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Abstract 36 

Human subcutaneous adipose tissue (SAT) contains a diverse array of cell-types; however, the 37 

epigenomic landscape among the SAT cell-types has remained elusive. Our integrative analysis of 38 

single-cell resolution DNA methylation and chromatin conformation profiles (snm3C-seq), 39 

coupled with matching RNA expression (snRNA-seq), systematically cataloged the epigenomic, 40 

3D topology, and transcriptomic dynamics across the SAT cell-types. We discovered that the SAT 41 

CG methylation (mCG) landscape is characterized by pronounced hyper-methylation in myeloid 42 

cells and hypo-methylation in adipocytes and adipose stem and progenitor cells (ASPCs), driving 43 

nearly half of the 705,063 detected differentially methylated regions (DMRs). In addition to the 44 

enriched cell-type-specific transcription factor binding motifs, we identified TET1 and DNMT3A 45 

as plausible candidates for regulating cell-type level mCG profiles. Furthermore, we observed that 46 

global mCG profiles closely correspond to SAT lineage, which is also reflected in cell-type-47 

specific chromosome compartmentalization. Adipocytes, in particular, display significantly more 48 

short-range chromosomal interactions, facilitating the formation of complex local 3D genomic 49 

structures that regulate downstream transcriptomic activity, including those associated with 50 

adipogenesis. Finally, we discovered that variants in cell-type level DMRs and A compartments 51 

significantly predict and are enriched for variance explained in abdominal obesity. Together, our 52 

multimodal study characterizes human SAT epigenomic landscape at the cell-type resolution and 53 

links partitioned polygenic risk of abdominal obesity to SAT epigenome. 54 

 55 

 56 

 57 
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Main 59 

The global prevalence of abdominal obesity, defined as an excessive accumulation of adipose 60 

tissue in the abdominal region, has been increasing at an alarming rate over the past few decades1,2. 61 

Abdominal obesity is a known predictor of all-cause mortality, likely due to its increased risk of 62 

cardiometabolic disease (CMD), cardiovascular diseases, musculoskeletal diseases, certain types 63 

of cancers, and other adverse pathological conditions3. This has stimulated research interest in 64 

investigating the molecular origin of abdominal obesity and related co-morbidities by focusing on 65 

the subcutaneous adipose tissue (SAT), the key fat depot in expanding and buffering against 66 

obesity. 67 

 68 

SAT is highly heterogeneous and comprises an array of cell-types4. Single nucleus RNA-69 

sequencing (snRNA-seq) enables the discovery of cell-type level gene expression patterns in 70 

SAT5,6. However, this modality is limited to gene expression even though SAT function is also 71 

influenced by epigenomic processes, such as cytosine DNA methylation at CpG sites (mCG)7, and 72 

chromatin conformation8. Previous studies in other tissues have shown that cell-type level dynamic 73 

mCG in gene regulatory regions and gene bodies affect the expression of genes9. Furthermore, 74 

gene regulatory mechanisms need proper chromatin conformation, which is organized into 75 

compartments, domains, and loops10. However, cell-type level epigenomic landscape underlying 76 

the extensive heterogeneity in SAT is poorly understood in humans, which also hinders genetic 77 

risk assessment of abdominal obesity, the functional basis of which likely includes specific cell-78 

type level epigenomic sites. 79 

 80 
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Single-nucleus methyl-3C sequencing (snm3C-seq) has emerged as a powerful and innovative 81 

platform to study DNA methylation and chromatin conformation at the cell-type resolution11. 82 

Recent studies identified cell-type level epigenomic signatures in various complex tissues in 83 

human, such as oocytes12, prefrontal11 and frontal cortex13,14, and other diverse brain regions9. 84 

Using a similar approach, previous studies have also comprehensively assessed the epigenomes of 85 

mouse brain cell-types15–17. However, cell-type level epigenomic signatures in the human key fat 86 

depot, SAT, are completely unknown. To address this important biomedical knowledge gap, we 87 

determined cell-type level DNA methylation, chromatin conformation, and gene expression 88 

signatures in SAT, assessed the involvement of methylation pathway genes in SAT cell-type level 89 

dynamic methylation patterns, identified cell-type level hypo-methylated region -associated 90 

transcription factor (TF) binding motifs, and investigated the contribution of variants in SAT cell-91 

type level epigenomic sites to abdominal obesity risk.  92 

 93 

 94 
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Results 100 

Overview of the study design 101 

Epigenomic landscape of SAT is unknown at the cell-type level. To address this knowledge gap, 102 

we used snm3C-seq and snRNA-seq technologies on nuclei isolated from SAT biopsies from 103 

individuals with obesity (see Methods) (Fig. 1a) to generate cell-type level DNA methylation, 104 

chromatin conformation, and gene expression profiles in SAT. After performing careful quality 105 

control (QC) in each modality, we verified the high concordance of cell-type annotations derived 106 

from mCG and interaction modality as well as between mCG and gene expression. We then 107 

conducted analysis of differentially methylated regions to find cell-type level differences in DNA 108 

methylation patterns in SAT (Fig. 1b). To elucidate chromatin conformation dynamics in SAT 109 

cell-types, we systematically searched for cell-type level patterns in terms of the global contact 110 

distance distribution, as well as 3D genome features at various resolution (i.e., compartments, 111 

domains, and loops) (Fig. 1c). We next utilized cell-type level SAT snRNA-seq data (Fig. 1d) to 112 

investigate whether methylation pathway genes contribute to the discovered differences in DNA 113 

methylation patterns in SAT cell-types and cluster with adipogenesis pathway genes (Fig. 1e). We 114 

also identified cell-type-specific TF binding motifs associated with hypo-methylated regions of 115 

SAT cell-types (Fig. 1f). Finally, to understand how these cell-type level epigenomic differences 116 

relate to the key cardiometabolic phenotypes relevant to SAT, we examined whether variants in 117 

cell-type level DMRs and compartments contribute significantly to the polygenic risk of obesity 118 

and related cardiometabolic traits (Fig. 1g). 119 

 120 

Multimodal profiling of the SAT cells reveals highly concordant, yet partly asynchronous 121 

cell-type annotations among modalities  122 
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We used snm3C-seq to simultaneously profile single-cell level DNA methylation and chromatin 123 

conformation of nuclei isolated from five SAT biopsies (see Methods). A total of 6,652 nuclei 124 

passed our QC, with each cell having on average 2,215,680 non-clonal methylation reads and 125 

236,850 chromatin contacts. We identified 7 main cell-types (adipocytes, adipose stem and 126 

progenitor cells (ASPCs), perivascular, endothelial, myeloid, lymphoid, and mast cells) using the 127 

global mCG of non-overlapping 5-kb bins and independently the intrachromosomal contacts 128 

among non-overlapping 100-kb bins (Fig. 2a). Interestingly, when analyzing the two modalities 129 

jointly to derive the de novo snm3C-seq annotation, we discovered a group of nuclei (n=63 nuclei), 130 

present in all 5 samples that demonstrated inconsistent cell-type annotations between the two 131 

modalities (i.e., categorized as perivascular cells by mCG and adipocytes by chromatin 132 

conformation) (Fig. 2b). We labeled them as the transitional cell-type cluster to highlight their 133 

potential developmental stage, observed using the two different omic profiles (Fig. 2a,b). During 134 

the differentiation of other tissues, the establishment of global chromatin 3D structure has 135 

previously been shown to precede the formation of methylation signatures18. In other words, the 136 

observed asynchrony between the mCG and conformation profiles suggests that the transitional 137 

cell-type cluster is undergoing active differentiation from perivascular cells to mature adipocytes, 138 

in line with recent studies that discovered perivascular adipocyte progenitors in mice and 139 

humans19–21. 140 

  141 

We next investigated whether SAT snm3C-seq data can be integrated with SAT snRNA-seq data. 142 

First, we applied snRNA-seq on 29,423 SAT nuclei isolated from the same 5 SAT samples and 3 143 

additional SAT samples from the Tilkka cohort (see Methods) to obtain the single-cell level 144 

expression profiles from matching SAT tissue, and annotated them at the cell-type resolution 145 
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(Extended Data Fig. 1a). We then calculated the average gene-body mCG levels for all snm3C-146 

seq nuclei as a proxy for their transcriptomic activity based on previous works that have found an 147 

inverse correlation between gene-body mCG level and expression level14. As expected, we 148 

observed strong and consistent correlations between gene-body mCG hypo-methylation and RNA 149 

expression across the identified cell-types (Fig. 2c). This correlation enabled us to integrate and 150 

co-embed the snm3C- and snRNA-seq cells, applying a mutual-nearest-neighbor based approach22 151 

in the shared canonical component space (Fig. 2d, Extended Data Fig. 1b,c). Overall, these 152 

independently performed modality-specific annotations achieved a ≥0.94 overlap score across all 153 

cell-type pairs, in which a higher score indicates better integrated cells in the co-embedding space 154 

(see Methods) (Fig. 2e). Comparison between the snm3C-seq de novo annotation and its RNA-155 

derived counterpart resulted in an adjusted rand index (ARI) of 0.975 and ≥0.95 confusion fraction 156 

(Extended Data Fig. 1d). Unique cell-type marker genes by these two modalities are shown in 157 

Supplementary Tables 1-2. Overall, the observed cell-type epigenome profiles, identified using 158 

the snm3C-seq, exhibit strong concordance with those derived from snRNA-seq transcriptome; 159 

however, at the same time they carry distinct modality-specific information. For example, the 160 

expression of a key adipocyte marker gene, GPAM, coincides with demethylation of the gene in 161 

the co-embedding space, which may allow for the recruitment of relevant proteins, e.g., TFs (Fig. 162 

2f, Extended Data Fig. 2a-f). Moreover, the transition cell-type cluster was co-embedded close to 163 

the adipocytes profiled by the snRNA-seq (Fig. 2d,e, and Extended Data Fig. 1c,d), in contrast to 164 

its de novo global mCG annotation (i.e., perivascular cells) (Fig. 2b). Analysis of the gene-body 165 

mCG levels further revealed that it simultaneously shows diminished methylation levels on both 166 

adipocyte and perivascular marker genes (Fig. 2c, Extended Data Fig. 2g). In addition, when 167 

restricted to the relevant cell-types, the transition cell-type cluster could also be discerned from the 168 
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low dimensional projection of the genome-wide 5-kb bin mCG profiles, i.e., in the absence of 169 

chromatin conformation information (Extended Data Fig. 2h). The above-mentioned mCG 170 

properties at the individual transcriptomics level and the global projection underscore the 171 

biological validity of the transition cell-type. In summary, mCG and chromatin conformation 172 

profiles generated by snm3C-seq robustly recapitulated epigenomic profiles of known major SAT 173 

cell-types, while also uncovering a subtle transition cluster, supporting the differentiation of 174 

human adipocytes also from the perivascular progenitors. 175 

 176 

Comparison of unique cell-type marker genes and their functional enrichments between 177 

gene-body mCG and gene expression modalities reveals both modality-specific and -shared 178 

molecular mechanisms 179 

We first searched for differences in unique marker genes at the cell-type level between the gene-180 

body mCG and gene expression modalities (Supplementary Tables 1-2) and found both modality-181 

specific and -shared marker genes (Extended Data Fig. 3a). We observed that majority of the cell-182 

type level marker genes were identified as modality-specific. For instance, 77 adipocyte marker 183 

genes are present in both modalities, while 286 are unique to gene-body mCG and 738 are unique 184 

to gene expression.  185 

  186 

As the highly expressed cell-type marker genes can be involved in biological processes and 187 

pathways relevant to the cell-type function, we performed their functional enrichment analysis 188 

using the WebGestalt23 for mCG and gene expression modalities. We observed both shared and 189 

non-shared biological processes (Extended Data Fig. 3b) and KEGG pathways (Extended Data 190 

