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C A N C E R

Generative adversarial networks accurately reconstruct 
pan-cancer histology from pathologic, genomic, and 
radiographic latent features
Frederick M. Howard1*, Hanna M. Hieromnimon1, Siddhi Ramesh1, James Dolezal2,  
Sara Kochanny1, Qianchen Zhang1, Brad Feiger3, Joseph Peterson3, Cheng Fan4,  
Charles M. Perou4, Jasmine Vickery5, Megan Sullivan6, Kimberly Cole7,  
Galina Khramtsova7, Alexander T. Pearson1*

Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks rang-
ing from routine classification to identification of molecular features. These approaches distill cancer histologic 
images into high-level features, which are used in predictions, but understanding the biologic meaning of such 
features remains challenging. We present and validate a custom generative adversarial network—HistoXGAN—
capable of reconstructing representative histology using feature vectors produced by common feature extractors. 
We evaluate HistoXGAN across 29 cancer subtypes and demonstrate that reconstructed images retain information 
regarding tumor grade, histologic subtype, and gene expression patterns. We leverage HistoXGAN to illustrate the 
underlying histologic features for deep learning models for actionable mutations, identify model reliance on his-
tologic batch effect in predictions, and demonstrate accurate reconstruction of tumor histology from radiograph-
ic imaging for a “virtual biopsy.”

INTRODUCTION
Histopathologic analysis of tumors is an essential step in the diagno-
sis and treatment of cancer in modern clinical oncology. The initial 
diagnosis of cancers depends on morphological assessment of biopsy 
samples, and molecular profiling now informs prognosis and clini-
cal therapeutic decisions in almost every cancer subtype. Machine 
learning and, more specifically, deep learning has been successfully 
applied to most standard steps of pathologic image analysis and can 
segment (1), diagnose (2), grade (3), and even predict recurrence or 
treatment response for tumors (4). As the field has evolved, studies 
have moved beyond basic pattern recognition toward identifying 
deeper disease traits and complex morphological features, including 
the identification of genomic and transcriptomic profiles directly 
from histology (5–7). Conceptually, deep learning models often con-
dense complex visual information from histopathology into a small 
number of higher-order features for prediction, often using pre-
training from large image datasets such as ImageNet (8) or feature 
extractors trained with self-supervised learning (SSL) (9–11). How-
ever, the opacity of these high-level features limits adoption and 
deployment due to concerns about model trustworthiness (12), and 
lack of interpretability limits the ability to gain new insight from the 
histologic patterns recognized by models.

A range of techniques exist for explaining machine learning 
model predictions in medical imaging, including saliency mapping, 
attention mechanisms, and perturbation-based approaches (13, 
14). However, these approaches may identify regions important for 

prediction, such as tumor epithelium, but may not identify which 
characteristics of these regions have led to a positive or negative 
prediction (14). This is critically important in validation studies as 
results may be confounded by batch effects that are hard to charac-
terize without thoroughly evaluating the features underpinning a 
model’s prediction (15). Generative adversarial networks (GANs) 
provide an attractive alternative framework for explainability. GAN 
frameworks like StyleGAN2 train a generator to produce realistic 
synthetic images able to fool a discriminator network, and the re-
sulting generator latent space captures semantic concepts and can 
be manipulated for intuitive image editing (13). Conditional GANs 
can be used to interpolate between two histologic classes, but training 
is time-consuming, and such an approach can only embed a limited 
number of classes (5).

We consider an alternative approach to synthetic image generation—
If histology could be reconstructed from high-level features derived 
from SSL-based extractors, the visual meaning of these features 
(or models trained from these features) can be deciphered. In addi-
tion, reconstruction of histology from base features enables the 
development of accurate cross-modal autoencoders to reconstruct 
histology from other forms of data (16, 17), such as sequencing or 
magnetic resonance imaging (MRI), enabling a “virtual biopsy.” 
Approaches like Encoder4Editing and pix2style2pix allow the em-
bedding of images into the latent space of a GAN but cannot success-
fully reconstruct histologic images in their base configurations 
(18, 19). To address this, we present HistoXGAN (Histology feature 
eXplainability Generative Adversarial Network), a custom architec-
ture that uses features from highly effective SSL-based feature extrac-
tors to accurately reconstruct histology.

RESULTS
Accurate reconstruction of histologic structures
The HistoXGAN architecture is a GAN (13, 20) that ensures con-
sistency of key image features extracted by SSL feature extractors 
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during image generation (Fig. 1, left, and fig. S1) (11, 21, 22). In this 
way, generated images are structurally similar, but the location of 
image structures is allowed to vary between images. With this ap-
proach, images can be generated by providing a feature vector di-
rectly as the input latent vector without requiring a separate encoder 
to project features into the StyleGAN latent space. This model was 
trained using 8120 cases (8232 slides with 5,733,871 image tiles) 
from 29 cancer types in The Cancer Genome Atlas (TCGA). We 
compared L1 loss/mean absolute error (Fig. 1, middle) between ex-
tracted features from the input and reconstructed images generated 
by HistoXGAN and alternative encoders across 8120 cases in the 
training TCGA dataset and an additional n = 1328 cases from the 

