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Abstract 

Background 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which 
can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-
assisted compressed sensing (ACS) in improving the acceleration efficiency and maintaining or enhancing the image 
quality of brachial plexus MR imaging.

Methods A total of 30 volunteers underwent 3D sampling perfection with application-optimized contrast using 
different flip angle evolution short time inversion recovery using a 3.0T MR scanner. The imaging protocol included 
parallel imaging (PI) and ACS employing acceleration factors of 4.37, 6.22, and 9.03. Radiologists evaluated the neural 
detail display, fat suppression effectiveness, presence of image artifacts, and overall image quality. Signal intensity 
and standard deviation of specific anatomical sites within the brachial plexus and background tissues were measured, 
with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) subsequently calculated. Cohen’s weighted kappa 
(κ), One-way ANOVA, Kruskal–Wallis and pairwise comparisons with Bonferroni-adjusted significance level. P < 0.05 
was considered statistically significant.

Results ACS significantly reduced scanning times compared to PI. Evaluations revealed differences in subjective 
scores and SNR across the sequences (P < 0.05), with no marked differences in CNR (P > 0.05). For subjective scores, 
ACS 9.03 were lower than the other three sequences in neural details display, image artifacts and overall image qual-
ity. There was no significant difference in fat suppression. For objective quantitative evaluation, SNR of right C6 root 
in ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of left C6 root in ACS 4.37, ACS 6.22 and ACS 9.03 was higher 
than that in PI; SNR of medial cord in ACS 6.22, ACS 9.03 was higher than that in PI.

Conclusion Compared with PI, ACS can shorten scanning time while ensuring good image quality.
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Introduction
The brachial plexus is a critical nerve network responsi-
ble for motor and sensory innervation of the upper limbs 
and scapula. Due to its complex anatomy, it is vulner-
able to a range of pathologies, including traumatic inju-
ries, congenital anomalies, inflammatory conditions, 
and tumors [1]. Magnetic Resonance Imaging (MRI) 
has emerged as the diagnostic modality of choice for 
assessing the brachial plexus, offering superior soft tis-
sue contrast and the ability to image in multiple planes 
[2]. At present, the 3D Sampling Perfection with Appli-
cation-optimized Contrast using different flip angle Evo-
lution Short Time Inversion Recovery (3D-SPACE-STIR) 
sequence is widely utilized for clinical assessments of the 
brachial plexus [3]. This sequence offers advantages such 
as multi-planar reconstruction, curved surface recon-
struction, and maximum intensity projection, which are 
invaluable for preoperative planning [4]. However, the 
extended scan times required for 3D sequences often 
lead to patient discomfort, leading to motion artifacts 
and potential scan failures.

To address these limitations and improve clinical 
examination efficiency, various acceleration technologies 
have been developed. Among these, k-space undersam-
pling techniques are commonly employed [5], includ-
ing Partial fourier (HF) acquisition, Parallel imaging (PI) 
and Compressed sensing (CS) [6]. PF acquisition, while 
effective, compromises the signal-to-noise ratio (SNR) 
by collecting only partial k-space data; PI, while utilizing 
multiple receiving coils and a specialized reconstruction 
algorithm, can introduce artifacts and noise amplification 
at high acceleration factors, thereby limiting its efficiency 
[7]. CS, leveraging the sparsity of MR images to reduce 
sampling points in k-space, is particularly suited for 3D 
sequences, which are inherently sparser and contain 
more redundant information compared to 2D images [8, 
9]. Yet, traditional CS approaches often grapple with the 
challenges of selecting optimal sparsity transforms and 
adjusting parameters [10].

Artificial intelligence-assisted compressed sensing 
(ACS) is a novel acceleration technique developed from 
CS principles, integrating aspects of PF and PI while 
incorporating a deep learning convolutional network into 
the reconstruction process. By pre-learning structural 
information from an extensive dataset of fully sampled 
MR images, ACS significantly reduces scan times while 
maintaining or even improving image quality and exami-
nation success rates [11]. Its efficacy has been demon-
strated across various organ systems, including the brain 
[12], liver [13], kidneys [14], lumbar spine [15], knee [16] 
and heart [17]. Several studies have shown that ACS not 
only substantially shortens MRI scan times compared 
to PI and traditional CS methods but also maintains or 

improves image quality and lesion detection capabilities. 
Despite these advancements, the application of ACS for 
brachial plexus imaging remains unexplored.