Fig. 3c) enriched among the adipocyte marker genes between mCG and gene expression 191 
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modalities. However, although only 77 adipocyte marker genes (21% of mCG and 9% of gene 192 

expression markers) are present in both modalities, the majority of biological processes (63% of 193 

the pathways identified from mCG and 65% from gene expression) and KEGG pathways (65% of 194 

the pathways from both mCG and gene expression) are shared. For example, PPAR signaling 195 

pathway, a well-known adipose tissue pathway, is significantly (FDR<0.05) enriched among the 196 

adipocyte marker genes in both modalities. We also identified several other shared biological 197 

processes, including fat cell differentiation, enriched among the adipocyte marker genes. 198 

Enrichment of these shared biological processes and functional pathways between the two 199 

modalities suggests that both methylation and gene expression play roles in regulating cell-type-200 

specific molecular mechanisms. 201 

  202 

Next, we evaluated cell-type level methylation and gene expression of the PPAR signaling 203 

pathway genes (Fig. 3a) that are shared adipocyte marker genes between the two modalities. We 204 

observed that 6 genes of PPAR signaling pathway, ACSL1, ADIPOQ, LPL, PCK1, PLIN1, and 205 

PLIN4, are hypo-methylated in the adipocyte and transition cell-type, while the same genes are 206 

hyper-methylated in the rest of the cell-types in SAT. Our comparisons of the mean gene 207 

expression across SAT cell-types further revealed that these 6 genes of PPAR signaling pathway 208 

are predominantly expressed only in the adipocyte cell-type, with minimal expression in other 209 

SAT cell-types (Fig. 3a). Similarly, we observed that the fat cell differentiation genes, ADIPOQ, 210 

LPL, LEP, TCF7L2, AKT2, and SREBF1, are hypo-methylated and predominantly expressed in 211 

adipocytes compared to the other SAT cell-types (Extended Data Fig. 3d). These findings suggest 212 

that key genes of PPAR signaling pathway and fat cell differentiation are regulated by both 213 

transcriptional and epigenetic mechanisms. 214 
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 215 

Analyses of the DMRs reveal striking differences in the number and abundance of hypo- and 216 

hyper-methylated regions between adipocytes and myeloid cells 217 

To delineate the patterns of cell-type level DNA methylation in SAT, we identified genome-wide 218 

DMRs in 8 SAT cell-types (adipocytes, ASPCs, transition, perivascular, endothelial, myeloid, 219 

lymphoid, and mast cells) using methylpy24,25 (see Methods). Overall, 15.4% of the CG sites are 220 

differentially methylated across the SAT cell-types with a total of 705,063 CG DMRs covering 221 

5.39% of the genome. These DMRs have a mean length of 220bp (SD=152bp) and consist of an 222 

average of 4.5 differentially methylated sites (DMSs) (SD=5.5). The large numbers of DMRs we 223 

identified in SAT cell-types support distinct cell-type level methylation patterns.  224 

 225 

We observed striking genome-wide differences in the number and abundance of hypo- and hyper-226 

methylated regions among the SAT cell-types (Fig. 3b, Supplementary Table 3). In particular, of 227 

the total DMRs, 56.3% (n=396,758; -log10P=129 using one-tailed t-test, see Methods) and 50.6% 228 

(n=356,844; -log10P =104) are hypo-methylated in adipocytes and ASPCs, contrasting with only 229 

14.6% (n=102,756) in myeloid cells. Conversely, we observed that up to 73.0% of the DMRs 230 

demonstrate hyper-methylation pattern in the myeloid cells (n=514,434; -log10P=163) versus 231 

merely 14.2% in adipocytes and 21.4% in ASPCs. Jointly investigating the differential methylation 232 

states across all cell-types revealed that 47.3% of the DMRs exhibit opposing profiles between 233 

adipocytes, ASPCs, and those of the myeloid cells. Taken together, our finding suggests that the 234 

widespread repression of regulatory activity in the myeloid cells is typically associated with 235 

heightened regulatory activity in adipocytes and ASPCs. 236 

 237 
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Cell-type level hypo-methylated regions in SAT are enriched for distinct transcription factor 238 

binding motifs 239 

To investigate the relevance of cell-type level hypo-methylated regions in gene regulation, we 240 

performed TF binding motif enrichment analysis using cell-type level hypo-DMRs. We first 241 

identified significantly (P<110-12) enriched TF binding motifs for each SAT cell-type using 242 

HOMER26. Hypo-methylated region -associated TFs and their corresponding enrichment ratios 243 

and P values are listed in Supplementary Table 4. Next, we searched for cell-type-specific TFs 244 

present in one cell-type and absent in others (Fig. 3c, Extended Data Fig. 4). Among the cell-type-245 

specific TFs, the hypo-methylated regions in adipocytes are enriched for Twist family basic helix-246 

loop-helix type transcription factor 2 (Twist2), homeobox A9 (HOXA9), and CCAAT enhancer 247 

binding protein delta (CEBPD); ASPCs for Twist family basic helix-loop-helix type transcription 248 

factor 1 (TWIST1), SMAD family member 3 (Smad3), and Jun proto-oncogene (JUN); and 249 

myeloid cells for CCAAT enhancer binding protein epsilon (CEBPE), Activating transcription 250 

factor 4 (ATF4), and Interferon regulatory factor 4 (IRF4). Our findings suggest that these cell-251 

type-specific TFs might either bind to the DNA in a cell-type-specific manner or regulate cell-type 252 

level differential methylation patterns. 253 

  254 

Contact distance analysis identifies enrichment of short-range interactions in SAT 255 

adipocytes 256 

Tight packaging of DNA inside the nucleus leads to physical contacts between genomic regions, 257 

which affects the gene expression machinery27. We observed substantial differences in the 258 

distribution of closely and distantly located interaction contacts at various genomic distances 259 

across the cells profiled by snm3C-seq (see Methods). In pairwise comparisons with other cell-260 
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types, adipocytes harbor significantly higher proportions of short-range interactions (100kb to 261 

2Mb) compared to long-range interactions (10Mb to 100Mb), with the exception of the transition 262 

cell-type (–log10P>91; one-tailed Wilcoxon rank-sum test) (Fig. 4a,b). Specifically, the median 263 

proportion of the short-range interactions in adipocytes and the transition cell-type is 36.5%, 264 

whereas the median for others is 29.9%. Similarly, for long-range interactions, the median 265 

proportion is 26.0% both in adipocytes and the transitional cell-type, compared to 32.2% in others. 266 

This observation is in line with all cell-level clustering analyses using chromatin conformation 267 

information at various resolutions, which indicate that the transition cell-type shares more 268 

similarity with adipocytes (Fig. 2b, Fig. 4c,d, and Extended Data Fig. 5a,b). 269 

 270 

In addition, the observed differences in the ratio of short to long-range interactions between ASPCs 271 

and adipocytes (Wilcoxon rank-sum –log10P>197) could suggest a link between the contact 272 

distances and functionally important genomic regions in adipogenesis. Given that ASPCs develop 273 

to adipocytes, we speculate that this change may reflect the unilocular lipid droplet formation in 274 

adipocytes that makes them larger than ASPCs. 275 

 276 

Global chromosomal conformation dynamics reflects lineage among SAT cell-types 277 

Chromatin compartments, which connect stretches of the genome that are tens of mega-bases apart, 278 

reflect how cells arrange their chromosomal structures in three-dimensional space at the highest 279 

level28. We started our investigation of aggregated SAT cell-type level genome spatial topology 280 

by calculating the compartment scores on the pseudobulk contact matrices for the 5 most abundant 281 

cell-types (adipocytes, ASPCs, endothelial, perivascular, and myeloid cells) at 100-kb resolution. 282 

Based on the sign of the compartment scores, we partitioned the genome into either the active A 283 
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compartment regions or the more repressive B compartment regions. The correlation matrices 284 

derived from the normalized interaction contact maps revealed visually distinct cell-type-specific 285 

plaid patterns. For example, on chromosome 6 (Extended Data Fig. 5c) and chromosome 12 (Fig. 286 

4e), endothelial and myeloid cells harbor more intricate structures, indicated by the frequent 287 

compartment switches, whereas adipocytes, ASPCs, and perivascular cells tend to have longer 288 

stretches of region being annotated as the same compartment. Upon a closer inspection, a total of 289 

11,571 100-kb bins, spanning 44.3% of the genome, are statistically differentially conformed 290 

among the 5 cell-types at an FDR<0.1 cutoff. The empirical FDR is estimated to be 0.02 (See 291 

Methods).  292 

 293 

In each cell-type, differential 100-kb bins demonstrate at least 1.36-fold enrichment landing in the 294 

active A compartments compared to the genome-wide background (Fig. 4f, Extended Data Fig. 295 

5d, and Supplementary Table 5). Interestingly, across all investigated SAT cell-types, the leading 296 

two predominant compartment combinations are the homogeneous A and B. These combinations 297 

account for 18.8% and 9.7% of the total differentially conformed regions (8.3% and 4.3% of the 298 

genome), suggesting significant heterogeneity within each compartment stratification (i.e., A and 299 

B). These are followed by combinations driven by myeloid and endothelial cells, either through 300 

cell-type-specific compartment flips (A->B or B->A) or coordinated flips involving both cell-types 301 

(Extended Data Fig. 5d). When focusing on compartment flips relative to adipocytes, a marked 302 

higher proportions of differential 100-kb bins categorized as adipocyte B compartment correspond 303 

to the A compartment of endothelial and myeloid cells (41.6% and 41.4%), in contrast to those of 304 

APSC and perivascular cells (28.0% and 33.8%, respectively; Extended Data Fig. 5e,f). Given that 305 

we observed similar distinct mCG patterns for endothelial and myeloid cells, we aimed to confirm 306 
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whether the lineage dendrogram constructed from differential 100-kb bins would mirror the 307 

developmental trajectory inferred from DMRs. Indeed, hierarchical clustering consistently 308 

grouped endothelial and myeloid cells, characterized by pronounced hypo-methylation and 309 

frequent compartmental switches, into a distinct branch in both modalities (Fig. 4g,h), in line with 310 

a previous report showing that myeloid progenitors also give rise to vascular endothelial cells29. 311 

