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Abstract
Background  Tumor Mutational Burden (TMB) have emerged as pivotal predictive biomarkers in determining 
prognosis and response to immunotherapy in colorectal cancer (CRC) patients. While Whole Exome Sequencing 
(WES) stands as the gold standard for TMB assessment, carry substantial costs and demand considerable time 
commitments. Additionally, the heterogeneity among high-TMB patients remains poorly characterized.

Methods  We employed eight advanced machine learning algorithms to develop gene-panel-based models for TMB 
estimation. To rigorously compare and validate these TMB estimation models, four external cohorts, involving 1,956 
patients, were used. Furthermore, we computed the Pearson correlation coefficient between the estimated TMB and 
tumor neoantigen levels to elucidate their association. CD8+ tumor-infiltrating lymphocyte (TIL) density was assessed 
via immunohistochemistry.

Results  The TMB estimation model based on the Lasso algorithm, incorporating 20 genes, exhibiting satisfactory 
performance across multiple independent cohorts (R2 ≥ 0.859). This 20-gene TMB model proved to be an independent 
prognostic indicator for the progression-free survival (PFS) of CRC patients (p = 0.001). DNAH5 mutations were 
associated with a more favorable prognosis in high-TMB CRC patients, and correlated strongly with tumor neoantigen 
levels and CD8+ TIL density.

Conclusions  The 20-gene model offers a cost-efficient approach to precisely estimating TMB, providing prognosis in 
patients with CRC. Incorporating DNAH5 within this model further refines the categorization of patients with elevated 
TMB. Utilizing the 20-gene model facilitates the stratification of patients with CRC, enabling more precise treatment 
planning.
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Background
Colorectal cancer (CRC) holds a prominent position 
in global oncology, with its incidence and complexity 
demanding rigorous scientific attention. The disease’s 
heterogeneity, in both molecular and clinical setting, 
accentuates the urgency for identifying and leveraging 
precise biomarkers [1]. Such biomarkers can critically 
inform patient management, therapeutic stratification, 
and prognostication. Currently, Tumor Mutational Bur-
den (TMB) have emerged as pivotal predictive bio-
markers in determining prognosis and response to 
immunotherapy, especially with the emphasis on immu-
notherapeutic modalities like CRC [2–4]. Previous 
studies demonstrated that patients with CRC who have 
high TMB had a better prognosis than those with low 
TMB [5]. On the other hand, tumor neoantigen burden 
(TNB) specifically quantifies the number of neoantigens 
expressed by a tumor. Since not all mutations lead to the 
formation of neoantigens, TNB can be considered a sub-
set of TMB. Compared to TMB, TNB provides a more 
focused assessment of a tumor’s immune potential [6].

Currently, the primary method for assessing TMB 
hinges on whole-exome sequencing (WES) utilizing 
next-generation sequencing (NGS) technology. Yet, the 
prohibitive costs and extended processing times asso-
ciated with WES have limited its clinical application. 
Consequently, targeted NGS on expansive pan-cancer 
gene panels (typically consisting of hundreds of cancer-
related genes), such as MSK-IMPACT, F1CDx, is begin-
ning to attract attention for TMB estimation [7], on 
which the mutation burdens can be used to estimate the 
global TMB in tumor cells. Notably, a significant portion 
of these genes does not exhibit direct association with 
TMB [8]. Furthermore, due to the pronounced variability 
in mutational profiles across diverse cancer types, these 
expansive panels often fall short in their ability to be pre-
cisely tailored for a specific cancer type [9].

These existing researches catalyzed our explora-
tion into an alternative, more agile yet equally rigorous, 
avenues for TMB assessment. In today’s era, marked 
by advancements in computing, machine learning 
methods have emerged as a vital tool for building bio-
medical predictive models. Its ability to learn through 
complex biological data, recognize subtle patterns, and 
provide accurate predictions makes it especially valuable 
in understanding and interpreting genomic data [10]. 
Recently, the biomedical field has witnessed a growing 
adoption of machine learning to enhance clinical deci-
sion-making and healthcare delivery [11, 12]. Embracing 
this paradigm, we’ve ventured into develop and test sev-
eral cost-effective models using machine learning, pre-
cisely engineered for TMB estimation.

In this research, we initiated a comprehensive evalua-
tion of various machine learning algorithms, testing their 

efficacy in several distinct cohorts’ datasets, focusing on 
estimation model specifically for TMB evaluations in 
patients with CRC. Impressively, the best model requires 
only a panel of 20 genes to deliver insightful assessments 
of TMB and the prognosis for patients with CRC. Nota-
bly, our 20-gene-panel-based model showcased a strong 
correlation between TMB and neoantigen levels. Fur-
thermore, our model elucidated those mutations in the 
DNAH5 gene corresponded to a more favorable prog-
nosis for those patients with CRC who have high TMB. 
These patients were observed to have a higher presence 
of neoantigens and an increased density of CD8+ tumor-
infiltrating lymphocytes (TILs), suggesting a more robust 
immune response.

In summary, cancer researchers are constantly search-
ing for accurate and efficient tools to develop appropriate 
therapeutics for colorectal cancer. Our 20-gene-panel-
based model, which combines computational techniques 
informed by prior genetic knowledge, is a definitive out-
come of these efforts, as it has been tested and shown to 
be effective.