Therefore, this study aimed to evaluate the perfor-
mance of ACS at different acceleration factors in bra-
chial plexus imaging and compare it with traditional PI 
methods. The objectives are to assess the acceleration 
efficiency of ACS in brachial plexus MRI imaging and its 
impact on image quality, providing valuable insights into 
the potential clinical benefits of ACS in this specialized 
imaging domain.

Materials and methods
Participants
This prospective study was approved by the institu-
tional ethical review committee, and informed consent 
was obtained from all participants prior to enrollment. 
From September 2023 to October 2023, healthy subjects 
underwent brachial plexus MRI scanning using a 3.0 T 
MRI scanner. Exclusion criteria included: (1) a history of 
neck or back surgery, (2) contraindications for MRI, (3) 
inability to cooperate with MRI scanning, (4) pregnancy 
or lactation, (5) images with significant artifacts that were 
unrelated to the scanning sequence, such as those caused 
by patient motion or technical issues.

MRI protocol
All examinations were performed on a 3.0 T MRI scanner 
(United Imaging Healthcare, Shanghai, China) equipped 
with a 48-channel head and neck coil combined with a 
large flexible coil for comprehensive coverage. Volunteers 
were positioned supine in the scanner, with their heads 
entering first. Both upper and lower arms were supported 
with rice bags to ensure that the upper limbs remained 
parallel to the scanner bed. The large flexible coil was 
strategically placed to cover the upper body, integrat-
ing seamlessly with the neck coil and encompassing the 
humerus on both sides. The imaging protocol consisted 
of a non-contrast-enhanced 3D-matrix-STIR sequence. 
Both PI, reconstructed using the Generalized Autocali-
brating Partially Parallel Acquisitions (GRAPPA) method 
with an acceleration factor of 2.91, and ACS with accel-
eration factors of 4.37, 6.22, and 9.03, were employed for 
accelerated data acquisition. All sequences were obtained 
in the same order for each volunteer (PI 2.91, ACS 9.03, 
ACS 6.22, ACS 4.37). Detailed scanning parameters and 
the respective scanning times for each sequence are pre-
sented in Table 1.

ACS image reconstruction
ACS employs Convolutional Neural Networks (CNN) to 
expedite image acquisition. While CNN-based methods 
demonstrate exceptional reconstruction quality, their 
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application in clinical environments is often hindered 
by unpredictability, attributed to the networks’ opaque, 
"black-box" nature. ACS effectively mitigates this uncer-
tainty by incorporating the output from the AI module as 
a supplementary constraint within the Compressed Sens-
ing framework. This is achieved through the introduction 
of a regularization term that addresses the divergence 
between images reconstructed via traditional methods 
and those predicted by AI.

The ACS neural networks have been trained on a sub-
stantial dataset comprising two million fully sampled 
images, sourced from phantoms (2%) and human vol-
unteers (98%). The iteration process of ACS utilizes an 
architectural design based on k-space that includes mul-
tiscale sparsification. This mathematical model amalgam-
ates elements from compressed sensing, partial Fourier, 
and parallel imaging methodologies. According to simu-
lations detailed in [Zhai, R., et al., Intelligent Incorpora-
tion of AI with Model Constraints for MRI Acceleration. 
Proceedings of the 29th Annual Meeting of ISMRM [Vir-
tual]., 2021.], ACS demonstrates the capability to correct 
inaccuracies in the AI model’s outputs, aligning closely 
with the fully-sampled gold standard. Architecture of the 
deep learning-based MR reconstruction framework used 
in this study is shown in Fig. 1.

Objective quantitative evaluation
Quantitative assessments were conducted on a post-
processing workstation by a radiologist with over five 
years of experience in neuroimaging. Regions of Inter-
est (ROIs) were delineated for consistent layers across all 
four sequences. Specifically, the bilateral C6 root and the 
medial cord of the brachial plexus were selected for their 
optimal visibility, with ROIs contoured along the nerve 

structures to avoid bone and other non-relevant tissues 
[18]. Additionally, elliptical or circular ROIs measuring 
 50mm2 (for the sternocleidomastoid and subscapularis 
muscles) and  100mm2 (for background areas) were care-
fully positioned to exclude artifacts. Signal intensity (SI) 
and standard deviation (SD, indicative of noise) were 
recorded, and the signal-to-noise ratio (SNR) and con-
trast-to-noise ratio (CNR) were calculated as objective 
measures using the following formulas [19]:

Subjective qualitative rating
All images were uploaded to the PACS system, with sub-
ject information and sequence parameters anonymized. 
Two radiologists, each with over five years of diag-
nostic experience, conducted a double-blind evalua-
tion of the scans. Cases and sequences were randomly 
assigned and disordered between the radiologists. They 
assessed the anatomical details of the brachial plexus, 
efficacy of fat suppression, presence of image arti-
facts (visual disturbances such as residual aliasing and 
noise-induced artifacts, which are typical in acceler-
ated imaging), and overall image quality using a 4-point 
scale [14]: Anatomical detail display of neural struc-
ture: 1 point = poor; 2 points = fair; 3 points = good; 4 
points = very good; Fat suppression: 1 point = poor; 2 
points: fair; 3 points = good; 4 points = very good; Arti-
facts: 1 point = excessive artifacts; 2 points = substantial 
artifacts; 3 points = minor artifacts; 4 points = negligible 
or no artifacts; Overall image quality: 1 point = poor; 

SNRC6 nerve = SICC6 nerve / SDbackground;

SNRmedial cord = SImedial cord / SDbackground;

CNRC6 nerve = |SIC6 nerve − SIsternocleidomastoid| / SDsternocleidomastoid;

CNRmedial cord = |SImedial cord − SIsubscapularis| / SDsubscapularis

Table 1 Scanning parameters and time of the sequences acquired using PI and ACS

TR repetition time, TI inversion time, TE echo time, FOV field of view, BW band-width, ETL Echo train length, NEX Number of Excitation

PI ACS 4.37 ACS 6.22 ACS 9.03

TR(ms) 2500 2500 2500 2500

TI(ms) 300 300 300 300

TE(ms) 354.48 354.48 354.48 354.48

Voxel(mm) 1.0 × 1.0 × 1.0 1.0 × 1.0 × 1.0 1.0 × 1.0 × 1.0 1.0 × 1.0 × 1.0

Interpolation 1.5 1.5 1.5 1.5

FOV(mm) 400 × 352 400 × 352 400 × 352 400 × 352

Acquisition matrix 352 × 352 352 × 352 352 × 352 352 × 352

BW(Hz/pixel) 500 500 500 500

ETL 184 184 184 184

NEX 2 2 2 2

Slices 90 90 90 90

Acceleration factor 2.91 4.37 6.22 9.03

Scanning time(min:s) 5:52 3:47 2:38 1:48



Page 4 of 11Cheng et al. BMC Medical Imaging          (2024) 24:309 

2 points = fair; 3 points = good; 4 points = very good. 
Images scoring 3 or above were considered diagnostic. 
The average score from both radiologists was used unless 
discrepancies occurred, in which case a senior radiologist 
adjudicated.

Statistical analysis
Data analysis was performed using SPSS 21.0 and Med-
Calc 20.2, with results expressed as mean ± standard 
deviation or median with interquartile ranges. The SNR, 
CNR, and subjective scores for the four sequences were 
analyzed using Kruskal–Wallis or One-way ANOVA 
tests based on the distribution normality and variance 
homogeneity of the data. A p-value of less than 0.05 was 
considered statistically significant. For significant overall 
differences, pairwise comparisons were conducted with 
a Bonferroni-adjusted significance level. Inter-observer 
agreement was evaluated using Cohen’s weighted kappa 
(κ) [20], with the following interpretations: excellent 
(0.80–1.00), good (0.60–0.80), moderate (0.40–0.60), fair 
(0.20–0.40), and poor (0.00–0.20).

Results
Demographic characteristics
A total of 31 healthy subjects underwent MRI scanning. 
One subject was excluded due to poor image quality 
(unrecognized neck coil leaded to poor signal-to-noise 
ratio), resulting in a final sample size of 30 volunteers. 
The study group consisted of 7 males and 23 females, 
with an age range of 23–68 years and an average age of 
38.35 ± 13.22 years.

Scanning time
The scanning times of the four sequences were as fol-
lows: PI = 352s; ACS 4.37 = 227s; ACS 6.22 = 158s; ACS 
9.03 = 108s. This corresponds to a reduction in scanning 
time of 35.5%, 55.1%, and 69.3%, respectively, when com-
pared to the PI sequence.