 312 

Cell-type specificity in regional 3D genome structures  313 

In addition to compartmentalization, the genome maintains its finer spatial structure by forming 314 

interaction domains and cohesion-mediated chromatin loops. Analyzing snapshots of the 3D 315 

genome at 25-kb and 10-kb resolution allowed us to delineate these regional features at both cell 316 

and aggregated cell-type resolution. Besides the transition cell-type, adipocytes showcase an 317 

accumulation of significantly denser interaction domains (an average of 4,120 per cell, compared 318 

to 3,573 in others; -log10P>45, pairwise one-tailed Wilcoxon rank-sum test), while spanning a 319 

much shorter distance (median of 679,121bp per cell, compared to 783,213bp in others; Extended 320 

Data Fig. 6a-c). Interestingly, the number of detected domains is highly correlated with the ratio 321 

of short to long-range interactions (Pearson correlation coefficient=0.76; Extended Data Fig. 6d). 322 

This observation reinforces the idea that regional contacts are necessary to support the more 323 

intricate local 3D structures. Both features correlate with the general transcriptomic activity in the 324 

matching snRNA-seq data, where adipocytes show a 1.5-fold increase in the total UMIs (Extended 325 

Data Fig. 6e,f). Overlapping cell-type pseudobulk insulation scores with boundary probability, 326 

calculated as the fraction of cells with a boundary detected in a given cell-type, we identified a 327 

total of 1,791 differential boundaries (See Methods). Regarding chromatin loops, we detected a 328 

median of 47,837 and 5,797 cell-type level loop pixels and merged loop summits, respectively. 329 
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Adipocytes demonstrate a similar trend of having more loop summits (n=8,852) and a relatively 330 

shorter loop length (230,000bp, compared to others 290,000bp; Extended Data Fig. 6g,h). Along 331 

with the clustering results derived from regional interaction features (e.g., insulation scores, 332 

domains, and loops), which show highly concordant annotations (Fig. 4 c,d and Extended Data 333 

Fig. 5a,b), we conclude that granular 3D genomic features also exhibit significant heterogeneity 334 

across SAT cell-types. 335 

 336 

Influence of 3D topology on epigenetic regulation and associated gene-regulatory landscapes 337 

The 3D topology of a cell also influences its transcriptomic dynamics with cell-type specificity. 338 

As expected, genes expressed in a cell tend to localize in its active A compartment, exhibiting 339 

≥2.23 folds enrichment relative to the B compartment across the 5 most abundant cell-types. These 340 

ratios increase when restricted to the set of cell-type level unique marker genes (Supplementary 341 

Tables 1-2). Perivascular cells, in particular, exhibit a staggering 13-fold A/B ratio, leading to 342 

92.8% of the unique marker genes landing in the A compartment (Supplementary Table 6). We 343 

next focused on ASPCs, a cell-type which undergoes active differentiation into adipocytes, and 344 

systematically evaluated how compartment flipping affects the downstream expression. On a 345 

global scale, 23.4% of the differentially conformed regions change from the ASPC A 346 

compartments to adipocyte B, while 27.5% convert from the B compartment to A. Residing within 347 

these topologically interesting regions are some key cell-type marker genes crucial for 348 

adipogenesis. For example, COL1A2 and LAMA2 are highly expressed in ASPCs and essential to 349 

the early stage of adipogenesis30, responsible for the extracellular matrix formation31,32. As the 350 

adipocytes mature, the regions harboring them flip to the B compartments, repressing the 351 

transcriptomic activity and halting the cell proliferation and tissue remodeling. On the other hand, 352 
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the well-known adipocyte marker gene and adipokine, ADIPOQ, is located in an interaction 353 

domain unique to adipocytes with a pronounced demethylation pattern around its gene-body, likely 354 

facilitating additional TFs to bind and activate it functionally. The adjacent differential boundary 355 

marks a stretch of the genome, encapsulating 1Mb upstream and downstream of ADIPOQ, that 356 

transitions from the inactive B compartment in ASPCs to the active A compartment in adipocytes. 357 

Other strong de novo adipocyte marker genes, including TENM3, CSMD1, and PCDH9, also land 358 

within differential domains specific to adipocytes; additionally, CSMD1 and PCDH9 have cell-359 

type-specific loop domains near the transcription starting sites (TSS). Together, our findings 360 

suggest that chromosome conformation, ranging from mega-base compartmentalization to kilo-361 

base loop formation, reflects a higher level of carefully balanced coordination among the SAT 362 

cell-types, influencing both their epigenetic regulation profiles and trickling down to their 363 

transcriptional activities. 364 

 365 

DNA methylation pathway genes show cell-type preference in SAT expression, likely 366 

contributing to hyper- and hypo-methylation patterns in SAT cell-types 367 

DNA methylation involves the covalent addition of a methyl group to DNA, a process facilitated 368 

by DNA methyltransferase enzymes, such as DNA methyltransferase 3 alpha (DNMT3A) and 369 

DNA methyltransferase 3 beta (DNMT3B)33. Conversely, DNA demethylation comprises the 370 

removal of this methyl group from the DNA by the ten-eleven translocation (TET) family proteins, 371 

specifically, TET1, TET2, and TET3 (Fig. 5a). To investigate whether methylation pathway genes 372 

regulate the observed difference in hyper- and hypo-methylation across the SAT cell-types, we 373 

analyzed the expression of DNA methylation and demethylation-related genes. Among the 374 

demethylase genes, TET1 is preferentially expressed in adipocytes (-log10P>300; Wilcoxon rank-375 
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sum test) (Fig. 5b), in line with our observation that adipocytes have significantly more hypo-376 

methylated (56.3%) than hyper-methylated regions (14.2%) (Fig. 5c,d). Among the DNA 377 

methyltransferases (DNMTs), our cell-type level SAT snRNA-seq data show that DNMT3A is 378 

predominantly expressed in myeloid cell-type with minimal or no expression in adipocytes (-379 

log10P=131.9) (Fig. 5b). Consistent with our DNMT3A expression results, 73.0% of DMRs are 380 

hyper-methylated in the myeloid cells while only 14.2% are hyper-methylated in adipocytes (Fig. 381 

5c). In addition, the expression of a methylation maintenance gene, DNMT1, is significantly lower 382 

in adipocytes than other SAT cell-types (-log10P=165.3) (Extended Data Fig. 7a). Expression of 383 

other methylation (DNMT3B and UHRF1) and demethylation genes (TET2, TET3, and TDG), 384 

shown in Extended Data Fig. 7a,b, suggest that TET1 and DNMT3A are the most important genes 385 

that contribute to the observed adipocyte hypo-methylation and myeloid hyper-methylation 386 

patterns, indicating their potential mechanistic role in cell-type level DNA methylation signatures 387 

in SAT. 388 

 389 

A demethylase gene, TET1, is temporally co-expressed with known adipogenesis genes across 390 

human primary preadipocyte differentiation 391 

As temporal expression and co-expression patterns across human adipogenesis may relate to 392 

differential methylation between ASPCs and adipocytes, we examined longitudinal expression of 393 

124 known adipogenesis pathway genes along with 5 demethylase and methylase genes (UHRF1, 394 

TET1, TET2, TET3, and TDG) across 6 time points of differentiation of human SAT primary 395 

preadipocytes (i.e., adipogenesis) (see Methods). We first observed that as expected, 121 of the 396 

tested known adipogenesis genes were longitudinally differentially expressed (DE) during SAT 397 

differentiation (adjusted P<0.05). To assess how the temporal co-expression patterns during 398 
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adipogenesis relate to the expression of these demethylases and methylases, we clustered these 399 

genes using DPGP34 into 14 distinct clusters of longitudinally co-expressed genes (Supplementary 400 

Table 7). Notably, TET1, which we showed to be preferentially expressed in adipocytes when 401 

compared to the other methylase and demethylase genes (Fig. 5b and Extended Data Fig. 7a,b), 402 

clustered with known adipogenesis TFs and functionally important SAT genes, including 403 

ADIPOQ, PLIN1, CEBPA, and LPL. All exhibit significant demethylation and increased 404 

expression towards the end of adipogenesis (Fig. 5e,f). This suggests that TET1 may function as a 405 

potentially important demethylation regulator of genes involved in adipogenesis. 406 

 407 

Variants in cell-type level DMRs and compartments are enriched for abdominal obesity risk 408 

To understand the role of the identified differential epigenomic patterns in key cardiometabolic 409 

traits relevant to SAT, we explored the variants residing in the cell-type level DMRs and 410 

compartments for genetic evidence of contributions to cardiometabolic disease risk. Accordingly, 411 

we first examined whether the cell-type level DMRs contribute significantly to the polygenic risks 412 

of obesity traits, C-reactive protein (CRP), and metabolic dysfunction-associated steatotic liver 413 

disease (MASLD) by building annotated polygenic risk scores (PRS) for abdominal obesity (using 414 

waist-to-hip ratio adjusted for BMI (WHRadjBMI) as its well-established proxy35,36), BMI, 415 

MASLD, and CRP in the UK Biobank (UKB) cohort from variants landing in the cell-type level 416 

DMRs (see Methods). We observed that 6 of the WHRadjBMI PRSs, created from variants 417 

residing in adipocytes, ASPCs, and endothelial hypo-methylated, and endothelial, myeloid, and 418 

perivascular hyper-methylated DMRs, respectively, were not only significant predictors 419 

(pR
2<0.05) of WHRadjBMI but also had significantly better incremental variance explained for 420 

WHRadjBMI (pperm10,000<0.05), compared to 10,000 permutated PRSs, each built with randomly 421 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.11.02.621694doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.02.621694
http://creativecommons.org/licenses/by-nc-nd/4.0/


selected clumped and thresholded SNPs with the same size as the DMR PRS (Fig. 6a). We 422 

additionally found that the CRP PRSs constructed from variants in three DMRs, including the 423 

myeloid hypo-methylated DMRs, were significantly enriched predictors for CRP 424 

(pperm10,000<0.05), while no enrichments were observed for BMI and MASLD. 425 

  426 

We then similarly studied the cell-type level compartments for enrichment of genetic risk. Due to 427 

the strong enrichments that we detected for WHRadjBMI among the cell-type DMR PRSs (Fig. 428 