Methods
Dataset source
Dataset TCGA
The colorectal cancer cohort from The Cancer Genome 
Atlas (TCGA) was sourced from ​h​t​t​​p​s​:​/​​/​p​o​​r​t​​a​l​.​g​d​c​.​c​a​n​
c​e​r​.​g​o​v​/​​​​​. This TCGA dataset comprised Whole Exome 
Sequencing (WES) data from 586 samples, transcrip-
tomic (RNA-Seq) data from 521 samples, and clinical 
information of 552 patients.

Dataset ICGC
We integrated genomic and clinical data for 322 CRC 
samples from the International Cancer Genome Consor-
tium (ICGC) available at https://dcc.icgc.org/.

Dataset Jessica et al. and DFCI
From the cBioPortal database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​c​b​i​o​p​o​r​t​a​
l​.​o​r​g​/​​​​​)​, we obtained the Jessica cohort, encompassing 
genomic and clinical data for 281 patients, and the DFCI 
cohort, published in 2016, which includes details on 619 
patients with CRC.

Dataset FAHNU
The FAHNU cohort involved 148 primary patients with 
CRC who underwent surgical treatment (from 2022 to 
2023). For these patients, both tumor tissues and periph-
eral blood mononuclear cell (PBMC) were subjected to 
Whole Exome Sequencing (WES). Furthermore, 148 
tumor tissues and 148 paired adjacent normal tissues 
were also processed for RNA-Seq.  All samples were 
stored at -80 °C.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
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All these steps were conducted under the approval and 
guidance of the ethics committee of the First Affiliated 
Hospital of Nanchang University, Nanchang, China. The 
approval number is 2022-CDYFYYLK-06-012. All proce-
dures were conducted in strict accordance with the Dec-
laration of Helsinki or equivalent ethical principles. Also, 
the informed consent in written form was obtained from 
all participating patients. All relevant clinical informa-
tion from the cohorts has been compiled and structured, 
with one sample per patient. This includes gender, age, 
tumor location, histological staging, Microsatellite Insta-
bility (MSI) status, and DNA Polymerase Epsilon (POLE) 
mutation information. The MSI status was assessed by 
professional pathologists using immunohistochemistry, 
while the POLE mutation data was obtained through 
WES analysis. Our method used the TCGA cohort to 
build the initial models for TMB estimation. The sub-
sequent validation of the TMB estimation model was 
executed using the other four distinct cohorts. The study 
design and algorithm for patient inclusion were detailed 
in Supplementary Fig. S1.

Whole-exome sequencing (WES) and transcriptome 
sequencing (RNA-Seq)
WES and RNA-seq were performed by Wuhan IGENE-
BOOK Biotechnology Co., Ltd. for library construc-
tion and sequencing. In brief, total genomic DNA was 
extracted using a genomic DNA kit (QT-1001, IGENE-
BOOK Biotechnology, Wuhan, China) according to the 
manufacturer’s protocol. The TRIzol (RN0102, Aidlab 
Biotechnologies, Beijing, China) method was used to 
extract RNA from fresh frozen tissue. Whole-exome 
libraries were constructed using the AIExome Human 
Exome Panel V3 - Tumor (T600V1ST, iGeneTech Bio-
science, Beijing, China) Enrichment Kit and stored in an 
elution buffer. RNA samples were reverse-transcribed 
to cDNA and then stored. All nucleic acid samples were 
sequenced on the BGI Genomics Co., Ltd MGISEQ-T7 
platform using 150-bp double-ended reads (150 PE).

Whole-exome sequencing data analysis
The WES data were quality-controlled using FastQC 
(version 0.12.1) [13], and then the fastp (version 0.23.2) 
software was used to remove adapters and sequences 
of poor quality [14]. Reads were mapped to a GRCh38/
hg38-based reference genome using Burrows–Wheeler 
Aligner (v.0.7.17) [15]. The GATK (version 4.2.6.1) best 
practice guidelines were referred to process bam files 
after alignment [16]. Non-synonymous mutations were 
identified using MuTect2 (version 4.1). The variants were 
filtered and annotated using the variant effect predictor 
tools (version 106) [17]. The vcf files were converted to 
the maf format and finally imported into the R package 
maftools (version 2.16.0) for further analysis [18].

Transcriptome sequencing data analysis
The RNA-seq data were quality controlled using fastp 
(version 0.23.2) [14] and then aligned to the GRCh38/
hg38 reference genome using STAR (version 2.7.2b) 
[19]. Finally, transcripts were quantified using TPMCal-
culator (version 0.0.4) [20]. A comprehensive analysis of 
immune–oncology signatures was performed using the 
R package IOBR (version 0.99.9) [21]. The relative levels 
of tumor-infiltrating immune cells were assessed using 
CIBERSORT (https:/​/cibers​ort.sta​nfor​d.edu).

TMB estimation model construction
Candidate gene filtering and modelling were performed 
using the genomes of 586 CRC samples from the TCGA 
cohort. Genes with a mutation frequency ≥ 5% and a sig-
nificant difference in TMB between patients with the 
mutated gene and those with a wild-type counterpart 
were considered TMB-associated genes. Specifically, 
mutation frequency was defined as the percentage of 
patients with that gene mutated. Mutant and wild-type 
groups were compared for differences in TMB between 
the two groups using the Wilcoxon signed rank test, and 
a Bonferroni-corrected p-value < 0.05 was considered 
statistically significant. The mutation matrix for the non-
synonymous mutations was constructed with reference 
to previous studies [22].