Quantitative findings
The objective quantitative evaluation results are shown 
in Table 2 and illustrated in Figs. 2 and 3. Significant dif-
ferences in SNR were observed across the four sequences 

Fig. 1 Architecture of the deep learning-based MR reconstruction framework used in this study
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(p < 0.001), while no significant differences in CNR were 
found (p > 0.05). Pairwise comparisons revealed that ACS 
6.22 and ACS 9.03 exhibited higher SNRs for the right 
C6 root compared to PI, with ACS 6.22 (p = 0.001) and 
ACS 9.03 (p < 0.001) showing significant improvements. 
Similarly, for the left C6 root, all ACS sequences outper-
formed PI in SNR (ACS 4.37 vs. PI, p = 0.024; ACS 6.22 
vs. PI, p < 0.001; ACS 9.03 vs. PI, p < 0.001), with ACS 
9.03 also surpassing ACS 4.37 (p = 0.034). Regarding the 
bilateral medial cord’s SNR, ACS 6.22 and ACS 9.03 were 
superior to PI (ACS 6.22 vs. PI, p = 0.005 (right)/0.002 
(left); ACS 9.03 vs. PI, p < 0.001) with ACS 9.03 also out-
performing ACS 4.37 (p = 0.013 (right)/0.007 (left)). No 

significant differences were found between any other pair 
of sequences.

Qualitative findings
The average subjective scores of the two observers are 
shown in Table 3. No significant differences were found 
in fat suppression across the sequences, but significant 
differences were noted in the display of neural detail, 
presence of image artifacts, and overall image qual-
ity (p < 0.001). Pairwise comparisons revealed that ACS 
9.03 was inferior in neural detail visualization, image 
artifacts, and overall image quality compared to the 
other sequences. Figures 4 and 5 depict these subjective 

Table 2 Quantitative evaluation of the four sequences

PI ACS 4.37 ACS 6.22 ACS 9.03 p value of Kruskal–
Wallis or ANOVA

SNR

 Right C6 nerve SNR 44.78 (35.54, 52.20) 52.45 (42.67, 64.68) 58.02 (50.43, 66.48) 68.91 (53.34, 76.82)  < 0.001

 Left C6 nerve SNR 46.25 (41.38, 49.93) 58.10 (48,34, 62.11) 62.15 (53.84, 69.77) 72.54 (59.74, 82.11)  < 0.001

 Right medial cord SNR 29.34 (23.62, 35.03) 35.04 (28.68, 38.92) 37.40 (31.99, 47.20) 43.40 (35.50, 51.40)  < 0.001

 Left medial cord SNR 31.57 (23.33, 36.26) 34.11 (29.57, 41.89) 40.82 (32.28, 49.31) 46.57 (38,56, 54.37)  < 0.001

CNR

 Right C6 nerve CNR 16.04 (13.05, 21.10) 14.21 (10.54, 16.94) 14.94 (11.66, 18.53) 13.64 (11.76, 16.34) 0.102

 Left C6 nerve CNR 11.79 (9.42, 16.47) 12.03 (8.91, 15.88) 12.03 (9.21, 16.14) 12.96 (8.55, 15.74) 0.981

 Right medial cord CNR 4.72 (3.47, 6.61) 3.82 (2.98, 5.98) 5.00 (3.91, 7.03) 5.29 (3.06, 6.48) 0.401

 Left medial cord CNR 5.29 ± 2.95 4.39 ± 2.34 5.08 ± 2.75 5.16 ± 3.05 0.598

Fig. 2 SNR of PI and ACS images in different ROIs. Numbers above the column represents the p-value between two sequences with statistical 
difference
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evaluations, with Fig.  4 illustrating a comparative view 
of the four sequences in a 35-year-old female. Notably, 
images from the ACS 9.03 sequence exhibited poorer 
neural detail and increased blurriness, diminishing diag-
nostic confidence.

Kappa consistency score
As shown in Table  4, inter-observer agreement on sub-
jective scores was found to be good across sequences, 
with a kappa (κ) score greater than 0.60.

Discussion
Throughout the evolution of brachial plexus imaging, 
various MRI sequences such as 2D Dixon, 2D STIR, and 
DWI have been employed, each offering unique insights 
into nerve structure and pathology [21]. Despite the 
availability of these techniques, 3D sequences are widely 
recognized for their superior diagnostic effectiveness 
[22]. While 2D sequences can delineate the peripheral 
nerve bundle structure, 3D sequences offer isotropic 
acquisition, allowing for a more precise representation 
of nerve morphology [23]. Additionally, the enhanced 
resolution and contrast of 3D sequences facilitate the 
simultaneous visualization of all major peripheral nerve 
branches, aiding radiologists in assessing nerve involve-
ment [24]. However, the lengthy scan times associated 
with 3D peripheral nerve imaging—often exceeding 
six minutes—pose significant challenges for patient 
compliance, increasing the risk of motion artifacts. 

