is the total number of real and dummy cells, and weight  𝑤# is 
calculated by the area of a quadrature grid (20x20 pixels) over the number of cells in the 
grid. 

We then performed maximum pseudolikelihood estimation by generalized linear model 
(GLM). The first step was to construct a feature matrix for GLM’s regression (see Table 
S#). For each point, we converted its cell type to one-hot encoding and counted the 
number of neighboring cells within a various distance (multirange Strauss radius). The 
label to predict was the local intensity 𝑦" = 𝐼"/𝑤", where 𝐼" is an indicator function that 
equals 1 if current cell is real and 0 if it’s dummy [51, 52]. 

The whole training process was done by modifying the R package spatstat [53].  We 
created a new function for our multirange, multitype model. 

Error metric of point process model 

Pseudolikelihood can appropriately be used to compare different models trained on the 
same point pattern. However, pseudolikelihoods for models trained on different patterns 
are not comparable since those patterns may contain different numbers of cells.  

To obtain an error metric that is independent of the training data size, we rewrite the 
pseudolikelihood as: 

log 𝑃𝐿 (𝜽; 𝒙) = −
𝐷
2 + 𝑔 

where 𝑔 is a constant and therefore irrelevant in pseudolikelihood comparison. 𝐷 is the 
deviance that can be written as: 

𝐷 = 2)𝑙𝑜𝑔 𝑃𝐿3 (𝒚) − 𝑙𝑜𝑔 𝑃𝐿)𝜽u,, = 2'𝑤"	)𝑦" 𝑙𝑜𝑔(𝑦"/𝜇") − (𝑦" − 𝜇"),
''

"%&

 

𝝁 = 𝑒𝑥𝑝(𝜼) 

𝜼 = 𝜽u9𝑿 
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where 𝑙𝑜𝑔 𝑃𝐿3 (𝒚)  is the log pseudolikelihood of a “saturated” model that has one 
parameter for each cell to achieve a perfect fit for the data, 𝑙𝑜𝑔 𝑃𝐿)𝜽u,  is the log 
pseudolikelihood of the model under estimation, 𝑤"	is weight for cell 𝑖 (definition same as 
in the equation of log pseudolikelihood),  𝑦" =

&
:!

 is the true label and 𝜇" is the predicted 

label for cell 𝑖 in GLM. 𝑿 is the input feature matrix, 𝜽u is a vector that contains all base 
intensity coefficients and interaction coefficients need to be estimated. We assumed the 
model belongs to exponential family. We therefore applied exponential as the link function 
of GLM between the linear product 𝜼 and predicted label 𝝁. 

To account for the influence of data size, we normalized deviance 𝐷 by dividing it by the 
cell number 𝑛, yielding the average deviance per cell as our error metric. We interpreted 
this metric as the average difference between the observed local intensity for each cell 
and its predicted intensity from a trained model. This metric is particularly sensitive to the 
value of 𝜼. An increase in 𝜼 would exponentially elevate 𝝁, leading to a significantly 
higher average deviance per cell, as exemplified in Figure 2. 

Leave-one-out cross-validation 

To prevent overfitting when comparing point process models trained on different tissues, 
we conducted a leave-one-out cross-validation for each tissue. In this process, we 
sequentially excluded one image from the current tissue's training set, fit the model to the 
remaining images, and predicted the average deviance per cell for the left-out image. As 
a result, the number of models for each tissue equaled the number of images. In the 
subsequent analyses, we used them as an ensemble representation of their respective 
tissues. 

Assessing cell type prediction accuracy 

We utilized the Receiver Operating Characteristic (ROC) curve, which is derived from the 
false positive rate and the true positive rate, to measure the accuracy of cell type 
prediction. Given that we have five cell types, we need a multi-class ROC; for this, a 
prediction for one cell type was considered true only if it matched the corresponding cell 
type and false otherwise. 

To calculate overall prediction accuracy, we employed several techniques. First, we 
calculated the Micro AUC, which considered each cell (independent of its actual type) 
and counted whether it was correctly predicted. However, a potential issue with Micro 
AUC arises when class imbalance exists. If a majority of the predictions are biased 
towards the majority class, Micro AUC could be misleadingly high. This is because the 
true positive rate and false positive rate in Micro AUC are derived from aggregating 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.10.31.621408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621408
http://creativecommons.org/licenses/by-nc/4.0/


predictions across all classes. Consequently, strong performance on the majority class 
can significantly overshadow any poor performance on the minority classes. 

We also computed the Macro AUC to evaluate each cell type independently. This method 
computes the AUC separately for each class and then averages them, giving equal weight 
to each class. However, Macro AUC can also be less representative of the model's overall 
performance when the class frequencies are different.  If a model performs well on a 
minority class but poorly on a majority class, the Macro AUC might still appear reasonably 
high despite the model's overall lower performance on most instances. 