The TCGA cohort was randomly partitioned in a 7:3 
ratio, with 70% of the samples used for model train-
ing and the remainder 30% for internal validation of 
the model. The eXtreme gradient boosting (XGBoost) 
regression model was trained on an A30 GPU using the 
XGBoostRegressor function from the xgboost Python 
package. The other seven regression models were derived 
from the scikit-learn library. The recursive feature elimi-
nation (RFE) model used a Bayesian information crite-
rion (BIC) to select features, while the other models were 
selected based on ranking the importance of the features. 
The optimal parameters for all of the regression models 
were obtained by using the GridSearchCV function and 
use five-fold cross-validation for each model. All TMB 
estimation models were available at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​c​o​m​/​
f​a​n​g​f​y​y​/​C​R​C​-​T​M​B​-​M​L​​​​​. The fit of the regression model 
was measured in terms of the R2 value. For each fixed 
number of genes condition, each model was repeated 
1,000 times, and R2 values were calculated. The average 
of all R2 values was used to assess the fit of the model 
at the specified number of genes. Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) are used as 
other metrics to evaluate the performance of the regres-
sion model.

Segmented linear regression analysis was conducted 
on the model performance curves using the ‘segmented’ 
package in R (version 1.6-4) to determine the point of 
stability in model fit. The ‘surv_cutpoint’ function from 

https://cibersort.stanford.edu
https://github.com/fangfyy/CRC-TMB-ML
https://github.com/fangfyy/CRC-TMB-ML
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the ‘survminer’ package in R, version 0.4.9, was used to 
calculate potential cut points for the 20-gene TMB, with 
the objective of identifying thresholds that result in the 
most significant differences in survival outcomes among 
the groups.

HLA typing and tumor neoantigen burden estimation
WES data from patients were analyzed for HLA typing 
using HLA-HD (version 1.4.0) software [23]. Subsequent 
analysis was performed using seq2neo (version 2.1) soft-
ware [24], a neoantigen prediction tool. WES and RNA-
seq matched bam files and HLA typing results for each 
patient were used as inputs to this software. The mutant 
peptides with half-maximal inhibitory concentration 
(IC50) binding affinity < 500 nM, immunogenicity > 0.5, 
transcripts per million (TPM) > 0, tumor antigen process-
ing (TAP) > 0 and high expressed in tumor tissues were 
defined as tumor neoantigens, whereas mutant peptides 
with IC50 < 50 nM were further defined as high-affinity 
tumor neoantigens. The amounts of tumor neoantigen 
and high-affinity tumor neoantigen in each patient were 
defined as tumor neoantigen burden (TNB) and high-
affinity tumor neoantigen burden (HTNB), respectively.

CD8+ tumor-infiltrating lymphocyte (TIL) density
Colorectal cancer tissue samples were collected at the 
First Affiliated Hospital of Nanchang University (Nan-
chang, China), written informed consent was obtained 
from all patients, and the samples were examined and 
diagnosed by pathologists. The assays were performed 
using a universal immunohistochemistry kit (PV-6000, 
ZSGB-BIO, Beijing, China). Tissue sections were stained 
with antibodies against CD8 (1:100, ET1606-31, Huabio, 
Hangzhou, China). Following the established protocol, 
CD8+ TILs were identified through immunohistochemi-
cal staining of the tumor tissue. The CD8+ TIL density 
was determined by calculating the percentage of CD8 
staining within the tumor region [25, 26].

Statistical analysis and visualization
The D’Agostino-Pearson test was used to assess whether 
the data were normally distributed. Non-parametric tests 
were used for data that did not pass the D’Agostino-Pear-
son normality test. The parametric or non-parametric 
t-tests was employed to investigate differences between 
two distinct groups, whereas for comparing three groups, 
parametric or non-parametric ANOVA (Analysis of Vari-
ance) was the method of choice. The chi-squared test 
was used to analyze differences in clinicopathological 
characteristics among different subgroups. Furthermore, 
Pearson correlation analysis was performed to assess 
the linear association between two continuous variables. 
Kaplan–Meier survival analysis and visualization was 
performed using the R package survminer (version 0.4.9). 

Multivariable Cox proportional hazard analysis was con-
ducted using the coxph function from R package survival 
(version 3.5-5). Due to violation of the proportional haz-
ard assumption, time-dependent covariate Cox models 
were used to model the association between 20-gene 
TMB and PFS. The forest diagram was visualized using 
the R package forplo (version 0.2.5). All data were statisti-
cally analyzed and visualized based on R (version 4.2.3) 
or GraphPad Prism 9.5. A p-value < 0.05 was recognized 
as statistically significant.

Results
Construction and assessment of machine learning-driven 
TMB estimation model
From the First Affiliated Hospital of Nanchang Univer-
sity (FAHNU), 148 patients with primary CRC were 
obtained with surgically resected tumors, adjacent nor-
mal tissue samples, and PBMCs were also collected from 
these patients. The FAHNU cohort served as the basis for 
predicting cancer neoantigens by synergistically analyz-
ing RNA-Seq and WES data (Fig. 1a). A comprehensive 
flow diagram illustrating the entire model creation and 
subsequent validation can be found in Fig.  1b. Somatic 
mutation data for patients with CRC were sourced from 
the TCGA database. Subsequently, a mutation matrix 
was constructed, encompassing 17,883 genes across 586 
patients, specifically targeting non-synonymous muta-
tions. Based on the criteria which stipulated the mutation 
frequency of ≥ 5% and an association of the gene muta-
tion with TMB (p < 0.05, unpaired t test), a compilation 
of 468 CRC-associated TMB-related genes were curated 
(Supplementary Table S1). Among the 468 genes, TTN, 
SYNE1, PIK3CA, MUC16, and FAT4 emerged as the 
dominantly mutated genes with mutation frequencies 
surpassing 20% (Fig. 2a). For the objective of constructing 
the TMB estimation model, the mutation matrix of these 
468 genes was employed.