Clinical Proteomics Tumor Analysis Consortium (CPTAC) dataset. 
HistoXGAN achieved the lowest reconstruction error, with a mean 
error of 0.034 [95% confidence interval (CI), 0.034 to 0.034] across 
TCGA and 0.038 (95% CI, 0.038 to 0.038) across CPTAC for recon-
struction of CTransPath features (Fig. 2 and Table 1), a mean error 
of 0.010 (95% CI, 0.010 to 0.010) across TCGA and 0.011 (95% CI, 
0.011 to 0.011) across CPTAC for reconstruction of RetCCL features 
(fig. S2 and table S1), and a mean error of 0.689 (95% CI, 0.689 to 
0.689) across TCGA and 0.731 (95% CI, 0.731 to 0.731) in CPTAC 
for reconstruction of UNI features (fig. S3 and table S2). This repre-
sented a 22, 17, and 28% improvement over the second-best model, 
Encoder4Editing, for reconstruction of CTransPath, RetCCL, and 
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Fig. 1. Overview of HistoXGAN training, validation, and application. As illustrated on the (left), the HistoXGAN generator G was trained using 8120 cases across 29 
cancer types in TCGA. HistoXGAN takes as an input a histologic feature vector derived from any self-supervised feature extractor E and generates a histology tile with 
near-identical features with respect to the same feature extractor. As shown in the (middle), in this study, we demonstrate that this architecture accurately reconstructs 
the encoded features from multiple feature extractors in both the training TCGA dataset and external datasets of 3201 slides from 1450 cases from CPTAC and 2656 slides 
from 1720 cases from University of Chicago Medical Center (UCMC). In addition, we demonstrate that the real and reconstructed images carry near-identical information 
of interpretable pathologic features such as grade, histologic subtype, and gene expression data. As illustrated to the (right), we showcase the applications of this archi-
tecture for model interpretability using gradient descent to illustrate features used in deep learning model predictions. Through systematic review of these features with 
expert pathologists, we identify characteristics of cancers with targetable pathways, such as homologous recombination deficiency (HRD) and PIK3CA in breast cancer, 
and illustrate application for attention based models. Last, we train a crossmodal encoder to translate MRI radiomic features into histology features using paired breast 
MRIs and histology from 934 breast cancer cases from the UCMC and apply HistoXGAN to generate representative histology directly from MRI.
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UNI features, respectively, in CPTAC. This improved feature recon-
struction was reflected in pathologist review of images generated by 
HistoXGAN: eight tiles, one from each cancer subtype in the valida-
tion cohort, were regenerated using the four encoders, and four pa-
thologists with over 50 years of combined experience were presented 
with the generated images in random order. The HistoXGAN recon-
structions were judged as the most similar to input images in 75% 
(24 of 32) of cases when using CTransPath features, 84% (27 of 32) 
of cases using RetCCL features, and 94% (31 of 32) of cases using 
UNI features (Fig. 2B and figs. S2B and S3B).

To determine the dependency of HistoXGAN performance on 
training dataset composition, the CTransPath model trained from 
29 cancer types as above was compared to models trained from 
TCGA Lung Squamous Cell Carcinoma (TCGA-LUSC), TCGA Lung 
Adenocarcinoma (TCGA-LUAD), and from the eight TCGA sites 

corresponding to the eight CPTAC validation cohorts (fig. S4 and 
table S3). Models trained from single tumor sites had worse perfor-
mance on validation (TCGA-LUSC model mean error 0.0411 in 
CPTAC; TCGA-LUAD model mean error 0.0430), whereas minimal 
difference was seen between the 8 tumor–type model (mean error, 
0.0380) and the 29 tumor–type model (mean error, 0.0377). The 
TCGA-LUSC model outperformed the TCGA-LUAD model in re-
construction of squamous cancers [including TCGA Head and Neck 
Squamous Cell Carcinoma (TCGA-HNSC), CPTAC-HNSC, and 
CPTAC-LUSC], whereas the TCGA-LUAD model performed better 
in adenocarcinoma reconstruction [including in TCGA Colorectal 
Adenocarcinoma (TCGA-COADREAD)]. Visual comparison of model 
reconstructions demonstrated that the TCGA-LUSC model failed to 
reconstruct some glandular structures in adenocarcinoma cases (fig. 
S4B), indicating that lack of exposure to specific histologic features 

A

B

Fig. 2. Reconstruction accuracy in training and validation datasets for CTransPath encoders. We compare reconstruction accuracy from the real and reconstructed 
images for HistoXGAN and other architectures for embedding images in GAN latent space. For comparison, we use encoders designed to recreate images from a Style-
GAN2 model trained identically to the HistoXGAN model. The Learned Perceptual Image Patch Similarity (LPIPS)/Deep-Image Structure and Texture Similarity (DISTS) 
encoder uses an equal ratio of LPIPS/DISTS loss between the real and reconstructed images to train the encoder. The Single-Layer and Encoder4Editing encoders are 
trained to minimize L1 loss between CTransPath feature vector of the real and reconstructed images. (A) HistoXGAN provides more accurate reconstruction of CTransPath 
features across the TCGA dataset used for GAN training (n = 8120) and solid tumor CPTAC validation (n = 1328) dataset, achieving an average of 30% improvement in L1 
loss over the Encoder4Editing encodings in the validation dataset. (B) HistoXGAN reconstructed images consistently provided more accurate representations of features 
from the input image across cancer types in the CPTAC validation dataset.
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during training may lead to poor reconstruction of those features on 
application.

Reconstruction of rare tumors and histologic subtypes
We also sought to evaluate HistoXGAN in cases that were poorly 
represented or unrepresented in the training dataset to better assess 
limitations of this approach. First, we assessed accuracy of predictions 

by histologic subtype in breast, lung, and colorectal cancers in the 
TCGA training (n = 2303), CPTAC (n = 527), and University of 
Chicago Medical Center (UCMC, n = 1113) validation datasets (fig. 
S5A and data S1). Performance was robust across subtypes that were 
rare or absent from the TCGA training subset, including mucinous, 
metaplastic, and tubular breast cancers; signet ring, enteric, and 
neuroendocrine lung adenocarcinoma; solid-type lung squamous 

Table 1. Reconstruction accuracy in training and validation datasets for CTransPath encoders. We compare reconstruction accuracy from the real and 
reconstructed images for HistoXGAN and other architectures for embedding images in GAN latent space. For comparison, we use encoders designed to recreate 
images from a StyleGAN2 model trained identically to the HistoXGAN model. The LPIPS/DISTS encoder uses an equal ratio of LPIPS/DISTS loss between the real 
and reconstructed images to train the encoder. The Single Layer and Encoder4Editing encoders are trained to minimize L1 loss between CTransPath feature 
vector of the real and reconstructed images.