6a), we only constructed compartment-stratified PRSs for WHRadjBMI. For all five cell-types 429 

assessed, we noted that the PRSs built from variants residing in the A compartments were all 430 

consistently highly enriched predictors (pperm10,000<0.05) of WHRadjBMI, explaining ≥ 80% of 431 

the variance captured by the full genome (Fig. 6b; Supplementary Table 8). Conversely, we 432 

observed no such enrichment from the B compartment PRSs, suggesting the risk of abdominal 433 

obesity to be mainly driven by the A compartments. These abdominal obesity A compartment PRS 434 

results are further supported by the fact that 63.2% of the non-redundant abdominal obesity GWAS 435 

variants land in adipocyte A compartment (Fig. 6c and Extended Data Fig. 8a,b). Overall, our PRS 436 

results highlight the SAT cell-type level methylation and spatial conformation profiles as 437 

important contexts underlying the abdominal obesity risk. 438 

 439 

 440 

  441 
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Discussion 442 

Delineating cell-type level epigenomic landscape in human SAT is crucial for understanding their 443 

regulatory mechanisms and impact on obesity risk. We jointly profiled DNA methylation and 3D 444 

genome structure at single-cell resolution in SAT biopsies, which identified 705,063 DMRs with 445 

enriched TF binding motifs and cell-type level differential compartments. Our data revealed a 446 

highly dynamic reciprocal interplay between the SAT cell-type level epigenomes, particularly 447 

between adipocytes and myeloid cells. We further integrated the differential epigenomic sites with 448 

variant level data in the UK Biobank, thus uncovering their significant contributions to the 449 

polygenic risk of abdominal obesity. Finally, by integrating the cell-type level epigenomes with 450 

matching snRNA transcriptomes, we elucidated the potential role of specific methylation and 451 

demethylation pathway genes in the cell-type level differential methylation of human SAT. 452 

 453 

The dynamic and asynchronous nature of SAT cell-types across modalities is exemplified by the 454 

identification of the transition cell population. Current evidence from perivascular adipose tissue 455 

in both mice and humans indicates that the perivascular adipocyte progenitor cells undergo 456 

adipocyte differentiation via induction of a thermogenic gene program19. Studies on rodent models 457 

has shown that Ebf2, a TF gene we also found to be hypo-methylated in the transition cell-type, is 458 

selectively expressed in mouse precursor cells of brown or beige fat37 and regulates thermogenic 459 

gene programming in mouse adipocytes19,38. This suggests that the observed transition cell-type 460 

represents the brown fat progenitor cells, which further differentiates into adipocytes in response 461 

to selective epigenomic and likely also environmentally driven changes.    462 

 463 
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Focusing on bulk methylome profiles, previous studies have reported differential DNA 464 

methylation patterns at the tissue level in SAT and their association with obesity39,40. However, 465 

underlying non-captured cell-type level methylation patterns and composition often confound 466 

tissue-level analyses41. Our SAT cell-type level methylation profiles and DMRs could serve as 467 

reference panels and provide informative features for computationally decomposing the 468 

heterogenous SAT mixtures42–44, a critical step for reducing false discoveries in tissue-level studies 469 

and facilitating cell-type-specific biomarker identification42,45,46. The cell-type composition itself 470 

could also hold significant clinical implications. For example, previous research using 471 

transcriptome profiling of perigonadal adipose tissue in mice and immunohistochemistry of human 472 

SAT has suggested that the accumulation of myeloid cells, particularly macrophages, correlates 473 

with increased adiposity47. 474 

 475 

In our TF binding motif enrichment analysis, we observed cell-type-specific TF binding motifs 476 

that are enriched for hypo-methylated regions in SAT cell-types. Among the adipocyte-specific 477 

TFs, TWIST2 was identified as the top hit. A recent mice study reported that Twist2, a basic helix-478 

loop-helix (bHLH) type TF, plays an essential role in lipid uptake and adipogenesis48. We also 479 

found an ASPC-specific TF, SMAD3, which acts as a downstream transcriptional transducer in 480 

the activin signaling pathway49. This pathway is well-studied for its role in the proliferation, 481 

differentiation, and function of preadipocytes49,50. Myeloid-specific TFs, CEBPE and ATF4, are 482 

known to regulate the expression of myeloid-specific genes51. These results endorse the possibility 483 

that both cell-type level hypo-methylation and TFs enriched in these hypo-methylated regions 484 

contribute to regulation of gene expression in SAT in a cell-type-specific manner. 485 

 486 
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Among the identified cell-type level 3D genome structures in SAT, adipocytes showcase a distinct 487 

regional topology, with a 1.51-fold enrichment in relative short-range interactions, 1.15-fold 488 

increase in the number of domains, and 1.72-fold increase in overall transcriptomic activity. 489 

Similar patterns have been observed in other human solid tissues and notably, these types of 490 

differences in the non-neuronal cells in brain have been linked to larger nuclear size9,52,53. Across 491 

all SAT cell-types, the widespread differences are reflected in the observed differential 492 

conformations detected with 44.3% of the compartment bins and 1,791 domain boundaries. The 493 

presence of the key adipocyte marker gene and adipokine, ADIPOQ, in a genomic region 494 

differentially conformed between ASPCs and adipocytes while heavily demethylated in 495 

adipocytes, further supports the idea that epigenomic structures reorganize during cell 496 

differentiation54, ultimately regulating downstream, regional, and cell-type level gene expression. 497 

 498 

In our cell-type level investigations of methylation pathway genes, we found notably high 499 

expression of TET1 in adipocytes and DNMT3A in myeloid cells, supporting a tissue and cell-type 500 

level reciprocal coordination and cross talk between the TET1 expression and hypo-methylation 501 

in adipocytes and DNMT3A expression and hyper-methylation in myeloid cells. A previous study 502 

showed that TET1 is an important DNA demethylase in adipose bulk tissue55. Another earlier study 503 

reported the involvement of TET1 in adipocytokine promoter hypo-methylation in adipocytes56. 504 

Furthermore, previous studies have also demonstrated that both TET1 and DNMT3A compete to 505 

regulate epigenetic mechanisms57. Thus, our findings are in line with these previous results, and 506 

taken together with our new cell-type level results endorse the possibility that TET1 and DNMT3A 507 

play a crucial role in regulating the dynamic epigenetic landscape across the SAT cell-types. 508 

 509 
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Abdominal obesity is highly polygenic58. Previous studies have successfully built predictive 510 

genome-wide PRSs for abdominal obesity59,60 and shown that a high genetic predisposition to 511 

abdominal obesity predicts regain of abdominal obesity following weight loss58. However, less is 512 

known about the characteristics of specific genomic regions that contribute most to the polygenic 513 

risk of abdominal obesity, which could ultimately improve individual disease risk assessment. By 514 

constructing the partitioned PRS scores of abdominal obesity based on the two epigenomic single-515 

cell level modalities, we discovered that variants in both adipocyte DMRs and A compartments 516 

significantly predict abdominal obesity and are enriched for variance explained in abdominal 517 

obesity using 10,000 permutations. This indicates that epigenomic sites in SAT adipocytes harbor 518 

significant polygenic risk for abdominal obesity. 519 

 520 

Our study has some limitations. First, as the study comprises Finnish females with obesity, 521 

inclusion of males and individuals with normal weight would help elucidate potential sex-specific 522 

epigenomic landscapes and differences across the various BMI categories. Second, larger and 523 

more diverse set of samples could provide insight into population-based differences in the 524 

underlying epigenomic complexities in SAT cell-types. Third, inclusion of visceral adipose tissue 525 

(VAT) data into future studies would uncover cell-type level methylation and chromatin 526 

conformation patterns in this metabolically important other adipose depot as well as their 527 

differences when compared to SAT. However, requiring a surgical and medically indicated 528 

procedure, VAT biopsies are more invasive, thus making them practically less feasible. 529 

Nevertheless, taken together our study provides a valuable insight into the cell-type level 530 

epigenomes in human SAT to be followed up in future studies. 531 

 532 
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Methods 533 

Tilkka cohort  534 

Eight Finnish females with obesity underwent abdominal SAT liposuction at Tilkka Hospital, 535 

Helsinki, Finland. We performed snRNA-seq on all 8 SAT biopsies and snm3C-seq on 5 SAT 536 

biopsies. The study was approved by the Helsinki University Hospital Ethics Committee and all 537 

participants provided a written informed consent. All research conformed to the principles of the 538 

Declaration of Helsinki. 539 

 540 

UK Biobank cohort 541 

For our genome-wide association study (GWAS) enrichment and polygenic risk score (PRS) 542 

analyses, we used genotype and phenotype data from the 391,701 unrelated individuals of 543 

European-origin of the UK Biobank cohort (UKB)61,62. As describes previously61,62, data for UKB 544 

were collected across 22 assessment centers. Genotype data were obtained using one of either the 545 

Applied Biosystems UK BiLEVE Axiom Array or Applied Biosystems UK Biobank Axiom Array, 546 

and imputed with the Haplotype Reference Consortium and the merged UK10K and 1000 547 

Genomes phase 3 reference panels61,62. Data from UKB were accessed under application 33934. 548 

 549 

In situ chromatin conformation capture and fluorescence-activated nuclei sorting 550 

We performed in situ chromatin conformation capture (3C) using an Arima Genomics Arima-HiC 551 

Kit as previously described53 with the following modification: the amount of Triton-X 100 in the 552 

NIBT buffer was increased to 1% to account for the large amount of fat in adipose tissue. The 553 

fluorescence-activated nuclei sorting (FANS) and library preparation were performed using the 554 

snmC-seq3 workflow (https://www.protocols.io/view/snm3c-seq3-kqdg3x6ezg25). The snmC-555 
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seq3 libraries of human SAT was sequenced using the Illumina NovaSeq 6000 instrument with S4 556 

flow cells generating 150 bp paired-end reads. The sequencing reads of snm3C-seq were mapped 557 

using Taurus-MH11 (https://github.com/luogenomics/Taurus-MH). 558 

 559 

Snm3C-seq quality control and preprocessing 560 

We filtered the cells profiled by snm3C-seq based on the following metrics: 1) the estimated non-561 

conversion rate mCCC%<0.015; 2) the global mCG%>0.5; 3) the global mCH%<0.15; 4) the total 562 

number of interaction contacts >100,000 and <500,000; and 5) at least one intra-chromosome 563 

contact present in each autosome after filtering out reads with either end mapped to the ENCODE 564 

blacklist region63.  565 

 566 

Genotype quality control and imputation in the Tilkka cohort 567 

We genotyped the DNAs from the Tilkka participants using the Infinium Global Screening Array-568 

24 v1 (Illumina). In our quality control (QC), we used PLINK v1.964 to remove 1) individuals with 569 

missingness >2%, 2) unmapped, strand ambiguous, and monomorphic SNPs, and 3) variants with 570 

missingness >2% and Hardy-Weinberg Equilibrium (HWE) P value<10-6. In addition, we imputed 571 

biological sex using the ‘--sex-check’ function in PLINK v1.964 and confirmed that they matched 572 

the reported sex for all individuals. 573 

 574 

We utilized the HRC reference panel version r1.1 201665 to perform genotype imputation against 575 

on the Michigan imputation server. Before imputation, we removed duplicate variants, as well as 576 

variants with allele mismatch with the HRC reference panel and matched strand flips or allele 577 

switches to match the panel before haplotype phasing using Eagle v2.466. To perform the genotype 578 
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imputation, we used minimac467 and performed QC on the data by removing SNPs with imputation 579 

score R2<0.3 and HWE P value<10-6. 580 

 581 

Nuclei isolation and snRNA-seq of human SAT in the Tilkka cohort 582 

We performed SAT snRNA-seq experiments on the snap-frozen SAT biopsies from the Tilkka 583 

participants, as previously described59. We measured the concentration and quality of nuclei, 584 

separately for each sample, using Countess II FL Automated Cell Counter after staining with 585 

trypan blue and Hoechst dyes. To construct the libraries, we used the Single Cell 3’ Reagent Kit 586 

v3.1 (10x Genomics) and analyzed the quality of cDNA and gene expression using Agilent 587 