We employed eight distinct machine learning mod-
els to discern the most optimal method for TMB esti-
mation. These models encompassed elastic networks 
(ElasticNetCV), Lasso Regression, Linear Regression, 
Random Forest, Recursive Feature Elimination (RFE), 
Ridge Regression, Support Vector Regression (SVR), 
and XGBoost. Every model underwent 1,000 iterations 
for each stipulated gene number, and the consequent 
R2 scores were assessed in the internal validation set, as 
depicted in Fig. 2b (Lasso Regression model) and Supple-
mentary Fig. S2 (other models).

As anticipated, when the incorporated number of 
genes increased, the performance metrics of all models 
began to plateau, reaching a level of consistency. Except 
for the random forest and XGBoost models, the perfor-
mance trajectories of the other six were largely parallel, 
particularly as the gene count ascended (See Fig. 2c). To 
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decipher the threshold where the model performances 
began to reach equilibrium, segmented linear regression 
was adopted on the model R2 value trajectories.

A pivotal observation was that the Lasso model com-
menced its performance stabilization at the 20-gene 
markers, with an average R2 value of 0.95. The Elastic-
NetCV model performance trajectory was nearly analo-
gous to that of Lasso, showing a consistent trajectory at 
31 genes, archiving an R2 value of 0.949. We noted that 
when the number of genes reached 38, ElasticNetCV 
started to perform slightly better than Lasso (Supplemen-
tary Fig. S3a). However, when focusing on models with 
minimal gene inclusions, the Lasso model yielded the 
best performance as shown in Fig. 1d. From the insights 
derived from the TCGA training set, we inferred that 
the Lasso model is the most appropriate choice for TMB 
estimation.

Construction and validation of the 20-gene-panel-based 
TMB estimation model in patients with CRC
Aiming to predict TMB with a minimal number of genes 
and reduced sequencing expenses, we focused our con-
struction on the Lasso model’s breakpoint on a panel of 
20 genes, which showed the optimal result (p < 0.0001, 
unpaired t test, Fig.  3a). The 20 genes in the panel that 
leads to the optimal Lasso-based TMB prediction model 
are: DNAH3, MUC5B, DNAH5, FAT4, FLNC, MUC16, 
FAT1, ADGRV1, CREBBP, NEB, OBSCN, LRP1, TTN, 
MKI67, TENM3, DNAH17, DYNC1H1, MDN1, FCGBP, 
and DNAH1 (Fig. 3b).

When compared our 20-gene panel with the renowned 
pan-cancer TMB prediction panels, like MSK-IMPACT 
and F1CDx, we observed a distinctive variance. Only a 
fraction of genes was explicitly tied to CRC mutational 
load (n = 19, Supplementary Fig. S3b and Supplementary 
Table S2). This underscores an evident gap in these pan-
cancer panels when it comes to capturing TMB-associ-
ated genes specifically relevant to colorectal cancer. Of 
the genes in our panel, merely CREBBP and FAT1 are 
represented in the other pan-cancer panels (Supplemen-
tary Fig. S3b).

Evaluating the 20-gene-panel-based TMB estimation 
model across multiple CRC cohorts
To further validate the 20-gene-panel model, we ventured 
to test it against four other independent CRC cohorts. 
Detailed insights regarding these cohorts are available 
in Supplementary Tables S3 and S4. The 20-gene-panel-
based TMB prediction model showed commendable per-
formance across all the five cohorts: TCGA (R2 = 0.967), 
ICGC (R2 = 0.985), Jessica (R2 = 0.933), DFCI (R2 = 0.859), 
and FAHNU (R2 = 0.985; Fig. 3c).

To enhance our research, we employed eight differ-
ent machine learning algorithms to select various panels 
consisting of 20 genes, in an attempt to devise the opti-
mal prediction model. The features and parameters of 
all models are specified in Supplementary Table S5. Of 
all the models, ElasticNetCV and the Lasso model stood 
out as the two models with the best outcomes, while the 
Lasso model archived the best performance in nearly all 

Fig. 1  Flowchart of the study design. (a) Flowchart of the establishment process for the FAHNU cohort. (b) Flowchart of the data analysis process
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cohorts (Fig. 3d and Supplementary Table S6). This was 
further corroborated by the overlapping genes between 
the two panels selected by Lasso and ElasticNetCV, 
respectively: eight out of 20 genes (ADGRV1, DNAH5, 
FAT1, FAT4, MUC16, NEB, OBSCN, and TTN) were 
common in these two panels.