Source n n tiles LPIP/DISTS
L1 loss

Single layer  
L1 loss

Encoder4Editing  
L1 loss

HistoXGAN  
L1 loss

TCGA ACC 56 78789 0.086 (0.010) 0.054 (0.010) 0.045 (0.006) 0.035 (0.004)

﻿TCGA﻿ ﻿BLCA﻿  378  342,463  0.082 (0.009)  0.054 (0.015)  0.044 (0.006)  0.034 (0.004)

﻿TCGA﻿ ﻿BRCA﻿  943  454,985  0.087 (0.010)  0.055 (0.017)  0.044 (0.006)  0.033 (0.004)

﻿TCGA﻿ ﻿CESC﻿  267  165,088  0.083 (0.010)  0.063 (0.021)  0.044 (0.006)  0.034 (0.004)

﻿TCGA﻿ ﻿CHOL﻿  38  51,414  0.087 (0.009)  0.057 (0.019)  0.044 (0.006)  0.034 (0.004)

﻿TCGA﻿ ﻿COADREAD﻿  428  195,493  0.092 (0.013)  0.071 (0.023)  0.046 (0.007)  0.035 (0.004)

﻿TCGA﻿ ﻿DLBC﻿  43  32,073  0.076 (0.011)  0.063 (0.022)  0.045 (0.010)  0.032 (0.005)

﻿TCGA﻿ ﻿ESCA﻿  147  99,625  0.085 (0.010)  0.057 (0.017)  0.045 (0.007)  0.035 (0.005)

﻿TCGA﻿ ﻿HNSC﻿  401  166,061  0.083 (0.009)  0.060 (0.019)  0.045 (0.006)  0.035 (0.004)

﻿TCGA﻿ ﻿KICH﻿  101  105,461  0.094 (0.010)  0.056 (0.009)  0.048 (0.006)  0.036 (0.005)

﻿TCGA﻿ ﻿KIRP﻿  270  234,740  0.091 (0.013)  0.070 (0.022)  0.049 (0.007)  0.036 (0.005)

﻿TCGA﻿ ﻿LGG﻿  464  155,579  0.081 (0.009)  0.053 (0.014)  0.044 (0.006)  0.031 (0.005)

﻿TCGA﻿ ﻿LIHC﻿  359  331,769  0.090 (0.013)  0.058 (0.019)  0.045 (0.006)  0.033 (0.004)

﻿TCGA﻿ ﻿LUAD﻿  467  335,499  0.088 (0.010)  0.062 (0.019)  0.046 (0.007)  0.035 (0.004)

﻿TCGA﻿ ﻿LUSC﻿  474  370,542  0.083 (0.009)  0.061 (0.019)  0.045 (0.006)  0.035 (0.004)

﻿TCGA﻿ ﻿MESO﻿  73  42,242  0.083 (0.009)  0.053 (0.011)  0.044 (0.006)  0.034 (0.004)

﻿TCGA﻿ ﻿OV﻿  104  108,620  0.085 (0.010)  0.061 (0.019)  0.045 (0.007)  0.035 (0.005)

﻿TCGA﻿ ﻿PAAD﻿  168  119,144  0.085 (0.009)  0.053 (0.012)  0.046 (0.007)  0.035 (0.005)

﻿TCGA﻿ ﻿PCPG﻿  173  207,803  0.083 (0.009)  0.066 (0.022)  0.044 (0.006)  0.035 (0.004)

﻿TCGA﻿ ﻿PRAD﻿  394  202,439  0.091 (0.010)  0.057 (0.015)  0.046 (0.007)  0.034 (0.004)

﻿TCGA﻿ ﻿SARC﻿  250  326,262  0.084 (0.011)  0.059 (0.019)  0.047 (0.007)  0.033 (0.005)

﻿TCGA﻿ ﻿SKCM﻿  418  322,527  0.080 (0.009)  0.063 (0.023)  0.044 (0.006)  0.034 (0.004)

﻿TCGA﻿ ﻿STAD﻿  371  283,734  0.086 (0.011)  0.055 (0.014)  0.046 (0.008)  0.035 (0.005)

﻿TCGA﻿ ﻿TGCT﻿  129  109,128  0.082 (0.008)  0.057 (0.015)  0.045 (0.007)  0.034 (0.005)

﻿TCGA﻿ ﻿THCA﻿  480  279,362  0.091 (0.010)  0.065 (0.022)  0.047 (0.007)  0.035 (0.005)

﻿TCGA﻿ ﻿THYM﻿  114  157,626  0.078 (0.010)  0.080 (0.028)  0.045 (0.008)  0.033 (0.006)

﻿TCGA﻿ ﻿UCEC﻿  477  351,784  0.084 (0.010)  0.071 (0.025)  0.045 (0.006)  0.035 (0.004)

﻿TCGA﻿ ﻿UCS﻿  53  67,853  0.082 (0.009)  0.061 (0.019)  0.045 (0.006)  0.035 (0.005)

﻿TCGA﻿ ﻿UVM﻿  80  35,766  0.075 (0.009)  0.063 (0.020)  0.045 (0.007)  0.033 (0.005)

﻿CPTAC﻿ ﻿BRCA﻿  105  56,318  0.084 (0.008)  0.067 (0.016)  0.053 (0.008)  0.040 (0.005)

﻿CPTAC﻿ ﻿COADREAD﻿  104  76,915  0.086 (0.009)  0.071 (0.015)  0.056 (0.007)  0.041 (0.005)

﻿CPTAC﻿ ﻿GBM﻿  177  143,858  0.080 (0.010)  0.062 (0.016)  0.048 (0.007)  0.038 (0.006)

﻿CPTAC﻿ ﻿HNSC﻿  108  35,064  0.080 (0.009)  0.062 (0.018)  0.049 (0.007)  0.038 (0.005)

﻿CPTAC﻿ ﻿LUAD﻿  221  425,473  0.087 (0.009)  0.057 (0.012)  0.048 (0.006)  0.038 (0.004)

﻿CPTAC﻿ ﻿LUSC﻿  202  359,394  0.081 (0.008)  0.066 (0.021)  0.046 (0.006)  0.036 (0.004)

﻿CPTAC﻿ ﻿PAAD﻿  164  99,093  0.082 (0.009)  0.059 (0.016)  0.049 (0.008)  0.037 (0.006)