Bioanalyzer. We sequenced the libraries from each participant together on an Illumina NovaSeq 588 

S4 with a target sequencing depth of 600 million read pairs. 589 

 590 

To maximize the samples size of the snRNA-seq data in the Tilkka cohort, we performed the joint 591 

snRNA- and snATAC-seq experiment on the subset of 5 SAT biopsies and included the snRNA-592 

seq data in this study. Briefly, we combined 300 mg of the 5 SAT biopsies into a gentleMACS C 593 

tube (Miltenyi Biotec) containing 3 ml of chilled 0.1X lysis, including 10 mM Tris-HCl, 10 mM 594 

NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% IGEPAL CA-630, 0.01% Digitonin, 1% BSA, 1 mM 595 

DTT, and 1 U/μL RNase inhibitor. We next dissociated the tissues by placing the gentleMACS C 596 

tube on the gentleMACS Dissociator (Miltenyi Biotec) and running the ‘4C_nuclei_1’ program. 597 

The tissues were incubated in the lysis buffer for a total of 15 minutes including the time on the 598 

dissociator. After the incubation period, we added 3 ml of chilled wash buffer, containing 10 mM 599 

Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20, 1 mM DTT, and 1 U/μL RNase 600 

inhibitor, to the lysate and filtered the lysate mixture through a 70 μm MACS strainer, followed 601 
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by a 30 μm MACS strainer. Next, the nuclei were centrifuged at 300 rcf for 5 minutes at 4°C and 602 

the supernatant was removed without disrupting the nuclei pellets. We then resuspended the nuclei 603 

pellet in 3 ml of chilled wash buffer and passed through a 30 μm MACS strainer. The final 604 

concentration and quality of nuclei were measured using the Countess II FL Automated Cell 605 

Counter after staining with trypan blue and Hoechst dyes and the snRNA-seq library was 606 

constructed using the Single Cell Multiome ATAC + Gene Expression Reagent Kit (10x 607 

Genomics). We used the Agilent Bioanalyzer to assess the quality of cDNA and sequenced the 608 

library on an Illumina NovaSeq SP with a target sequencing depth of 400 million reads. 609 

 610 

Processing of the SAT snRNA-seq data from the Tilkka cohort  611 

First, we aligned the raw snRNA-seq data from all experiments against the GRCh38 human 612 

genome reference and GENCODE v4268 annotations with STAR v2.7.10b69. We utilized the ‘-- 613 

soloFeatures GeneFull’ option to account for full pre-mRNA transcripts. Then the quality of the 614 

raw and mapped snRNA-seq data were evaluated using FastQC. To remove empty droplets as well 615 

as nuclei with high levels of ambient RNA, we ran DIEM v2.4.070 with initialization parameters 616 

1) UMI cutoffs ranging from 100 to 1000 to define debris, and 2) k=50 for the initialization step 617 

with k-means clustering, along with all other default parameters. We applied the sample specific 618 

UMI cutoffs in the initialization step to account for differences in sequencing depth between 619 

samples. Next, we removed clusters with low average UMIs, low average number of unique genes 620 

detected (nFeatures), high percentage of mitochondrial mapped reads (%mito), and high number 621 

of mitochondrial and ribosomal genes as top expressed features. Droplets with nFeatures≤200, 622 

UMI≤500, %mito≥10, and spliced read fraction≥90% were removed using Seurat v4.3.071. Next, 623 

we used Seurat v4.3.071 to log-normalize gene counts employing the ‘NormalizeData’ function; 624 
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identify top 2,000 variable genes using the ‘FindVariableFeatures’ function; scale the gene counts 625 

to mean 0 and unit variance using the ‘ScaleData’ function; perform principal component analysis 626 

(PCA) using the ‘RunPCA’ function; and cluster the nuclei with a standard Louvain algorithm, 627 

using parameters of the first 30 PCs, and a resolution of 0.5, respectively. 628 

 629 

To remove reads from ambient RNA molecules, we ran DecontX72 with the removed low-quality 630 

nuclei as the background and the Seurat cluster assignment as the ‘z’. We then removed nuclei 631 

with nFeatures≤200, UMI≤500, UMI≥30,000, and %mito≥10 based on the remaining reads. For 632 

the multiplexed snRNA-seq data of 5 SAT biopsies from the joint snRNA- and snATAC-seq 633 

experiment, we ran demuxlet from the popscle software tool73 to identify the originating individual 634 

of each nucleus. Next, DoubletFinder74 was employed to remove predicted doublets. Since 635 

DoubletFinder requires a predicted number of doublets as input, we used a pN-pK parameter 636 

sweep, as previously recommended74, to select pN=0.25 and the most optimal pK value that 637 

maximizes the mean-variant normalized coefficient.  638 

 639 

Snm3C-seq data integration, clustering, and annotation  640 

While methylation features could be stratified into mCH and mCG, mCH is primarily found only 641 

in the human brain and not elsewhere in the body (e.g., SAT)75,76. Thus, we represented only the 642 

mCG profiles of each cell by 5-kb bins across autosomal chromosomes. Briefly, per cell and for 643 

each 5-kb bin, we calculated a hypo-methylation score (i.e., the P value of observing fewer 644 

methylated reads under a binomial distribution with the expected probability of a methylated read 645 

set to the global mCG rate of the cell, and the number of trials set to the coverage of the 5-kb bin). 646 

We next binarized the score matrix by converting nominally significant entries (i.e., P value<0.05) 647 
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to 1 and the rest to 0, as described previously16. Bins that overlapped with the ENCODE blacklist 648 

region63 were excluded from the clustering analysis. Next, we performed latent semantic indexing 649 

(LSI) on the term-frequency, inverse-log-document-frequency transformed matrix, implemented 650 

in the ALLCools package15 (v.1.0.23) to obtain the mCG profile embedding, and then further 651 

omitted the first dimension due to its high correlation with sequencing depth. For the chromosome 652 

conformation modality, we imputed the contact matrix of each cell at 100-kb resolution using 653 

scHicluster77 (v.1.3.5) with pad=1 and used singular value decomposition (SVD) to project all 654 

intra-chromosome contacts between 100kb to 10Mb that land in autosomal chromosomes to a low 655 

dimensional space. To remove the sample level batch effect, we applied Harmony78 (v.0.0.9) on 656 

the snm3C-seq joint embedding (i.e., the concatenation of the top 10 dimensions from both 657 

modalities). The resulting matrix was used for k-NN graph construction (k=25), Leiden consensus 658 

clustering, and uniform manifold approximation and projection (UMAP) visualization.  659 

  660 

We annotated the clusters de novo by leveraging the negative correlation between mCG and 661 

transcriptional activity9,14,15 and the known SAT marker genes, reported previously79. Specifically, 662 

we calculated the average mCG fractions of the gene-body and normalized the fractions per cell 663 

by first taking the posterior of the mCG probability of each gene with a Beta distribution prior, 664 

representing the genome-wide mCG rate of the cell, before scaling by the inverse of it15. Thus, 665 

hypo-methylated SAT marker genes, characterized by normalized scores notably lower than the 666 

genome-wide average of 1, suggest strong expression patterns.  667 

  668 

We conducted modality-specific clustering, visualization, and annotation similarly, while 669 

calculating them using information solely from their respective embedding. All clusters were 670 
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merged to the resolution representing the canonical major cell-types identified in SAT (adipocytes, 671 

ASPCs, perivascular, endothelial, mast, myeloid, and lymphoid cells), with the exception of the 672 

“transition” cluster, which was categorized as adipocytes if using only the chromosome 673 

conformation information and perivascular cells if using only the mCG profiles. 674 

 675 

SnRNA-seq data integration, clustering, and annotation 676 

We integrated all remaining high-quality droplets from all snRNA-seq data with reciprocal 677 

principal components analysis (rPCA) implemented in Seurat v4.3.071 and clustered integrated 678 

data with a standard Louvain algorithm, using parameters of the first 30 PCs, and a resolution of 679 

0.5. We annotated each cluster with their cell-type using SingleR v1.8.180 with a previously 680 

published single-cell atlas of human SAT as a reference79. 681 

 682 

Co-embedding of snm3C-seq and snRNA-seq data 683 

We aligned the snm3c-seq cells as the query with snRNA-seq cells as the reference under the 684 

canonical correlation analysis (CCA) framework of Seurat v.4.1.022, similarly as described 685 

previously17,81. To capture the shared variance between modalities, we started with reversing the 686 

sign of the normalized gene-body mCG fractions, and then applied CCA between the resulting 687 

matrix and the expression count matrix on the set of genes used to integrate the RNA datasets, 688 

while also requiring >5 mapped reads in snm3C-seq cells. Transfer anchors were identified within 689 

the top 30 canonical component space as the top 5 mutual nearest neighbors. We further filtered 690 

and weighted the anchors by distances in the snm3C-seq joint embedding to impute RNA-based 691 

annotations and expression profiles of the snm3C-seq cells. ARI was used to evaluate the 692 

concordance between the de novo annotation and the imputed RNA-based annotation. Cells 693 
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profiled by both technologies were merged on their imputed expression profiles, projected to low 694 

dimensional space with PCA, and visualized by UMAP (constructed on the top 10 PCs). 695 

 696 

For a given de novo snm3C-seq and the snRNA-seq annotated cell-type cluster pair, we defined 697 

the overlap score as the sum, across all clusters in the shared CCA co-embedding space, of the 698 

minimum proportion of cells in each modality-specific cluster that overlapped with a co-699 

embedding cluster. Thus, the overlap score ranges from 0 to 1, where 0 indicates a complete 700 

separation and 1 indicates a perfect co-localization of modality-specific cells within the same co-701 

embedding cluster. We normalized the multi-class confusion matrix per row by the number of cells 702 

to derive the confusion fractions. The confusion matrix was calculated by comparing the de novo 703 

annotations of the snm3C-seq cells with their intermediate imputed cell-type labels, which were 704 

determined through weighted votes from transfer anchors using snRNA-seq as reference. 705 

 706 

Cell-type level SAT marker gene identification in snm3C-seq and snRNA-seq 707 

We excluded the following genes from differential testing of the cell-type marker genes: 1) genes 708 

that overlap with the ENCODE blacklisted regions; 2) smaller genes (≤200 bp) mostly covered by 709 

other genes (overlap region≥90% of the gene length)15, and 3) genes with a shallow coverage, 710 

constantly methylated or un-methylated, defined as those without ≥10 methylated or un-711 

methylated counts in ≥10 cells belonging to the cell-type under investigation. Cell-type level 712 

differentially methylated genes (DMGs) were determined de novo by performing the Wilcoxon 713 

rank-sum test on the normalized gene-body mCG fractions of the snm3C-seq cells in a one-vs-rest 714 

way. We retained genes that had Benjamini-Hochberg (BH) adjusted P value<0.05, and at the 715 

same time exhibited a hypo-methylation difference of ≥0.1 in terms of the average normalized 716 
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fraction when compared to the other cell-types15. For transcriptomics, we first filtered for the set 717 

of expressed genes in SAT, defined as those with ≥3 counts in ≥3 cells72. We used 718 