We have conducted a side-by-side comparison of our 
20-gene panel with established commercial panels, 
F1CDx and MSK-IMPACT. Our analysis revealed a sig-
nificant correlation between the 20-gene based TMB 
and TMB estimates derived from the F1CDx (R = 0.8950, 
Fig.  3e) and the MSK-IMPACT (R = 0.9121, Fig.  3f ) 

Fig. 2  Machine learning-based TMB estimation model building and evaluation. (a) The waterfall plot of TMB-related genes in patients with CRC, showing 
the top 30 genes ranked by mutation rate. (b) Box plots show the selected number of genes and the corresponding R2 scores based on the Lasso model. 
(c) Growth curves of the mean R2 values for different TMB estimation models. (d) The scatter plot shows the number of genes and the corresponding 
mean R2 values for the eight TMB estimation models when they tend to stabilize
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panels. The diagnostic performance of our panel was 
consistent with these commercial assays across all five 
independent cohorts, as shown in Fig. 3g. Beyond CRC, 
our 20-gene panel proved effective in estimating TMB in 
other cancers such as pancreatic, glioma, cervical, and 
prostate cancers (Supplementary Fig. S3c). Crucially, the 

panel was able to accurately estimate TMB in patients 
with CRC with POLE mutations—often indicative of very 
high TMB levels (p < 0.0001, Supplementary Fig. S3d)—
and provided reliable TMB estimates in both Microsatel-
lite Stable (MSS) and MSI patients with POLE mutations 
(p < 0.01, Supplementary Fig. S3e). These results highlight 

Fig. 3  20-gene TMB estimation model construction and validation. (a) Box plots illustrate the R2 values of different TMB estimation models when gene 
number is 20. R2 values—dependent variables; models-independent variables. ****p < 0.0001, the p-value was determined using unpaired t-tests. (b) 
Genes and corresponding parameters used in the Lasso-based 20-gene TMB estimation model. (c) Lasso-based 20-gene estimated mutation burden 
versus actual mutation burden validated in TCGA (n = 586), ICGC (n = 322), Jessica et al. (n = 281), DFCI (n = 619) and FAHNU (n = 148) cohorts. Estimated 
mutation burden—dependent variables; Actual mutation burden-independent variables. (d) Performance of eight TMB estimation models in different 
CRC cohorts under the condition that the number of genes is set to 20. (e) Scatter plot showing the correlation between 20-gene TMB and F1CDx TMB. 
(f), Scatter plot showing the correlation between 20-gene TMB and MSK-IMPACT TMB. (g) The line plots illustrate the R2 values of the 20-gene TMB, F1CDx 
TMB and MSK-IMPACT TMB in the different cohorts
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the versatility and reliability of our 20-gene panel as a 
tool for TMB estimation across a range of tumor types 
and genetic contexts.

From these evaluations, we conclude that the 20-gene-
panel-based TMB estimation model built by Lasso is 
most suitable for clinical endeavors.

Correlation between 20-gene TMB and prognosis of 
patients with CRC
Previous studies have demonstrated an association 
between TMB and the prognosis in patients with CRC 
[3]. Here, we evaluated this association between the 
TMB estimated by our 20-gene-panel-based model and 
the prognosis extracted from the clinical information 
in three datasets with over 1,000 patients in total. We 
observed those patients with high TMB (characterized by 
our 20-gene-panel-based model) exhibited better over-
all survival (OS) rates, which is statistically significant 
(p = 0.049, Fig.  4a). Moreover, a marked association was 
also observed between the high TMB and the favorable 
progression-free survival (PFS) outcomes (p = 0.00614, 
Fig. 4b).

Upon establishing the ideal cutoff point for PFS at 
274.06, as determined by our 20-gene TMB model, 
patients demonstrated a most significant difference in 
survival outcomes. This cutoff, as outlined in the meth-
ods section, delineated the patients into two catego-
ries: a high-TMB group consisting of 218 patients and a 
low-TMB group comprising 865 patients, as depicted in 
Fig.  4c. A comprehensive breakdown of patient distri-
bution across these two subsets is presented in Supple-
mentary Table S7, which is consistent with the previous 
studies that pinpointed a significant prognostic difference 
in patients falling within the top 20% bracket of TMB [5, 
27].

Furthermore, the TMB levels appeared to correlate 
solely with the clinical stage of patients, showing no 
discernible link with factors such as age or sex (as pre-
sented in Table S8). Multivariable Cox regression models 
were constructed with sex, age, tumor stage and 20-gene 
TMB. Our multivariable Cox regression analysis clarified 
that while high TMB didn’t stand out as an independent 
prognostic indicator for OS (hazard ratio [HR] = 0.80; 
95% confidence interval [CI] 0.59–1.1; p = 0.144, Fig. 4d), 
it did, however, emerge as an independent predictor for 
enhanced PFS in patients with CRC (HR = 0.68; 95% CI 
0.55–0.86; p = 0.001, Fig.  4e). Interestingly, when con-
sidered as a continuous variable, the TMB was not an 
independent predictor of either OS (HR = 0.92; 95% 
CI 0.77–1.1; p = 0.357, Supplementary Fig. S4a) or PFS 
(HR = 0.91; 95% CI 0.82–1.0; p = 0.055, Supplementary 
Fig. S4b). This supports the idea that the understanding 
of TMB as a biomarker is shifting from quantitative (the 
more mutations the better) to qualitative [28].

The TMBhigh DNAH5mut patients is associated with better 
prognosis
Our analysis showed a clear correlation between muta-
tions in the 20-gene panel and TMB. This was evident 
even in patients identified with high TMB levels. The 
mutation frequency within these genes was notably high. 
For instance, among patients in the TMBhigh group, TTN 
mutations were present in a staggering 92% of cases. The 
gene with the least mutation frequency within this set 
was CREBBP, still manifesting a mutation in 22% of these 
patients, highlighting the critical role of these genes in 
CRC pathogenesis (Supplementary Fig. S4c).