﻿CPTAC﻿ ﻿UCEC﻿  247  184,767  0.083 (0.010)  0.074 (0.021)  0.049 (0.008)  0.038 (0.006)
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cell carcinoma; and mucinous and signet ring colorectal adenocar-
cinoma. Reconstruction error was generally under 0.040 for these 
rare subtypes, although slightly higher errors were seen in mucinous 
breast in CPTAC (mean error, 0.043) and UCMC (mean error, 0.057), 
mucinous lung adenocarcinoma in CPTAC (mean error, 0.042), and 
mucinous colorectal adenocarcinoma in CPTAC (mean error, 0.041). 
Visualization of image tiles and reconstruction for breast cancer sub-
types using cases from UCMC (fig. S5B) demonstrated key patho-
logic features of breast cancer subtypes were well represented by 
HistoXGAN, including tubule formation in tubular cancer, squamous 
differentiation and keratinization in metaplastic cancer, and mixed 
ductal and single-file lines of cells in mixed ductal/lobular cancer. 
Examination of the mucinous cases from UCMC demonstrated that 
one slide image was out of focus, explaining the higher error seen in 
UCMC mucinous tumor reconstruction. The in-focus slide had patho-
logically identifiable mucinous areas, although the mucinous areas 
were less homogenous than the ground truth source image. Given 
the consistently lower performance in mucinous tumor reconstruc-
tion, this may be one notable limitation of the HistoXGAN architec-
ture when trained across the entire TCGA dataset where mucinous 
tumors are relatively rare.

To further characterize the limits of HistoXGAN reconstruction, 
we curated a set of 768 cases from UCMC representing a wide array 
of 176 OncoTree diagnoses, with samples obtained from 29 different 
anatomic sites. Average accuracy was consistent with the CPTAC 
validation cohort and was generally robust across diagnosis and ana-
tomic site (data S2 and S3). Lower accuracy for reconstruction was 
seen for one slide each of nasopharyngeal cancer (mean error, 0.087), 
bladder urothelial carcinoma (mean error, 0.060), and low-grade 
glioma not otherwise specified (mean error, 0.058). However, visu-
alization of reconstructions across these three cases demonstrated 
that low reconstruction accuracy was largely due to artifacts such 
as pen markings or oil in slide images (fig. S5C). Last, we assessed 
HistoXGAN in a cohort of n = 88 cases of acute myeloid leukemia 
(AML) from CPTAC, revealing a mean error of 0.066. This error 
was not artifactual: The high reconstruction loss was due to errors in 
reconstruction, with excessive stellate cytoplasm generated along 
with stroma more reminiscent of a solid tumor, demonstrating that 
this approach is not extensible to reconstruction of blood smear im-
ages (fig. S5C).

Reconstructed histology retains meaningful representations 
of tumor biology
A meaningful synthetic reconstruction of tumor histology from fea-
tures in a shared latent space should retain key elements of tumor 
biology that are reflected in pathology – for example, the tumor grade 
of the reconstructed histology should be identical to the original. 
To test these aspects of our approach to reconstruction in a sys-
tematic and quantitative fashion, we trained deep learning models 
for grade (TCGA/CPTAC n = 943/100 breast, 168/139 pancreas, 
391/107 head and neck, 227/none prostate, 477/99 uterus, 378/none 
bladder, and 371/none stomach), histologic subtype (743/92 breast 
with an additional 820 cases included from UCMC, 941/415 lung, 
147/none esophageal, and 363/none kidney), and gene expression 
(941/97 breast), and compared predictions made from whole-slide 
images to those made from the same set of tiles reconstructed with 
HistoXGAN (Fig. 1, middle). Models for these tasks were trained with 
a non-SSL–based architecture, so the predictions are not based on the 
same image features used to train HistoXGAN. For prediction of 

high tumor grade (defined as grade 3 for breast, pancreatic, uterine, 
stomach, and bladder; grade 3 or 4 for head and neck; or Gleason 
grade 9 or 10 for prostate; Fig. 3 and Table 2), the predictions from 
real slides and from reconstructed tiles were highly correlated with 
correlation coefficients ranging from 0.52 (95% CI, 0.36 to 0.65; P = 
2.33 × 10−8) in CPTAC Breast Carcinoma (CPTAC-BRCA) to 0.85 
(95% CI, 0.79 to 0.89; P = 1.01 × 10−29) in CPTAC Pancreatic Ade-
nocarcinoma (CPTAC-PAAD). Similar findings were seen for the pre-
diction of tumor histologic subtype in TCGA/CPTAC/UCMC breast, 
lung, esophageal, and renal cancers (fig. S6 and Table 3) as well as for 
the prediction of gene expression of CD3G, COL1A1, MKI67, and 
EPCAM in TCGA/CPTAC breast cancer cohorts (Fig. 3 and Table 4). 
Transition between states of grade, histology, and gene expression 
can all be readily visualized using HistoXGAN reconstructions (Fig. 3, 
A and C, and fig. S6A).

Identifying models influenced by histologic batch effect
Some features predictable from histology using deep learning can be 
attributable to batch effect or nonbiologic differences that arise be-
cause of slide staining, tissue processing, image resolution, or other 
differences between batches of cases from model training and evalu-
ation. Notably, differences in slide staining are evident in some of 
the HistoXGAN image transitions of “standard” pathologic features 
such as histologic subtype (fig. S5), perhaps most notable in the 
transition from lung adenocarcinoma to squamous carcinoma. 
To discern whether these differences in staining are artifactual and 
introduced by HistoXGAN or reflective of underlying staining dif-
ferences in lung adenocarcinoma and squamous cell carcinoma in 
the source dataset, we compare this same transition as calculated 
from data across all of TCGA versus as calculated from a single 
TCGA submitting site (Asterand Bioscience; fig. S7A). As expected, 
the transition derived from a single site features minimal staining 
differences, suggesting that the staining differences illustrated by 
HistoXGAN from the full TCGA dataset are due to batch effect 
between the TCGA adenoacarcinoma and squamous cell carcinoma 
cases. Furthermore, we assess the impact of stain normalization on 
model prediction for adenocarcinoma versus squamous cell carci-
noma (using the same model trained to verify the similarity of predic-
tions from real versus reconstructed images, as described above). 
Normalizing image tiles to match the staining of the “adenocarcinoma” 
image versus the “squamous cell carcinoma” image results in a high-
er and lower model prediction for likelihood of adenocarcinoma 
(fig. S7, B and C).