‘FindAllMarkers’ function in Seurat to identify marker genes employing the default parameters 719 

with the exception that we constrained our search to the subset of positive marker genes with ≥25% 720 

non-zero expression in either the tested cell-type or the other ones82–84. Subsequently, we filtered 721 

out genes with BH-adjusted P values≥0.05. To obtain unique marker genes on both snm3C-seq 722 

and snRNA-seq, we removed genes identified as marker genes for more than one cell-type.  723 

 724 

Pathway enrichment analyses for SAT cell-type marker genes in gene-body mCG and gene 725 

expression modalities 726 

To identify cell-type level biological processes and functional pathways enriched among the cell-727 

type marker genes in mCG and gene expression modalities, we utilized the web-based tool 728 

WebGestalt23 that identifies the overrepresentation of gene sets in Gene Ontology (GO) biological 729 

processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. For each SAT cell-730 

type, we used the unique cell-type marker genes as the input, with only the genes expressed within 731 

that cell-type as the reference for the enrichment analysis. Biological processes and KEGG 732 

pathways with FDR<0.05 were considered statistically significant. 733 

 734 

Cell-type level methylation profile analysis  735 

To obtain the cell-type level mCG profiles, we aggregated single-cell level number of CG 736 

methylated counts and total coverage based on the snm3C-seq joint annotation and further merged 737 

reads mapped to adjacent CpG in +/- strands. We then used MethylPy24,25, implemented in the 738 

ALLCools package, to detect genomic regions that display distinct mCG patterns across various 739 
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cell-types. Differentially methylated sites (DMSs) on autosomes were tested across all 8 annotated 740 

cell-types using default parameters. For all DMSs, we assigned one of the three states per cell-741 

type, hypo-, neutral-, or hyper-methylated, based on whether the fitted residual (i.e., the 742 

normalized deviation away from the mean methylation level) fell below the 0.4, between the 0.4 743 

and 0.6, or above the 0.6 quantile of its chromosome-wide background, respectively15. Nearby 744 

DMSs (within 250bp) with Pearson correlations of >0.8 for the methylation fractions across the 745 

cell-types were merged into differentially methylated regions (DMRs). Differential methylation 746 

states were assigned to each DMR based on the average of those of the DMSs it encompasses. 747 

DMRs containing only one DMS or without any hyper- hypo- methylation state assignment, and 748 

DMRs or DMSs overlapping ENCODE blacklist regions were excluded from downstream 749 

analyses.  750 

 751 

Additionally, we tested whether DMRs showcase genome-wide cell-type preferential differential 752 

methylation states under a regression framework. Specifically, for every differential state (hyper- 753 

or hypo-methylation), we fitted the following regression model across all cell-types and all 754 

autosomal chromosomes. The response variable, the cell-type level fraction of the DMRs with the 755 

desired methylation state on a chromosome, was modeled by several independent variables, 756 

including the log normalized number of cells belonging to the corresponding cell-type and a one-757 

hot encoded indicator for all cell-types in SAT. This approach allowed us to quantify the cell-type 758 

level contribution to the methylation state fraction while also calibrating for the inherent fraction 759 

differences induced by the varying statistical power arising from the differences in the coverage 760 

among cell-types. The stratification to hyper- and hypo-methylation states naturally suggests a 761 

directionality in the test. Thus, we report the log10 P values derived from one-tailed t-tests, 762 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.11.02.621694doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.02.621694
http://creativecommons.org/licenses/by-nc-nd/4.0/


evaluating the probability of observing a larger positive contribution on the cell-type indicator 763 

variable under the null. 764 

 765 

Prediction of cell-type-specific transcription factor binding motif using HOMER 766 

We performed TF binding motif enrichment analysis using the motif discovery tool HOMER 767 

v4.11.1 (Hypergeometric Optimization of Motif EnRichment)26. For each SAT main cell-type, we 768 

used the hypo-methylated regions as input data for motif enrichment analysis with the HOMER 769 

function ‘findMotifsGenome.pl’. TF binding motifs with P<110-12 were considered statistically 770 

significant. Circular visualization of cell-type-specific TF binding motif enrichment results was 771 

prepared using the circlize package85 in R. 772 

 773 

Cell-type level compartment analysis  774 

Based on the snm3C-seq joint annotation, we merged scHicluster imputed single-cell level contact 775 

matrices at 100-kb resolution per chromosome to form the cell-type level pseudobulk 776 

conformation profiles for the 5 most abundant cell-types (adipocytes, ASPCs, endothelial, 777 

perivascular, and myeloid cells) as well as a cell-type aggregated version. For each chromosome 778 

independently, genomic bins in the cell-type aggregated contact map with abnormal coverage, 779 

defined as the total number of interactions between itself and all other bins, were removed from 780 

the compartment analysis. Specifically, we kept bins with a coverage <99th percentile and above 781 

twice the 50th percentile minus the 99th percentile. This filtration typically removes poorly 782 

mapped regions like telomere, centromere, and blacklisted regions9. Cell-type level pseudobulk 783 

conformation profiles were then normalized by the distance between the contacts and converted to 784 

correlation matrices by dcHic v2.154. For all 5 cell-types, we fitted PCA on the resulting matrices 785 
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per chromosome and extracted the first two PCs as candidates of the compartment scores. The 786 

dcHic tool heuristically selected the PC that maximized the absolute correlation with transcription 787 

start site (TSS) and CpG density as the compartment scores and, if, needed, flipped its sign to 788 

ensure that regions with positive scores corresponded to more active (A) compartments. We 789 

visually inspected the compartment scores to verify that they indeed captured the plaid pattern 790 

instead of the chromosome arms. Compartment scores from all 5 cell-types were then quantile 791 

normalized. Finally, we tested for genomic bins that demonstrated large deviations away from the 792 

cell-type average under a multivariate normal distribution, measured by the Mahalanobis distance 793 

using the covariance matrix learned with outlier bins removed. Bins with FDR corrected P 794 

values<0.1 were labeled as differentially conformed regions54. Empirically, we observed 795 

FDR<0.02 when repeating the same analysis but only on a null set of cell-type level contact maps, 796 

obtained by arbitrarily shuffling the annotation of the cells before merging to the pseudobulk level 797 

(i.e., a scenario where any differential compartment detected is false positive by construction), 798 

indicating a conservative calibration of the testing result by dcHic. 799 

 800 

Characterizing interaction domains and chromatin loops in SAT  801 

For interaction domains, we used scHiCluster v.1.3.577 with pad=2 to impute contact matrix of 802 

each cell per autosomal chromosome at a 25-kb resolution, restricted to contacts within 10Mb. We 803 

detected domains for each cell using TopDom86 and calculated the insulation scores across all 25-804 

kb genomic bins with a window size of 10 bins using the imputed contact profiles. We then 805 

projected the domain boundaries with LSI and insulation scores with PCA into low-dimensional 806 

space. Similar to snm3C-seq joint annotation, we applied Harmony v.0.0.978 to correct for batch 807 

effects and visualized the top 10 low-dimensional embeddings with UMAP. Cell-type level 808 
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domain boundary probabilities were calculated as the fraction of cells with a detected domain 809 

boundary in a given 25-kb bin across all cells belonging to the specified cell-type. Differential 810 

domain boundaries were evaluated per bin based on criteria similar to those described previously53. 811 

Specifically, we required the Z-score transformed chi-square statistic >1.960 (97.5 percentile of 812 

standard normal distribution), the differences between the maximum and minimum cell-type 813 

boundary probabilities to be >0.05, detection as a local boundary peak (maximum), simultaneous 814 

detection as a local insulation score valley (minimum), and finally, FDR<0.001.  815 

  816 

To analyze chromosomal looping, we used scHiCluster v.1.3.577 with pad=2, 817 

window_size=30000000, and step_size=10000000 to impute contact matrix of each cell per 818 

autosomal chromosome at a 10-kb resolution, restricted to contacts within 10Mb. Loop pixels were 819 

detected from cell-type pseudobulk imputed contact profiles based on enrichment relative to both 820 

its global and local backgrounds. We aggregated near-by loop pixels passing an empirical FDR of 821 

0.1 to loop summits. To create cell-level embeddings based on looping features, we first gathered 822 

all identified loop pixels and built a binary cell-by-loop matrix, where each entry indicates whether 823 

at least one contact was detected in the cell at the corresponding loop pixel9. We used LSI to project 824 

the cell-by-loop matrix, Harmony to correct for batch effect, and UMAP to visualize the top 10 825 

low-dimensional embeddings.  826 

 827 

Human primary preadipocyte (PAd) differentiation experiment  828 

We previously cultured cryopreserved human primary SAT preadipocytes (Zen-Bio catalog # SP-829 

F-2, lot L120116E) for adipogenesis (14-day preadipocyte differentiation) and conducted ATAC-830 

seq and RNA-seq across 6 time points: 0d, 1d, 2d, 4d, 7d, and 14d6. Briefly, for each time point 831 
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and modality, we plated cells at confluency to create 4 isogenic replicates. Libraries for RNA-seq 832 

were prepared using the Illumina TruSeq Stranded mRNA kit and sequencing was performed on 833 

one lane of Illumina NovaSeq S1 flowcell. We obtained an average of 42M +/- 5M (SD) reads per 834 

sample. 835 

 836 

Longitudinal differential expression (DE) across six human adipogenesis time points  837 

We analyzed the longitudinal trajectory patterns of 124 known pathway genes involved in 838 

adipogenesis (https://www.wikipathways.org/pathways/WP236.html) and expressed in these 839 

adipogenesis data, as well as 5 additional demethylase and methylase genes (UHRF1, TET1, TET2, 840 

TET3, and TDG) also expressed in these data using ImpulseDE2 v0.99.1087 across the 6 841 

adipogenesis time points. We used the runImpulseDE2 function with parameters 842 

boolCaseCtrl=FALSE, boolIdentifyTransients=TRUE, and scaNProc=1 on the respective RNA-843 

seq gene expression counts. All P values were corrected for multiple testing using FDR<0.05.  844 

  845 

Identification of longitudinal trajectories of co-expressed adipogenesis genes and their 846 

methylation regulators 847 

 To search for longitudinal co-expression patterns among the key demethylase and methylase 848 

genes across human adipogenesis, we ran DPGP v0.134 to cluster genes by their expression 849 

trajectories. We only included the genes that were identified as significantly longitudinally DE 850 

(FDR<0.05) during human adipogenesis from ImpulseDE287, as described above. 851 

 852 

Construction of partitioned cardiometabolic polygenic risk scores for cell-type level DMRs 853 

and compartments 854 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2024. ; https://doi.org/10.1101/2024.11.02.621694doi: bioRxiv preprint 

https://www.wikipathways.org/pathways/WP236.html
https://doi.org/10.1101/2024.11.02.621694
http://creativecommons.org/licenses/by-nc-nd/4.0/