A deeper investigation into the potential prognostic 
implications of the mutations in these genes was con-
ducted using multivariable Cox regression analysis. The 
results singled out mutations in the DNAH5 gene as an 
independent predictor for a more favorable PFS out-
come in TMBhigh group. Specifically, the presence of one 
or more DNAH5 mutations corresponded to a HR of 
0.40 with a 95% CI ranging from 0.19 to 0.87 (p = 0.0201, 
as shown in Fig.  4f ). Though the OS was not signifi-
cantly different for patients with high TMB that also 
had DNAH5 mutations (p = 0.19, Fig.  4g), when consid-
ering PFS, patients characterized as TMBhighDNAH5mut 
exhibited the best rates with high statistically significance 
(p = 0.0063, Fig.  4h). Interestingly, the prognostic impli-
cations of DNAH5 mutations appear to be confined to 
patients with high TMB. In the subset of patients with 
lower TMB, DNAH5 mutations did not significantly 
impact either OS (Supplementary Fig. S4d) or PFS (Sup-
plementary Fig. S4e).

These findings emphasize the importance that not 
only TMB but also specific genetic alterations within 
tumors may serve as a biomarker for CRC prognosis. 
The DNAH5 mutation seems to have a potent impact on 
the prognosis of patients with CRC, specifically for those 
with a high TMB.

Clinical and gene expression features of patients with 
TMBhigh DNAH5mut

Analysis of the patients’ clinical characteristics revealed 
that in patients with high TMB, DNAH5 mutations were 
more common in males (Table S9). However, there was 
no significant link between DNAH5 mutations and the 
MSI status (p = 0.535, Fig. 5a). Elevated TMB was corre-
lated with increased activities in DNA damage response 
and various DNA repair mechanisms such as mismatch 
repair, homologous recombination, nucleotide exci-
sion repair, DNA replication, and base excision repair. 
Notably, the most pronounced activity in DNA dam-
age response and DNA repair pathways was observed in 
patients categorized as TMBhigh with DNAH5 mutations 
(Fig. 5b).
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Fig. 4  20-gene TMB and DNAH5 mutation prognostic role. (a) Kaplan–Meier curves showing the effect of 20-gene TMB on OS in the combined CRC 
cohort. (b) The effect of 20-gene TMB on PFS in the combined CRC cohort. (c) Density plots of the TMB high-sample and TMB low-sample distributions 
and the corresponding cut points. (d) Forest plot summarizing prognostic impact of 20-gene TMB on OS by multivariable Cox regression. (e) Forest plot 
summarizing prognostic impact of 20-gene TMB on PFS by multivariable Cox regression. (f) The forest plot shows the results of multivariable Cox regres-
sion in patients with high TMB. (g) OS in groups TMBlow, TMBhigh DNAH5wild and TMBhigh DNAH5mut. (h) PFS in groups TMBlow, TMBhigh DNAH5wild and TMBhigh 
DNAH5mut
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The Gene ontology (GO) term enrichment analysis 
highlighted those patients with high TMB predominantly 
exhibited activation in immune signaling pathways, 
encompassing adaptive immune response, positive 
regulation of immune response, and other associated 
pathways including T cell activation (refer to Fig.  5c 
and Supplementary Table S10). Moreover, a more pro-
nounced activation in these immune signaling pathways 
was evident in patients with high TMB carrying DNAH5 

mutations (Fig.  5d and Supplementary Table S11). This 
heightened immune activity was corroborated by the 
tumor microenvironment (TME) scores, showing that 
the TMBhighDNAH5mut group scored the highest. Fur-
thermore, patients with high TMB experienced a sig-
nificant influx of various anti-tumor immune cells. This 
includes CD8+ T cells, follicular helper T cells, activated 
NK cells, and M1 macrophages, all of which showed a 
significant increase (p < 0.0001). Remarkably, the patients 

Fig. 5  Clinical and gene expression features of patients with TMBhigh DNAH5mut. (a) The bar graphs show the proportions of MSS and MSI in different 
subgroups of patients with CRC. p = 0.535, Chi-square test. (b) Box plots of DNA damage response and DNA repair pathway signature scores. (c) Top 10 
(ordered by false discovery rate [FDR] < 0.05) significantly enriched GO terms (gene ontology biological process) derived from genes highly expressed in 
patients with high TMB. (d) Among patients with high-TMB, top-10 significantly enriched GO terms derived from genes highly expressed in patients with 
DNAH5 mutations. (e) Box plots showing the TME and immune cell infiltration scores. (f) Box plots of immunotherapy signature scores. (g) Box plots of the 
scores for the antigen presentation related signatures. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, 1-way ANOVA was used to determine significance 
of differences between the three groups
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with TMBhighDNAH5mut exhibited the highest infiltration 
rates of CD8+ T cells, activated NK cells, and M1 macro-
phages (Fig. 5e).

These observations underline the association between 
high TMB and the elevated anti-tumor immune cell infil-
tration. Notably, patients with high TMB and concurrent 
DNAH5 mutations exhibited a more robust anti-tumor 
immune signature. This augmented immune response 
might shed light on the superior prognosis seen in 
patients with TMBhighDNAH5mut.