To deconvolute the features used in model prediction, we can 
apply principal components analysis to the gradients generated 
from deep learning models for a large set of input images to gener-
ate orthogonal feature vectors representing the directions traveled 
to increase/decrease model prediction. We first apply this approach 
to models trained to predict grade (true biologic feature) and con-
tributing site (attributable entirely to batch effect) in TCGA-BRCA 
(n = 934). Principal components are sorted by the relative contribu-
tion to the difference in gradients toward an increased/decreased 
prediction. Whereas a number of distinct components comprise 
the prediction of higher grade, 69% of the difference in gradient for 
site prediction is composed of a single component representing a 
change in tissue stain pattern, and the highest contribution from a 
single component for grade is 20% (fig. S8 and table S4). We dem-
onstrate that this effect is consistent for site prediction across tumor 
types with an average of 54% of site prediction attributable to a 
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single component with a strong color variation (Fig. 4A), with a simi-
lar visual pattern seen for ancestry prediction (Fig. 4B). Reinhard nor-
malization does not eliminate the dependence on a single-color 
pattern with 37% of predictions remaining attributable to a single 
component, although the color pattern of prediction is inverted, likely 
due to the overcorrection/introducing color changes of image back-
ground elements (Fig. 4C). CycleGAN normalization results in an 
improvement in the dependence of prediction on stain color (Fig. 4D).

Interpretability of models and applications to understand 
tumor biology
We demonstrate the utility of HistoXGAN to leverage deep learn-
ing models to characterize the histologic manifestations of tumor 
biology. Given the increasing number of targetable molecular altera-
tions predicable from histology (9), we evaluated the explainability of 
pathways with targeted therapies in breast cancer that have not been 
thoroughly explored, namely, PIK3CA alterations and homologous 

A B

C D

l

Fig. 3. Perceptual consistency of tumor grade and gene expression in reconstructed images. (A) Illustration of transition between low and high grade (defined as 
grade 3 for breast, uterine, or stomach, and Gleason grades 9 or 10 for prostate) across a single image from four cancer types. A vector representing high grade is derived 
from the coefficients of a logistic regression predicting grade from CTransPath features. This vector is subtracted from the base image to visualize lower grade and added 
to the base image to visualize higher grade. (B) Correlation between predictions of grade from real and reconstructed tiles, averaged per patient, across cancer types, 
demonstrating a high perceptual similarity of the grade of the real and generated images. For the TCGA datasets, a deep learning model was trained to predict grade from 
real tiles for each cancer type using threefold cross-validation. The correlation between predictions for real/generated images is aggregated for the three held-out valida-
tion sets. For the CPTAC validation, a deep learning model trained across the entire corresponding TCGA dataset was used to generate predictions. True pathologist-
determined high versus low grade is annotated on the images when available. (C) Illustration of transition between expression of select genes across a single image from 
TCGA-BRCA. (D) Correlation between predictions of gene expression from real and reconstructed tiles, averaged per patient, demonstrating a high perceptual similarity 
of the gene expression of the real and generated images. True gene expression as a percentile from 0 to 100 is indicated by the color of each data point.
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recombination deficiency (HRD). Models were trained to predict 
these alterations in TCGA-BRCA, achieving an average area under 
the receiver operating characteristic (AUROC) of 0.61 (n = 901; 
range, 0.58 to 0.63) for PIK3CA alteration and 0.71 (n = 820; range, 
0.65 to 0.76) for high HRD score, respectively, on threefold cross-
validation, similar to previously published models. Image tiles were 
altered through gradient descent (Fig. 1, right) to maximize the pre-
dictions for PIK3CA mutation and HRD (Fig. 5, A and B), and a set 
of 22 transitions was reviewed for qualitative analysis of nuclear, cy-
toplasmic, stromal, immune, and vascular features by four patholo-
gists specializing in breast pathology. Transition to PIK3CA mutation 
(Fig. 5C) was morphologically associated with increase in abundance 
(in 45% of transitions) and eosinophilic appearance of cytoplasm (in 
68%), increased tubule formation (in 36%), increased invasion into 
stroma (in 63%), and decreased nuclear to cytoplasmic ratio (in 18%) 
with variable changes in nuclear size. Transition to high HRD score 
(Fig. 5D) was associated with prominent nucleoli (in 59%), nuclear 
crowding/increased nuclear density (45%) with larger (36%) pleomor-
phic nuclei (18%) with occasional multinucleated cells (9%), increased 
lymphocytosis (54%), and tumor cell necrosis (5%).

To validate these findings, we compared annotations for epi-
thelial, nuclear, and mitotic grade as well as annotations for necro-
sis, lymphocytosis, and fibrous foci across TCGA-BRCA between 
PIK3CA mutant and wild type and HRD-high and -low tumors, 
generally yielding consistent findings (tables S5 and S6). To illustrate 
the benefit of synthetic histology to power discovery, we determined 
the number of samples required to identify significant associations 
of mutational status with these annotations. Even the most strongly 
associated pathologic features, such as increased tubule formation 
in PIK3CA mutant tumors or nuclear pleomorphism in HRD-high 
tumors would require annotation of 200 to 400 whole-slide images 
annotated to demonstrate a significant association, whereas patho-
logic review of just 22 image transitions clearly uncovered these 
associations in this study (Fig. 5, E and F).

Furthermore, the emergence of attention-based multiple-instance 
learning (MIL) necessitates approaches that can disentangle features 
used for attention versus outcome prediction to truly facilitate in-
terpretability. We demonstrate an application of HistoXGAN to 
attention-MIL models: Using gradient descent, feature vectors can be 
perturbed to increase or decrease model attention and model predic-
tion separately, allowing independent visualization along these two 
axes (fig. S9). Applying this approach to models trained to predict 
grade and cancer subtype illustrates that low attention for these 
models is associated with benign-appearing fibrous tissue.