To assess the contributions of the SAT cell-type level differentially methylated regions (DMRs) 855 

and cell-type level compartments on the genetic risk for cardiometabolic traits, we constructed 856 

partitioned polygenic risk scores (PRSs) for each DMR for body mass index (BMI), waist-hip-857 

ratio adjusted for BMI (WHRadjBMI), C-reactive protein (CRP), and metabolic dysfunction-858 

associated steatotic liver disease (MASLD) in the UKB61,62, using the imputed MASLD status by 859 

Miao et. al88 for MASLD, and for WHRadjBMI for each cell-type compartment set. Only 860 

annotations from adipocytes, stromal, myeloid, endothelial, and perivascular cells were examined. 861 

  862 

We first generated GWAS summary statistics for each trait with a 50% base group (n= 195,863) 863 

by applying a rank-based inverse normal transform to each trait and used the linear-mixed model 864 

approach of BOLT-LMM v2.3.689, including age, age2, sex, the top 20 genetic PCs, testing center, 865 

and genotyping array as covariates. Variants with MAF<1% and INFO<0.8 were removed from 866 

the summary statistics. We then partitioned the remaining 50% into a 30% target and 20% 867 

validation groups for developing and applying the PRS model, respectively. Variants with 868 

MAF<1% and INFO<0.8 were removed from the used GWAS summary statistics, and the variants 869 

missing in >1% subjects, with MAF<1%, or violating Hardy Weinberg equilibrium as well as the 870 

individuals with >1% genotypes missing or extreme heterozygosity were removed from the target 871 

and validation genotype data90.  872 

  873 

To compute the PRS for each outcome, we first generated independent marker sets by performing 874 

LD-clumping on all QC passing variants in the genome using plink91, with an LD R2 threshold of 875 

0.2, and a window size of 250-kb. We then used the 30% test set (n=115,120) to identify the 876 

optimal P value cut point at the genome-wide level. Briefly, we applied the plink91 –score 877 
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functionality to separately compute aggregated scores from subsets of the genome-wide clumped 878 

SNPs passing a range of a P value threshold from 5x10-8 to 0.5, using effect sizes and P values 879 

from the GWAS summary statistics. After identifying the best thresholding cutoff in the 30% test 880 

set (0.05 for WHRadjBMI and CRP, 0.3 for BMI, and 0.2 for MASLD), we computed regional 881 

PRSs in the 20% validation set (n=76,758), consisting of the clumped and thresholded SNPs 882 

landing within the DMR or compartment. Variance explained (R2) by each PRS, were calculated 883 

by adjusting each trait for age, age2, the top 20 genetic PCs, testing center, genotyping array, and 884 

sex, applying a rank-based inverse-normal transform, and then regressing the PRS on the adjusted 885 

trait. 886 

  887 

To evaluate the significance of the variance explained by the PRS, we performed a permutation 888 

analysis, in which we randomly selected from the set of genome-wide clumped and thresholded 889 

SNPs, 10,000 sets of SNPs of the same size as the clumped and thresholded SNPs, overlapping 890 

with the DMR or compartment, and compared their R2 to the R2 of the 10,000 permutations. 891 

  892 
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Data availability 893 

The data that support the findings in this manuscript are available from the UK Biobank. However, 894 

restrictions apply to the availability of these data, which were used in this study under UK Biobank 895 

Application number 33934. UK Biobank data are available for bona fide researchers through the 896 

application process: https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/contact-us. The 897 

snm3C-seq and snRNA-seq data from the Tilkka cohort will be made available in the NIH Gene 898 

Expression Omnibus (GEO) upon acceptance, under accession number GSEXX. The bulk RNA-899 

seq data from the primary human preadipocyte differentiation experiment was previously made 900 

available in GEO, under accession number GSE249195. 901 

 902 

Code availability 903 

All packages and software used in this study were from their publicly available sources, as outlined 904 

in the Methods.  905 
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Figure legends 940 
 941 
Figure 1. Schematic overview of the study design using single nucleus methyl-3C sequencing 942 

and single nucleus RNA-sequencing to profile cell-type level DNA methylation, chromatin 943 

conformation, and gene expression in the human subcutaneous adipose tissue (SAT) and 944 

partition the genetic risk of abdominal obesity. a, Illustration of single nucleus methyl-3C 945 

sequencing (snm3C-seq) and single nucleus RNA-sequencing (snRNA-seq) on nuclei isolated 946 

from SAT biopsies from females with obesity. b-g, Comprehensive analyses of DNA methylation, 947 

chromatin conformation, and gene expression profiles across the SAT cell-types to identify cell-948 

type level differences in DNA methylation patterns (b) and chromatin conformation dynamics (c). 949 

Subsequently, we used the cell-type level SAT expression data (d) to determine whether 950 

methylation pathway genes contribute to the observed differences in methylation patterns in SAT 951 

cell-types and longitudinally cluster with adipogenesis pathway genes (e), identify cell-type-952 

specific transcription factor (TF) binding motifs associated with hypo-methylated regions in SAT 953 

cell-types (f) as well as (e) to test the contribution of variants in cell-type level differentially 954 

methylated regions and A and B compartments to the genetic risk of abdominal obesity (g). 955 

 956 

Figure 2. Single-nucleus level multi-omic profiles of SAT by jointly profiling methylation and 957 

chromatin conformation with snm3C-seq, followed by an integrative analysis with 958 

transcriptomic profiles, generated using SAT snRNA-seq. a, Dimension reduction of cells 959 

using 5-kb bin mCG (top left), 100-kb bin chromatin conformation (top right), and jointly 960 

integrating mCG and chromatin conformation (bottom), profiled by single nucleus methyl-3C 961 

sequencing (snm3C-seq) and visualized with uniform manifold approximation and projection 962 

(UMAP). Cells are colored by cell-types of subcutaneous adipose tissue (SAT). b, Sankey diagram 963 
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showcases the high consistency among the SAT cell-type annotations derived from the 5-kb bin 964 

mCG (left), 100-kb bin chromatin conformation (right), and joint profiling of mCG and chromatin 965 

conformation (middle), with the exception of the transition cell-type cluster that is annotated as 966 

perivascular cells by mCG and adipocytes by chromatin conformation. c-f, Integrative analysis 967 

with snRNA-seq, evaluating the concordance of cell-type cluster annotations and cell-type marker 968 

genes across the used modalities. c, Comparison of gene-body mCG and gene expression profiles 969 

of cell-type marker genes across the matching SAT cell-types, independently identified within the 970 

respective modalities, excluding the expression profiles of the transition cell-type cluster that was 971 

not identified in the SAT snRNA-seq data. Dot colors represent the average gene-body mCG ratio 972 

normalized per cell (left), and the average log-transformed counts per million normalized gene 973 

expression (right). d, Co-embedding of snm3C-seq gene-body mCG and snRNA-seq gene 974 

expression, visualized with UMAP. Cells are colored by the SAT cell-types identified in c (top) 975 

and modalities (bottom). e, Concordance matrix comparing the snm3C-seq and snRNA-seq 976 

derived annotations, colored by the overlapping scores between the pairs of the SAT cell-types 977 

evaluated in the co-embedding space. f, UMAP visualization of the gene-body mCG ratio (left) 978 

and gene expression (right) for one adipocyte marker gene, GPAM, colored per cell similarly as in 979 

c. ASPC, adipose stem and progenitor cell. 980 

 981 

Figure 3. Functional pathways and gene regulatory potential of cell-type level gene-body 982 

mCG markers and differentially methylated regions. a, Dot plots of PPAR signaling pathway 983 

genes (ACSL1, ADIPOQ, LPL, PCK1, PLIN1, and PLIN4) that are shared adipocyte marker genes 984 

between the gene-body mCG and gene expression modalities, showing their gene-body mCG (left) 985 

and gene expression profiles (right) across the SAT cell-types. The color of the dot represents the 986 
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mean percentage of mCG (left, red is high) and average expression of genes (right, blue is high), 987 

while the size of the dot represents the percentage of cells where the gene is expressed (right). b, 988 

Horizontal stacked bar plot (left) showing the marginal proportions of assigned methylation states 989 

across differentially methylated regions (DMRs) for each SAT cell-type (n.s. denotes non-990 

significant) and upset plot (right) showing the top 20 combinations of methylation states across 991 

DMRs in decreasing order with their corresponding percentages. c, Circular plot summarizing the 992 

cell-type-specific transcription factor (TF) binding motifs associated with hypo-methylated 993 

regions in SAT cell-types. The outermost layer shows the names of cell-type-specific and 994 

significantly (P<110-12) enriched TFs in each SAT main cell-type. Track 1 shows the negative 995 

logarithmic of the P value (green lollipop) and track 2 shows the enrichment score (yellow 996 

lollipop). ASPC, adipose stem and progenitor cell, and FDR, false discovery rate. 997 

 998 

Figure 4. Analysis of chromatin conformation profiles in subcutaneous adipose tissue (SAT) 999 

reveals cell-type level diversity in compartments, domains, and loops. a, Frequency of contacts 1000 

per cell against genomic distance. Cells are grouped by SAT cell-types and ordered by the median 1001 

short to long-range interaction ratios. b, Short to long-range interaction ratios of SAT cell-types, 1002 

ordered in the same way as in (a). Asterisks indicate the level of statistical significance of pairwise 1003 

paired Wilcoxon test against adipocytes, and ***indicates -log10P>50 and n.s. denotes non-1004 

significant. c-d, Uniform manifold approximation and projection (UMAP) visualization of low 1005 

dimensional embeddings of cells using domains (c) and loops (d) as features, colored by the 1006 

snm3C-seq annotation; adjusted rand index (ARI) evaluates the clustering concordance against 1007 

snm3C-seq annotation. e, Heatmap visualization of the normalized interaction contact map on 1008 

chromosome 12 and its corresponding compartment scores across SAT cell-types. f, Upset plot 1009 
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(left) visualizing a subset of the differential 100-kb bins (i.e., cell-type-specific and homogeneous 1010 

compartment combinations) and their corresponding percentages; horizontal stacked bar plot 1011 

(right) showing the marginal A compartment enrichment of differential 100-kb bins, stratified by 1012 

cell-types. g, Dendrogram of the 5 most abundant SAT cell-types constructed with compartment 1013 

scores on differential 100-kb bins. h, Similar to g, except on all annotated SAT cell-types, 1014 

constructed with mCG fractions across DMRs. ASPC indicates adipose stem and progenitor cell.  1015 

 1016 

Figure 5. Analysis of mean gene expression and differentially methylated regions (DMRs) 1017 

across subcutaneous adipose tissue (SAT) cell-types reveals the potential involvement of 1018 

DNA methylation pathway genes in regulating cell-type level hyper- and hypo-methylation 1019 

in SAT. a, A schematic representation of basic mechanisms and key players in DNA methylation 1020 

and demethylation. b, Dot plot of TET1 and DNMT3A showing their expression profiles across the 1021 