In addition, immunotherapy-sensitive signatures 
T-cell-inflamed gene expression profile (GEP), effector 
CD8+ T cells, and immune checkpoints were also asso-
ciated with high TMB. All immunotherapy-sensitive sig-
natures were significantly upregulated in patients with 
TMBhighDNAH5mut (Fig.  5f ). The immune checkpoint 
genes CD274, PDCD1LG2, CTLA4, PDCD1, LAG3, 
HAVCR2, and TIGIT were significantly over-expressed 
in patients with TMBhighDNAH5mut (Supplementary Fig. 
S5a). Furthermore, high TMB is also associated with acti-
vated antigen presentation, which is more active in TMB-
highDNAH5mut (p < 0.05, Fig.  5g). These results further 
confirm that TMB is associated with the effectiveness of 
CRC immunotherapy, and that patients with high TMB 
accompanied by DNAH5 mutations may benefit more 
from immunotherapy.

TMB on the 20-gene-panel is associated with TNB
Tumor mutations can generate a large variety of anti-
gens, but only some of these can stimulate an immune 
response. TNB measures the quantity of these immu-
nogenic antigens produced within a specific genomic 
region. Past research has shown that higher TNB is 
linked to better outcomes in patients receiving immuno-
therapy [29]. Here, paired RNA-seq and WES data in the 
FAHNU and TCGA cohort were used to analyze tumor 
neoantigens. A strong positive correlation was found 
between WES TMB and TNB (R = 0.914). Additionally, 
the TMB estimated by our 20-gene-panel based model 
showed a clear positive correlation with TNB (R = 0.891, 
Fig.  6a). Here, the neoantigens with an IC50 value less 
than 50nM were classified as highly affinity neoanti-
gens. Both WES TMB (R = 0.851) and the 20-gene-panel-
based TMB (R = 0.827) displayed a strong correlation 
with highly affinity neoantigens burden (HTNB; Fig. 6b), 
indicating that the 20-gene-panel-based model is a reli-
able predictor of the neoantigen levels in patients with 
CRC. Patients with high TMB also had elevated TNB 
and HTNB (p < 0.0001, Fig. 6c). Notably, TMB, TNB and 
HTNB were also significantly increased in patients with 
TMBhighDNAH5mut (p < 0.0001, Fig.  6d-e). Our analy-
sis revealed that density of CD8+ TILs was increased 
in patients with TMBhighDNAH5mut, indicating a more 

active immune response, which could have implications 
for prognosis and therapeutic strategies. (Fig. 6f-g).

Discussion
In this study, we evaluated eight machine learning algo-
rithms in an attempt to devise an efficient model for esti-
mating TMB in CRC using a mere 20-gene panel. In our 
endeavor to rigorously evaluate the models based on the 
20-gene panel, we selected five distinct CRC cohorts for 
cross validation. Out of them, three represented Cauca-
sian populations, while the other two pertained to Asian 
demographics. As a result, the outcomes of our study 
indicate that irrespective of racial variations, the 20-gene 
panel consistently delivers commendable results. Pre-
vious studies have also attempted to evaluate TMB in 
other cancers using machine learning-driven approaches. 
However, these studies generally included a limited num-
ber of patients and were restricted to a single machine 
learning algorithm, lacking a systematic comparison and 
analysis between different algorithms [8, 22].

A limitation to consider is that all the WES data 
stemmed from tumor tissues procured post-surgery, and 
obtaining such tissue is sometimes challenging. An alter-
native is to measure the Blood TMB (bTMB), which can 
be achieved with a less invasive approach. Nonetheless, 
bTMB mandates deeper sequencing depths, thus escalat-
ing the associated costs and complicating data interpre-
tation [30, 31]. By focusing high-depth sequencing on a 
limited set of genes, such as our 20-gene panel, we can 
potentially curtail both sequencing expenses and the 
time needed for data analysis. However, the applicability 
of the 20-gene panel to bTMB estimation remains to be 
validated through upcoming clinical setting.

Another reason that limits the large-scale applica-
tion of TMB in CRC is the difficulty of determining the 
TMB threshold [32] for patients subtyping. Variability in 
the scope of genomes sequenced, the sequencing depth, 
and the data analysis protocols often results in discrep-
ancies in the selection of TMB cut-off values. The widely 
accepted clinical threshold for WES TMB currently 
stands at 10 mutations per mega base [4]. Our study 
presents a CRC-focused panel that has the potential to 
provide a more targeted patient stratification for colorec-
tal cancer. While our threshold is consistent with general 
TMB patterns, it provides a more tailored approach for 
CRC. It is important to note that the thresholds estab-
lished in this study are based on our TMB estimation 
model, and the role of the 20-gene TMB as an inde-
pendent prognostic indicator will be further confirmed 
through future prospective studies.

Another important value of TMB is that it is a predic-
tive immunotherapy biomarker. Friedman et al. found 
that patients with CRC whose TMB ≥ 16 mut/Mb could 
benefit from immunotherapy [4]. Another study found 
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that among patients with MSI, those with TMB ≥ 40 mut/
Mb were the most likely to respond to immune check-
point inhibitor therapy [3]. Despite the limited number of 
patients with CRC undergoing immunotherapy, the pre-
cise cut-off for the 20-gene TMB remains undefined. Fur-
ther validation, especially through prospective trials, will 
be essential to establish the clinical utility of our 20-gene 
TMB cut-off in predicting responses to immunotherapy 
for patients with CRC.