Applying generative histology to enable a virtual 
tumor biopsy
Radiomic analysis of MRI images has been applied to predict key 
histologic features such as tumor grade and immune infiltrates. 
However, by predicting histologic SSL feature vectors from radiomic 
features, a representative tumor image can be reconstructed for 
downstream analysis, representing a “virtual tumor biopsy.” With 
fivefold cross-validation across 934 cases with paired MRI and his-
tology, we trained encoders to predict the SSL pathology feature vec-
tors from radiomic features and pooled the predicted features from 
the held-out test sets for analysis (Fig. 6). Across these test sets, a 
mean L1 error of 0.078 (95% CI, 0.077 to 0.079) in reconstruction of 
the histologic feature vectors was observed, comparable to the mean 
L1 error between pairs of tile images within the tumor across slides 
(0.074, 95% CI: 0.073 to 0.075), and lower than the average inter-
patient difference between average feature vectors of 0.092 (95% CI, 
0.092 to 0.093; Fig. 6B). To understand how accurately the recreated 
images represent true histology across a wide range of meaningful 
biologic features, we used models pretrained in TCGA to predict 
grade, histologic subtype, and 775 putatively important gene expres-
sion signatures in breast cancer, which can be accurately predicted 
from histology (average Pearson r between true gene signature and 
histology prediction of 0.45, range from 0.09 to 0.74; average false 

Table 2. Perceptual consistency of tumor grade in reconstructed images across cancer types. Correlation between predictions of grade from real and 
reconstructed tiles, averaged per patient, across cancer types, demonstrating a high perceptual similarity of the grade of the real and generated images. For the 
TCGA datasets, a deep learning model was trained to predict grade from real tiles for each cancer type using threefold cross-validation. The correlation between 
predictions for real/generated images is aggregated for the three held-out validation sets. For the CPTAC validation, a deep learning model trained across the 
entire corresponding TCGA dataset was used to generate predictions. Average area under the receiver operating characteristic (AUROC) and average precision 
(AP) are listed for prediction of grade using the above models, as well as when predictions from these models are made with reconstructed (Gen) versions of 
tiles. The similar AUROC/AP from real tiles and reconstructed tiles illustrates the reconstructed tiles retain informative data with regard to grade.

Source n High grade 
(%)

Pearson r P value,  
correlation

AUROC AUROC, 
Gen.

AP AP,  
Gen.

TCGA BRCA 943 36.5 0.89 (0.88–0.91) < 1 × 10−99 0.81 0.74 0.69 0.60

TCGA  PAAD  168 29.8  0.85 (0.81–0.89)  3.90 × 10−49﻿ 0.52 0.58 0.32 0.40

TCGA  PRAD  227 22.9  0.93 (0.91–0.94)  5.30 × 10−99﻿ 0.84 0.82 0.57 0.53

TCGA  HNSC  391 25.6  0.9 (0.88–0.92)  9.78 × 10−142﻿ 0.64 0.62 0.41 0.39

TCGA  UCEC  477 57.0  0.85 (0.83–0.88)  3.07 × 10−137﻿ 0.92 0.94 0.85 0.88

TCGA  BLCA  378 93.9  0.94 (0.93–0.95)  4.19 × 10−178﻿ 0.9 0.99 0.87 0.98

TCGA  STAD  371 60.1  0.92 (0.9–0.93)  7.89 × 10−152﻿ 0.77 0.82 0.75 0.81

CPTAC  BRCA  100 N/A  0.52 (0.36–0.65)  2.33 × 10−8﻿ N/A N/A N/A N/A

CPTAC  PAAD  139 22.3  0.85 (0.79–0.89)  1.65 × 10−39﻿ 0.65 0.63 0.39 0.33

CPTAC  HNSC  107 N/A  0.84 (0.77–0.89)  1.01 × 10−29﻿ N/A N/A N/A N/A

CPTAC  UCEC  99 26.3  0.83 (0.76–0.88)  2.02 × 10−26﻿ 0.83 0.79 0.76 0.62
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discovery rate (FDR)–corrected P value for correlation of 1.10 × 10−5; 
fig. S10 and data S4). Of note, predictions from these models largely 
fell into a smaller number of orthogonal categories (Fig. 6C). We 
found significant correlation between predictions from real histology 
slide and predictions from virtual biopsy tiles for 213 of these 777 
features after FDR correction. Accurate predictions were seen for an 
IFNγ3 signature (23) (Pearson r, 0.21; 95% CI, 0.15 to 0.28; corrected 
P = 4.5 × 10−11), a p53 expression module (24) (Pearson r, 0.18; 95% CI, 
0.11 to 0.24; corrected P =  4.3 × 10−6), as well as multiple breast 
cancer prognostic signatures (25, 26), including a histologic grade 
signature (27) (r, 0.14; 95% CI, 0.07 to 0.20; P  =  5.1 × 10−4) 

research-based version of OncotypeDX recurrence score (r, 0.15; 
95% CI, 0.08 to 0.21; P = 6.9 × 10−6; data S5).

Although the correlation coefficients for these predictions are 
not high, the number of positively correlated signatures suggests 
that some elements of true tumor biology are present in these vir-
tual biopsies. In addition, we found that accurate prediction was 
largely limited by the accuracy of the radiomic features themselves—
a logistic regression trained to predict the result of these 777 features 
directly from radiomic features performed similarly to reconstructed 
histology (Fig. 6D). Given that histology images are often avail-
able for cases undergoing gene expression profiling, it may be easier 

Table 3. Perceptual consistency of histologic subtype in reconstructed images across cancer types. Correlation between predictions of histologic subtype 
from real and reconstructed tiles, averaged per patient, across cancer types, demonstrating a high perceptual similarity of the histologic subtype of the real and 
generated images. For the TCGA datasets, a deep learning model was trained to predict subtype from real tiles for each cancer type using threefold cross-
validation. The correlation between predictions for real/generated images is aggregated for the three held-out validation sets. For CPTAC and UCMC validation, 
a deep learning model trained across the entire corresponding TCGA dataset was used to generate predictions. AUROC and AP are listed for prediction of 
histologic subtype using the above models, as well as when predictions from these models are made with reconstructed (Gen) versions of tiles. The similar 
AUROC/AP from real tiles and reconstructed tiles illustrates the reconstructed tiles retain informative data with regard to histologic subtype.

Source n Histology  
(%)

Pearson r P value, 
correlation

AUROC AUROC, 
Gen.

AP AP,  
Gen.