SAT cell-types. The size of the dot represents the percentage of cells in which a gene is expressed 1022 

within a cell-type and the color represents the average expression of each gene across all cells 1023 

within a cell-type (blue indicates higher expression). c, Proportions of assigned hypo- (left) and 1024 

hyper-methylated states (right) across DMRs. d, Uniform manifold approximation and projection 1025 

(UMAP) visualization of the average global mCG ratio in a cell. e, Bar plot reflecting the 1026 

distribution of normalized mCG fraction across genes that co-cluster with TET1 in (f) for ASPCs 1027 

and adipocytes. Asterisk indicates the level of statistical significance, *p≤0.05 using a paired 1028 

Wilcoxon test. f, Longitudinal expression of TET1 is plotted across the 14-day SAT preadipocyte 1029 

differentiation. The ribbon behind the trajectory of TET1 reflects the mean and standard deviation 1030 

of the genes that clustered into similar trajectory patterns as TET1 using DPGP. ASPC indicates 1031 

adipose stem and progenitor cells. 1032 
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 1033 

Figure 6. Partitioned abdominal obesity PRSs of several cell-type level DMRs and all cell-1034 

type level A compartments are enriched for variance explained in abdominal obesity, and 1035 

63.2% of non-redundant abdominal obesity GWAS variants land in adipocyte A 1036 

compartment. a-b, Lollipop plots depict the incremental variance explained of each cell-type 1037 

level PRS for abdominal obesity (using waist-hip-ratio adjusted for body mass index 1038 

(WHRadjBMI) as a proxy) from the (a) DMRs, and (b) A and B compartments. Each lollipop 1039 

represents a WHRadjBMI PRS, where the dot size corresponds to the incremental variance 1040 

explained of the PRS. The grey vertical dotted line indicates the cutoff for significant enrichment 1041 

of incremental variance explained (Pperm10,000<0.05). On the left, horizontal bar-plots depict the 1042 

number of SNPs used for the PRS construction. We color each bar and lollipop by the cell-type, 1043 

where PRSs without a significant enriched PRS are outlined in grey without a filling. c, Bar plot 1044 

showing the number of independent (r2<0.1) WHRadjBMI GWAS variants, passing genome-wide 1045 

significance (P<5×10-8), from the WHRadjBMI GWAS, conducted in 195,863 individuals from 1046 

the UK Biobank, grouped by the adipocyte compartment assignment. We shade each bar by 1047 

compartment, where the A compartment is colored red and B compartment blue. 1048 

 1049 

 1050 

  1051 
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Extended Data 1052 

Extended Data Figure 1. Integrative analysis between subcutaneous adipose tissue (SAT) 1053 

cells profiled by single nucleus methyl-3C sequencing (snm3C-seq) and single nucleus RNA 1054 

sequencing (snRNA-seq). a, Dimension reduction of cells (n=29,423) profiled by snRNA-seq and 1055 

visualized with uniform manifold approximation and projection (UMAP). b, The total number of 1056 

cells profiled by snm3C-seq and snRNA-seq stratified by the SAT cell-types. c, Co-embedding of 1057 

snm3C-seq gene-body mCG and snRNA-seq gene expression, visualized with UMAP, 1058 

highlighting the transition cell-type in red and other SAT cell-types in grey. d, Confusion matrix 1059 

comparing the concordance between the de novo snm3C-seq annotations (row) and the snRNA-1060 

seq-derived annotations (column). The confusion fraction is calculated as the multi-class confusion 1061 

matrix normalized by the cell counts per row. ASPC indicates adipose stem and progenitor cells. 1062 

 1063 

Extended Data Figure 2. Gene-body mCG and RNA expression profiles across SAT cell-type 1064 

marker genes and clustering analysis of the transition cell-type. a-f, Uniform manifold 1065 

approximation and projection (UMAP) visualization of the gene-body mCG ratio, normalized per 1066 

cell (left) and log-transformed counts per million normalized gene expression (right) for 1067 

perivascular marker gene NOTCH3 (a), ASPC marker gene COL5A1 (b), endothelial cell marker 1068 

gene EGFL7 (c), lymphoid cell marker gene CD2 (d), mast cell marker gene SLC18A2 (e), and 1069 

myeloid cell marker gene CSF1R (f). g, Gene-body hypo-methylation of adipocyte marker genes 1070 

(top 5 rows) and perivascular cell marker genes (bottom 5 rows) across adipocytes, perivascular 1071 

cells, and the transition cell-type. Dot colors represent the average gene-body mCG ratio 1072 

normalized per cell. h, Dimension reduction of cells profiled by snm3C-seq and restricted to 1073 
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adipocytes, perivascular cells, and the transition cell-type, using exclusively the 5-kb bin mCG 1074 

profiles and visualized with UMAP. ASPC indicates adipose stem and progenitor cells. 1075 

  1076 

Extended Data Figure 3. Comparisons of unique cell-type marker genes in SAT cell-types, 1077 

and biological processes and functional pathways enriched among the adipocyte marker 1078 

genes between the gene-body mCG and gene expression modalities. a, Venn diagrams showing 1079 

the number of shared and modality-specific unique SAT cell-type marker genes (adipocytes, 1080 

perivascular cells, ASPCs, myeloid cells, endothelial cells, lymphoid cells, and mast cells) between 1081 

the gene-body mCG and gene expression modalities. b-c, Dot plots showing significantly 1082 

(FDR<0.05) enriched biological processes (b) and KEGG functional pathways (c) using unique 1083 

adipocyte marker genes in gene-body mCG and gene expression modalities. The size of the dot 1084 

represents the enrichment ratio for biological processes (b) and KEGG functional pathways (c), 1085 

while the color of the dot indicates FDR (blue is highly significant) (b-c). d, Dot plots of fat cell 1086 

differentiation biological process genes (ADIPOQ, LPL, LEP, TCF7L2, AKT2, and SREBF1) that 1087 

are shared adipocyte marker genes between the mCG and gene expression modalities, showing 1088 

their gene-body mCG (left) and gene expression profiles (right) across the SAT cell-types. The 1089 

color of the dot represents the mean percentage of mCG (left, red is high) and average expression 1090 

of genes (right, blue is high), while the size of the dot represents the percentage of cells where the 1091 

gene is expressed (right). ASPC indicates adipose stem and progenitor cells and FDR, false 1092 

discovery rate. 1093 

 1094 

Extended Data Figure 4. Cell-type level hypo-methylated regions are enriched for specific 1095 

transcription factor (TF) binding motifs. We show the top five cell-type-specific TF binding 1096 
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motifs (sorted by P) that are enriched among the hypo-methylated regions of the SAT cell-types, 1097 

identified using HOMER motif enrichment analysis. ASPC indicates adipose stem and progenitor 1098 

cells. 1099 

 1100 

Extended Data Figure 5. Cell-type level differences in chromatin conformation of 1101 

subcutaneous adipose tissue (SAT). a-b, Uniform manifold approximation and projection 1102 

(UMAP) visualization of low dimensional embeddings of cells using compartment (a) and 1103 

insulation scores (d) as features, colored by the snm3C-seq annotation. Adjusted rand index (ARI) 1104 

evaluates the clustering concordance against snm3C-seq annotation. c, Heatmap visualization of 1105 

the normalized interaction contact map on chromosome 6 and its corresponding compartment 1106 

scores across the SAT cell-types. d, Horizontal stacked bar plot (left) showing the marginal 1107 

proportions of differential 100-kb bins stratified by their annotated A and B compartments in the 1108 

5 most abundant SAT cell-types and upset plot (right) showing all compartment combinations 1109 

across differential 100-kb bins in decreasing order with their corresponding percentages 1110 

(Homogeneous, Cell-type enriched, and Heterogeneous correspond to unique A or B compartment 1111 

in 0, 1, or more than 1 cell-types, respectively). e, Sankey diagram breaking down of the numbers 1112 

of differential 100-kb bins annotated as A (red) and B (blue) compartment belonging to ASPCs 1113 

(left), adipocytes (middle), and myeloid cells (right). f, Similar to e, except on perivascular cells 1114 

(left), adipocytes (middle), and endothelial cells (right). ASPC indicates adipose stem and 1115 

progenitor cells. 1116 

 1117 

Extended Data Figure 6. Cell-type specificity in interaction domains and loops. a-c, Box plots 1118 

visualizing the distribution of the number of interaction domains (a), the total number (b) and the 1119 
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average span (c) of interaction domains detected in each cell, stratified by cell-types. Asterisks 1120 

indicate the level of statistical significance of a pairwise paired Wilcoxon test against adipocytes; 1121 

*** indicates adjusted P<0.05 and n.s. denotes non-significant. d, Scatter plot showing the short 1122 

to long-range interaction ratio per cell against the number of interaction domains detected. Cells 1123 

are colored by its snm3C-seq annotation. e-f, Scatter plots showing the aggregated cell-type level 1124 

median number of UMIs detected in cells by snRNA-seq against the median number of interaction 1125 

domains (e) and the ratio of short to long-range interaction contacts (f) detected in cells by snm3C-1126 

seq, colored similarly as in d. g-h, Bar plots showing the median distance (g) and the total number 1127 

(h) of loop summits detected across the SAT cell-types (x-axis is ordered by the abundance in 1128 

snm3C-seq). ASPC indicates adipose stem and progenitor cells. 1129 

 1130 

Extended Data Figure 7. Mean gene expression of DNA methylation- and demethylation-1131 

related genes across cell-types in subcutaneous adipose tissue (SAT). a-b, Dot plot showing 1132 

expression of (a) DNA methylation genes (DNMT1, DNMT3B, and UHRF1) and (b) DNA 1133 

demethylation genes (TET2, TET3, and TDG) across subcutaneous adipose tissue (SAT) cell-1134 

types. The size of the dot represents the percentage of cells, in which a gene is expressed within a 1135 

cell-type while the color represents the average expression of each gene across all cells within a 1136 

cell-type (blue indicates a higher expression). ASPC indicates adipose stem and progenitor cells. 1137 

 1138 

Extended Data Figure 8. Abdominal obesity -associated variants are enriched for the 1139 

adipocyte A compartment. a, The clumped and thresholded variants (r2<0.1, P<0.05) used for 1140 

the adipocyte compartment PRSs for abdominal obesity (employing waist-hip-ratio adjusted for 1141 

BMI (WHRadjBMI) as a proxy) are plotted by genomic position against the -log10P from the UK 1142 
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Biobank WHRadjBMI GWAS that we used for the WHRadjBMI PRS base (n=195,863 unrelated 1143 

Europeans). SNPs landing in the adipocyte A compartment are colored blue, while SNPs landing 1144 

in the adipocyte B compartment are colored black. b, Bar plot showing the number of independent 1145 

(r2<0.1) WHRadjBMI-associated variants, passing nominal significance (P<0.05), from the 1146 

WHRadjBMI GWAS, conducted in 195,863 individuals from the UK Biobank, grouped by the 1147 

adipocyte compartment assignment.  1148 

 1149 

  1150 
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