Dynein axonemal heavy chain 5 (DNAH5) encodes 
the axonemal heavy chain of dynamin, is the member of 
Dynein superfamily. It can impact ATPase activity, which 
is involved in cilia assembly and cell motility [33]. Ini-
tial studies linked DNAH5 mutations to primary ciliary 
dyskinesia [34]. Recent studies have demonstrated that 
DNAH5 mutations are also important in many tumors. 
For instance, in patients with gastric cancer, DNAH5 
mutations have been reported to have a positive effect 

on chemotherapy sensitivity [35]. DNAH5 mutations 
are also associated with sensitivity to neoadjuvant che-
motherapy in patients with plasma cell ovarian cancer 
[36]. The fellow Dynein superfamily members DNAH8 
and DNAH9 are also associated closely with tumor pro-
gression [37, 38]. Martini et al. found that cytoplasmic 
dynein promoted the proliferation of colorectal and 
cervical cancer cells [39]. Our research indicated a cor-
relation between DNAH5 mutations and enhanced PFS 
in patients with high TMB. Additionally, patients with 
TMBhighDNAH5mut exhibited elevated immune check-
point gene expression. This implies that patients with 
CRC who have elevated TMB levels paired with DNAH5 
mutations could significantly benefit from immunother-
apy. Therefore, prospective studies and in vitro experi-
ments are necessary to specifically elucidate the role and 
mechanism of DNAH5 mutations in CRC.

Fig. 6  20-gene TMB is associated with tumor neoantigen burden. (a) Scatter plot to compute the correlation between WES TMB and TNB (left). Scatter 
plot summarizing the correlation between 20-gene TMB and TNB (right). (b) Scatter plot of the correlation between WES TMB and HTNB (left). Scatter 
plot of the correlation between 20-gene TMB and HTNB (right). (c) Comparisons of the TNB and HTNB in groups TMBlow and TMBhigh. Comparisons of the 
TMB (c), TNB and HTNB (d-e) in group TMBlow, TMBhigh DNAH5wild and TMBhigh DNAH5mut. (f) Immunohistochemistry: IHC staining for CD8 in CRC tissues 
from TMBlow, TMBhigh DNAH5wild and TMBhigh DNAH5mut groups (scale bar = 50 μm, 200× and 20 μm, 400×). (g) Association of CD8+ TIL density with Differ-
ent Groupings. Unpaired t-tests were used to determine the significance of the differences between the two groups, and one-way ANOVA was used to 
determine the significance of the differences between the three groups. ***p < 0.001; ****p < 0.0001
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Our 20-gene TMB model not only predicts prognosis 
but also shows significant alignment with commercial 
assays, reinforcing its clinical relevance. We compared 
our panel’s performance with the F1CDx assay, a recog-
nized standard for TMB measurement. The strong cor-
relation between our 20-gene TMB and the F1CDx assay, 
as well as with the MSK-IMPACT panel, validates our 
model against established benchmarks and supports its 
utility in clinical decision-making. Furthermore, the con-
sistent diagnostic performance of our panel with these 
commercial assays across multiple cohorts attests to its 
robustness. Compared to these multi-gene panels, our 
20-gene panel effectively reduces costs and processing 
time while maintaining robustness. This comparison is 
crucial, as it not only establishes the credibility of our 
panel but also helps in considering potential cutoff val-
ues for TMB, which is paramount for its application in 
personalized medicine and requires further validation in 
prospective trials.

As the number of genetic variants accumulated in the 
genome increases, more neoantigens may be presented. 
These neoantigens make the tumor more recognizable 
by the immune system and thus likely to elicit a strong 
response [6]. Patients with lung cancer who have high 
TNB and undergoing immunotherapy tend to experi-
ence extended PFS [40]. Compared with TMB, TNB is 
regarded as an improved biomarker for immunotherapy 
[41]. However, its calculation is contingent on patient-
specific HLA data and demands rigorous sequencing data 
quality and bioinformatic scrutiny [29]. Our research 
indicates that the TMB estimated on the 20-gene panel 
aligns well with both TNB and HTNB, which suggests 
that the 20-gene panel can serve as a streamlined tool to 
pinpoint the promise of the patients in in-depth tumor 
neoantigen analysis.

In our research, we noted that a quarter of the high 
TMB cases were classified as MSS. This proportion is 
possibly influenced by regional and ethnic variability. 
For instance, a study involving 575 patients with CRC in 
Australia reported that 34% of patients with high TMB 
were MSS [42]. Additionally, the presence of POLE muta-
tions, known to cause hypermutation, could significantly 
impact this observation [43].

To the best of our knowledge, the 20-gene panel pro-
posed here constitute a small gene panel that can be used 
to accurately predict both TMB in CRC. TMB are emerg-
ing biomarkers for immune checkpoint inhibitor thera-
pies. Predicting these efficiently can stratify patients for 
personalized treatments. Our study not only aids in this 
stratification but, by identifying key genes like DNAH5, 
offers potential therapeutic targets.

Conclusion
Our study introduces a pioneering 20-gene model utiliz-
ing machine learning to estimate TMB in CRC patients. 
This model, which requires only 20 genes, offers a cost-
effective and efficient alternative to current methods. It 
not only predicts TMB with high accuracy but also cor-
relates strongly with patient prognosis. Additionally, we 
emphasize that the DNAH5 gene serves as a distinguish-
ing biomarker for high TMB patients with CRC, expand-
ing the potential for personalized treatment approaches 
in CRC.
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