TCGA BRCA 734 Ductal (77.2)  
Lobular (22.8)

0.94 (0.93–0.95) <1 × 10−99 0.96 0.96 0.92 0.90

TCGA LUNG  941  Adeno (49.6) 
Squamous (51.4)

 0.94 (0.92–0.96)  9.57 × 10−72﻿  0.97  0.98  0.94  0.95

TCGA ESCA  147  Adeno (44.9) 
Squamous (55.1)

 0.95 (0.93–0.96) ﻿<1 × 10−99﻿  0.99  0.99  0.96  0.94

TCGA  KIDNEY  363 Clear (74.4) 
Papillary (25.6)

 0.91 (0.9–0.91) ﻿<1 × 10−99﻿  0.95  0.95  0.91  0.89

CPTAC  BRCA  92 Ductal (92.4) 
Lobular (7.6)

 0.64 (0.5–0.75)  5.80 × 10−12﻿  0.69  0.39  0.57  0.13

CPTAC LUNG  415  Adeno (49.3) 
Squamous (50.7)

 0.94 (0.93–0.95) ﻿<1 × 10−99﻿  0.96  0.96  0.92  0.90

 UCMC  BRCA  820 Ductal (85.5) 
Lobular (14.5)

 0.94 (0.93–0.95) ﻿<1 × 10−99﻿  0.88  0.79  0.59  0.46

Table 4. Perceptual consistency of gene expression in reconstructed images. Correlation between predictions of gene expression from real and 
reconstructed tiles, averaged per patient, demonstrating a high perceptual similarity of the gene expression of the real and generated images. For TCGA, a deep 
learning model was trained to predict gene expression from real tiles from TCGA-BRCA using threefold cross-validation. The correlation between predictions for 
real/generated images is aggregated for the three held-out validation sets. For the CPTAC-BRCA validation, a deep learning model trained across the entire 
TCGA-BRCA dataset was used to generate predictions. Also listed are the correlations between model predictions and true gene expression, as well as the same 
correlations made from the reconstructed (Gen) tiles. The similar correlation coefficients from real tiles and reconstructed tiles illustrates the reconstructed tiles 
retain informative data with regard to histologic subtype.

Source Gene n Pearson r,  
real versus gen.

P value Pearson r, real 
versus expression

P value Pearson r, gen. 
versus expression

P value

TCGA ﻿CD3G﻿  941  0.9 (0.88–0.91) ﻿<1 × 10−100﻿  0.45 (0.39–0.49) <1 × 10−100  0.38 (0.32–0.43) <1 × 10−100

TCGA ﻿COL1A1﻿  941  0.84 (0.82–0.86)  6.88 × 10−269﻿  0.45 (0.4–0.5) <1 × 10−100  0.31 (0.26–0.37) <1 × 10−100

TCGA ﻿MKI67﻿  941  0.91 (0.9–0.92)  0.00 × 100﻿  0.43 (0.38–0.48) <1 × 10−100  0.35 (0.3–0.41) <1 × 10−100

TCGA ﻿EPCAM﻿  941  0.9 (0.88–0.91)  0.00 × 100﻿  0.32 (0.26–0.37) <1 × 10−100  0.25 (0.19–0.31) <1 × 10−100

CPTAC ﻿CD3G﻿  97  0.73 (0.62–0.81)  3.08 × 10−17﻿  0.3 (0.1–0.47) <1 × 10−100  0.21 (0.02–0.4) 0.04

CPTAC ﻿COL1A1﻿  97  0.74 (0.64–0.82)  2.89 × 10−18﻿  0.56 (0.4–0.68) <1 × 10−100  0.55 (0.39–0.67) <1 × 10−100

CPTAC ﻿MKI67﻿  97  0.82 (0.75–0.88)  5.34 × 10−25﻿  0.04 (−0.16–0.24) 0.67  0.07 (−0.13–0.26) 0.51

CPTAC ﻿EPCAM﻿  97  0.44 (0.27–0.59)  5.21 × 10−6﻿  0.1 (−0.1–0.29) 0.33 ﻿−0.04 (−0.24–0.16) 0.69
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Fig. 4. Visualizing histology batch effect and mitigation with normalization. Tile-based weakly supervised models were trained to predict tissue source site and pa-
tient ancestry class (a batch confounded outcome) across select cancer subtypes in TCGA. The gradient with respect to a prediction of these outcomes was calculated for 
the average feature vector across each slide in the dataset. Principal components analysis was applied to these gradients, and components were sorted by the magnitude 
of difference of the component between gradients toward each outcome class. The results are then illustrated for this first principal component (i.e., the component 
contributing most to model prediction). (A) Model predictions for source site are highly homogenous, with an average 54% of the difference in gradients due to the first 
principal component. Perturbation of images along this component illustrate that it largely represents change in the staining pattern of slides. (B) Slide stain patterns also 
contribute to prediction of ancestry, although this first principal component constitutes a smaller proportion of gradients. (C) Reinhard normalization does not eliminate 
the impact of stain pattern on prediction of site, although it leads to an inversion of the stain detected by the model, perhaps due to overcorrection during normalization. 
(D) CycleGAN normalization reduces the dependence of predictions on a single principal component, and this most predictive component is no longer clearly indicative 
of staining differences.
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Fig. 5. Illustration of model predictions for targetable alterations in breast cancer. (A and B) Models were trained to predict PIK3CA mutations and HRD across the 
TCGA-BRCA dataset (n = 963 for PIK3CA, n = 871 for HRD), as these pathways are common and have Food and Drug Administration–approved therapies. Gradient descent 
was used to adjust images to maximize/minimize model prediction of PIK3CA/HRD status (with model prediction strength illustrated with orange/blue bars on top of im-
ages). Transition to PIK3CA alteration was morphologically associated with increase in abundance and eosinophilic appearance of cytoplasm and stroma, increased tubule 
formation, and decreased nuclear to cytoplasmic ratio. Transition to high HRD score was associated with nuclear crowding and pleomorphism with occasional multinucle-
ated cells, an increased nuclear/cytoplasmic ratio, increased lymphocytosis, and tumor cell necrosis. (C and D) Structured pathologist review of 20 transitions from low to 
high model prediction highlight features associated with the selected genomic alterations. (E and F) To determine how many histology slides would be needed to be an-
notated through traditional methods to uncover these same associations, adjusted odds ratio (estimated through 100 iterations of sampling of listed number of slides) of 
the association of histologic features with PIK3CA and HRD status are shown as a function of available slides. Tubule formation in PIK3CA and tumor necrosis in HRD that 
were evident on review of 20 image transitions would require annotation of 400 slides with traditional histologic review to uncover significant associations.
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to train artificial intelligence models to predict molecular features 
from histology than from radiographic imaging. This virtual biopsy 
approach allows for the application of deep learning histology–
derived gene expression signatures without the need for a biopsy, 
which can be used to inform prognosis. By applying pretrained mod-
els to virtual biopsy histology in our cohort, we found that intact 
p53 module expression (24) [hazard ratio (HR) for recurrence free 
interval 0.83 95% CI, 0.70 to 0.98; P = 0.02] and high histologic grade 
signature (27) (HR 1.12; 95% CI, 0.95 to 1.13; P = 0.17) identified 
cases with good/poor prognosis, respectively, although the latter did 
not reach statistical significance (fig. S11).