Reducing scan times without compromising image qual-
ity remains a critical challenge in clinical practice. This 
study employed three different acceleration factors of 
ACS (low: 4.37, medium: 6.22, high: 9.03) to image the 
brachial plexus nerve and compared them with PI. The 
scanning time and image quality of each sequence were 
observed and compared, leading to the selection of the 
optimal acceleration factor for clinical scanning of the 
brachial plexus nerve.

Fat suppression is crucial in brachial plexus imaging as 
it differentiates nerves from surrounding fat, muscle, and 
blood vessels, thereby enhancing image clarity [25], and 
reducing artifacts [26]. In this study, STIR was chosen 
over other fat suppression techniques due to the inho-
mogeneity of the main magnetic field (B0) in the shoul-
der and neck area, which can limit the effectiveness of 
B0-dependent methods [27]. The principle of STIR’s fat 
suppression is largely unaffected by B0 field inhomogene-
ity, making it particularly well-suited for brachial plexus 
imaging.

Upon determining the sequence selection, four 
sequences were scanned using different acceleration fac-
tors: PI, ACS 4.37, ACS 6.22, and ACS 9.03. The ACS 
sequences achieved a reduction in scanning time by 
35.5%, 55.1%, and 69.3%, respectively, compared to PI. 
The reconstruction time for ACS was notably short, with 
reconstructed images available immediately after scan-
ning. This efficiency in reducing scanning time is consist-
ent with previous studies on ACS [12–17].

Fig. 3 CNR of PI and ACS images in different ROIs. There is no statistical difference between any two sequences
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Fig. 4 Subjective scores representing image quality of PI and ACS images

Fig. 5 (A1)(A2), PI; (B1)(B2), ACS 4.37; (C1)(C2), ACS 6.22; (D1)(D2), ACS 9.03. Orange arrows in (A1)(B1)(C1)(D1) indicate right C6 nerve and left C6 
nerve. Blue arrows in (A1)(B2)(C2)(D2) indicate right medial cord and feft medial cord. It can be observed that ACS 9.03 shows poor neural details 
and blurs compared to other images, which leads to insufficient diagnostic confidence
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For quantitative evaluation, the C6 root and the medial 
cord of the brachial plexus—crucial for innervating the 
forearm muscles—were selected as areas for measure-
ment. The analysis demonstrated that the signal-to-noise 
ratio (SNR) for the four sequences showed an increasing 
trend across these nerves, with ACS 6.22 and ACS 9.03 
showing statistically higher SNR compared to PI. This 
enhancement is attributed to the superior suppression of 
background noise with increased acceleration factors in 
ACS, consistent with the results of Wang et al.’s study on 
the knee joint [16].

CNR essentially reflects the contrast delineating the 
signal disparity between the region of interest and the 
background. The discernibility of objects against the 
background hinges on their size and contrast. In this 
study, the sternocleidomastoid and subscapularis mus-
cles were chosen as the background to maintain a stable 
signal value for these tissues. The findings revealed no 
significant difference in CNR among the four sequences, 
suggesting that both PI and ACS sequences effectively 
differentiate the nerve from surrounding tissues without 
compromising image contrast.

There have been a few previous studies using accel-
eration techniques for brachial plexus imaging. A study 
on deep learning compressed sensing (DLCS) [28] dem-
onstrated that sequences with an intermediate accelera-
tion factor could achieve higher SNR and CNR without 
reducing scan time, while sequences with high accel-
eration factors matched the performance of traditional 
sequences but halved the scan time. This improvement 
is attributed to advanced denoising and undersampling 
strategies enabled by deep learning. The ACS technology 
utilized in this study, incorporating a deep learning con-
volutional network, emphasizes AI’s role in enhancing 
image quality by reducing noise and efficiently sampling 
k-space, indirectly shortening scan times without com-
promising image contrast. Another previous study [29] 
used 3D magnetic resonance neurography (MRN) acqui-
sitions with deep learning reconstruction (DLR) for bra-
chial plexus imaging. The results indicate that faster 3D 
MRN scans reconstructed with DL were similar to stand-
ard exams with regard to discrete measurements of image 
quality, including SNR, edge sharpness, bulk motion, and 
nerve conspicuity, as well as subjective assessments of 