We therefore adopted the Weighted Macro AUC (wmAUC) to address this class 
imbalance issue. Like the Macro AUC, this approach evaluates each cell type 
independently, but it counters class imbalances by weighting the AUC of each cell type 
according to its fraction within the total number of cells. Thus, if certain cell types are more 
common in the dataset, they are assigned more importance in the overall score 
calculation. Given its effective solution to class imbalance, we chose to use this metric to 
evaluate the prediction accuracy of cell types. 

Data and code availability 

• CytoSpatio software is available at https://github.com/murphygroup/CytoSpatio.  
• All data used for this work are available as a reproducible research archive 

(https://github.com/murphygroup/ChenMurphyCytoSpatioRRA).  
• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 
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Figure 1 CytoSpatio process for learning spatial relationships between different cell types. (A) A 
region from a larger lymph node image is shown, with cell types shown in different colors and cell 
boundaries shown in white. The blue concentric circles denote five distance ranges of 100-500 
pixels at 100-pixel intervals. (B) The training process involves counting the number of other cells 
of each type within varying distance ranges for each cell, as illustrated for the central cell (small 
blue diamond) in panel A, a B cell. (C) A simplified version of the equation used for the fitting 
process in a point process model to learn the spatial relationships among cell types is shown. The 
probability 𝜆 of a particular cell type c at a given location, x, is given by a (global) base intensity 
(𝛽 ) adjusted for the influence of (multiplied by) the local frequencies of all cell types. This 
adjustment is given by the dot product of a vector of interaction coefficients (𝛿) for this cell type 
with all cell types (including its own) and a vector (Counts(x)) reflecting the counts of each cell 
type.  The interaction coefficient and counts can be for a single range (i.e., one of the columns in 
panel B) or can be concatenated across multiple ranges (i.e., linearizing the counts in panel B). 
(D) Predicted intensities (proportional to the probabilities of occurrence) are shown for three cell 
types for each cell in this region (derived from a model trained with the entire image). Brighter 
colors indicate a higher predicted intensity, with each color corresponding to a distinct cell type. 
(E) A synthetic image depicting predicted cell types generated for this region from the model is 
shown.  The image was generated from the model using the positions of each cell in panel A but 
assigning each cell’s type based on the predicted probabilities across the cell types for that 
location (cell type colors are the same as in panel (A)). 
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Figure 2 Comparison of average deviance per cell between shuffled point pattern sets 
and original point pattern sets. Lower average deviance per cell indicates a higher 
likelihood that a particular image could have been produced by a given model. The 
average deviance per cell is depicted in the boxplots, with the red boxplots representing 
the deviances when models trained on a shuffled point pattern set were compared to 
another shuffled point pattern set. The green boxplots represent the deviances when the 
same models were compared to the original point pattern set. Whiskers are drawn at 1.5 
times the difference between the first and third quartiles. The significantly higher 
deviances for the original patterns compared to those for the shuffled patterns 
demonstrate the non-random distribution of cell types within the tissues studied. How the 
extremely high deviances seen in some cases can be obtained is discussed in the 
Methods.  
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Figure 3 Performance comparison between multirange and single range multitype 
Strauss Hardcore models.  The average deviance per cell for all cells, real cells,  and 
dummy cells respectively measure the overall goodness-of-fit of the model, the prediction 
accuracy of cell types at their locations, and the accuracy of predicting locations devoid 
of real cells. 
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Figure 4 Comparison of cell type spatial relationships within and across different tissues. 
(A) The interaction coefficients between models are directly compared using Gaussian 
kernel similarity. Lighter color indicates greater similarity. (B) The predictive accuracy on 
held-out images of a given tissue as well as images from other tissues was measured 
using wmAUC. In each tissue panel, the violin plots are arranged in descending order of 
the mean from left to right, and the mean is indicated by an “x”. 
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Figure 5 Evaluating tissue heterogeneity of cell type relationships. Panels A to E show 
the top 2 principal components of the interaction coefficients of various trained models. 
Panel F illustrates the change of heterogeneity with the tile size for the five tissues.  
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Figure 6 Spatial relationships between five cell types across five different tissues. The size of 
each node corresponds to the total strength of self-interaction across five distance ranges for that 
cell type (see Figure S4 for strength of self-interaction at each range). Each pair of nodes is 
interconnected by five arcs, each representing a different distance range. The range increases 
from left to right or from bottom to top, with the smallest and farthest ranges corresponding to the 
most curved arcs. The strength of the relationship between two cell types is depicted by the 
thickness of the arc, while the nature of their interaction is indicated by the color of the arc (blue 
as attraction and red as repulsion). (A) A direct, unfiltered illustration by raw interaction 
coefficients (B) Interaction coefficients adjusted by base intensities of corresponding cell types. 
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Figure 7 Synthetic tissue images across five tissue types. Each color represents a unique 
cell type, consistent with representations in other figures. 
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