nerve signal intensity, size, and morphology. This is simi-
lar to our research findings. But the fastest scanning time 
for this study still reached 4 min, which is 52% longer 
than the optimal time we studied. Meanwhile, applying 
this technology, k-space data needs to be reconstructed 
using a separate workstation, which takes about 2 min, 
This will increase the time cost and computational load 
on the machine. ACS technology can perform automatic 
reconstruction on the host in no more than 1 min, result-
ing in better overall efficiency. Pribowo et  al. [26] also 
scanned 10 volunteers to explore the effectiveness of 
CS in non-contrast-enhanced brachial plexus imaging, 
revealing a premise similar to the current research. Their 
findings highlighted that CS-enhanced images exhibited 
superior SNR and CNR, leading to improved definition 
at the edges of images. The present study, employing 
ACS, advances beyond traditional CS techniques. While 
ACS did not surpass PI in terms of CNR, it matched PI’s 
performance, ensuring high-quality imaging across vari-
ous acceleration factors. Furthermore, it was noted that 
MIP reconstruction for brachial plexus could introduce 
unwanted signals from background tissues and overlap-
ping nerves, potentially skewing image metric measure-
ments. Consequently, MIP reconstructions were omitted 
in favor of direct measurements from the original images, 
ensuring more accurate and reliable evaluations.

In terms of subjective scores, ACS 9.03 underper-
formed relative to the other three sequences in terms of 
neural detail display, image artifacts, and overall image 
quality. This outcome illustrates that while higher accel-
eration factors in ACS may improve objective quanti-
tative metrics, they can adversely affect neural detail 
visualization, leading to blurred images and reduced 
diagnostic confidence (arrow in Fig.  5). Research has 
indicated that excessive acceleration factors in ACS can 
result in inadequate sparse sampling, potentially caus-
ing aliasing artifacts [30]. Additionally, the effective 
fat suppression observed across all sequences (> 3.5), 
attributed to the use of STIR, which minimally affects 
the uniformity of the main magnetic field, showed no 
significant differences, suggesting fat suppression does 
not influence the choice of ACS acceleration factor. 
Consequently, selecting an optimal acceleration fac-
tor involves balancing various aspects of image qual-
ity. The study advocates for a medium acceleration 
factor of 6.22 as the preferred choice for clinical scan-
ning to ensure high-quality imaging outcomes. While 
our findings indicate that higher acceleration factors 
may lead to decreased visual quality, this study did not 
directly evaluate the impact on diagnostic confidence 
for detecting specific pathologies. Therefore, caution 
should be exercised when extrapolating these results to 
clinical practice. Further studies involving patients with 

Table 4 Interobserver agreement levels for qualitative scores (κ)

PI ACS 4.37 ACS 6.22 ACS 9.03

Neural details diplay 1.000 1.000 1.000 0.789

Fat sat 1.000 1.000 0.874 0.760

Artifacts 1.000 0.944 0.861 0.603

Image quality 1.000 1.000 0.938 0.625
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known pathologies are needed to determine whether 
decreased image quality at higher accelerations affects 
diagnostic sensitivity and specificity.

This study has several limitations. First, the small 
sample size and single-center nature of the data col-
lection might introduce bias to the conclusions. How-
ever, the consistency in image evaluation suggests that 
the findings could be cautiously generalized. None-
theless, larger multi-center studies are necessary to 
mitigate data bias and enhance the reliability of the 
conclusions. Second, the study primarily examines 
image quality across different acceleration factors using 
volunteer samples, thus not addressing the potential 
effects of ACS on lesion detection and diagnostic effi-
cacy for brachial plexus-related conditions. Third, the 
study’s categorization of acceleration factors into low, 
medium, and high represents a broad classification. 
Future research should explore additional accelera-
tion factors and include comparative studies with CS to 
refine guidance on the optimal acceleration factor for 
ACS in brachial plexus imaging. Forth, all sequences 
were acquired in the same order for each volunteer. 
This consistent ordering may introduce a potential bias, 
as sequences performed later could be more prone to 
motion artifacts due to increased patient discomfort or 
fatigue. Future research should consider randomizing 
the order of sequences to minimize systematic effects 
on image quality.

In summary, ACS has demonstrated a significant 
reduction in MRI scanning times while maintaining high 
image quality. For brachial plexus imaging, an ACS accel-
eration factor of 6.22 is recommended, effectively reduc-
ing scanning duration to under three minutes. However, 
further research involving patients with pathologies is 
necessary to validate the clinical utility of this accelera-
tion method. Future studies should focus on assessing the 
diagnostic accuracy of ACS across different conditions 
to determine its effectiveness in clinical practice. This 
finding introduces a novel and efficient scanning proto-
col for clinical application, potentially enhancing patient 
throughput and diagnostic efficiency.
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