DISCUSSION
This study presents HistoXGAN, a GAN architecture for digital 
pathology image reconstruction that preserves interpretable disease 
traits. By integrating recent SSL pathology feature extractors (11, 
21, 22) with a modified StyleGAN2 generator, HistoXGAN allows 
interactive manipulation of tissue morphology while maintaining 
crucial architectural elements indicative of underlying tumor biol-
ogy. Quantitative analysis across more than 11,000 images validates 
that HistoXGAN reconstructions accurately recapitulate pathologi-
cal grade, subtype, and gene expression patterns. Expert pathologist 
review further corroborates that generated images exhibit superior 
perceptual similarity to the original histology compared to other 
modern encoders (18, 28). This approach was robust across a wide 
array of solid tumors and tissue source sites even beyond those in-
corporated in model training.

In recent years, deep learning has been applied to predict mo-
lecular features of cancers directly from histology with varying 
degrees of accuracy (6, 9, 29), but understanding the basis of these 
predictions remains challenging. Conditional GANs have been used 
to understand clear-cut histologic features but must be retrained for 
each class comparison and cannot demonstrate multiple transitions 
simultaneously (5). As HistoXGAN accurately recapitulates his-
tologic features that are easily interpreted by pathologists like can-
cer grade and subtype, it can likely be applied for discovery of 
histologic patterns associated with molecular pathways. We applied 
HistoXGAN to prediction of predictable, actionable alterations in 
breast cancer, including PIK3CA mutation (30, 31) and HRD status (as 
defined by high HRD score) (32, 33). Prior studies evaluating histo-
logic features of PIK3CA mutations have described conflicting find-
ings, with one study reporting low grade (34) and others describing 
sarcomatoid features with areas of high-grade carcinoma (35). We 
demonstrate that deep learning prediction of PIK3CA was associ-
ated with more well-differentiated tubule formation and increased 
cytoplasm to nuclear ratio but also increased nuclear size/pleomor-
phism, which may explain the conflicting findings regarding grade 
in prior studies. Similarly, HRD status and BRCA alteration have 
been associated with high tumor cell density, with a high nucleus/
cytoplasm ratio and conspicuous nucleoli, laminated fibrosis, and 
high lymphocyte content as well as regions of hemorrhagic suffu-
sion associated with necrotic tissue (36, 37). Review of HistoXGAN 
images by specialized breast pathologists revealed associated vi-
sual features, including nuclear crowding and pleomorphism, an 
increased nuclear to cytoplasmic ratio, tumor-infiltrating lympho-
cytes, and areas of tumor necrosis, all of which are consistent with 
the aforementioned published results. Overall, these findings add 
confidence that there are true biologic features identified by deep 

learning models for these alterations, and these features can be used 
to identify patients at higher likelihood of molecular alterations in 
standard histologic analysis of tumors. With the rapid growth stud-
ies using AI for pathologic image analysis, HistoXGAN may be an 
important tool to ensure that model predictions are based on ratio-
nal biologically relevant features.

In addition, the emergence of attention-based MIL necessitates 
approaches that can disentangle features used for attention versus 
outcome prediction to facilitate true model interpretability. In gen-
eral, publications have presented heatmaps of model attention or 
selected high/low prediction tiles to illustrate potential features 
used in prediction (10, 38). We demonstrate an elegant application 
of HistoXGAN to attention-MIL models; using gradient descent, 
feature vectors can be perturbed to increase or decrease model at-
tention and predictions separately. This enables independent visual-
ization along these two axes, which is critical for understanding 
whether predictions are driven by meaningful morphology versus 
dataset biases that attract model attention. Applying this method-
ology to grade and subtype prediction models illustrates that low 
model attention correlates with benign fibrous tissue, rather than 
malignant elements, verifying that attention is applied to tumor re-
gions. Overall, this approach can discern whether attention mecha-
nisms highlight biologically salient regions or whether predictions 
are partially confounded by irrelevant features that draw attention. 
Furthermore, we demonstrate that models that are highly con-
founded by site-specific factors such as ancestry can be quickly 
identified with HistoXGAN (15, 39). Standard stain normalization 
such as the Reinhard (40) method demonstrate “overcorrection” of 
color, as HistoXGAN illustrates that models trained after Reinhard 
normalization identify the inverse color transition as associated with 
site, whereas CycleGAN normalization (41) was much more effec-
tive at eliminating learned staining patterns of tissue-submitting 
sites. However, this is also a limitation of HistoXGAN, as any biases 
in the dataset (such as staining differences between histologic sub-
types) will be recapitulated in HistoXGAN visualizations and could 
lead to false conclusions about the histologic features that distin-
guish two classes of data.

Furthermore, studies have applied cross-modal autoencoders to 
understand common “latent spaces” between multiple forms of 
data, but these approaches have not been performed with digital his-
tology (16, 17). In particular, models to predict the histologic diag-
nosis or cancer phenotypes from imaging have been described as 
virtual biopsies (42–45) without the intermediate step of tissue his-
tology reconstruction. We demonstrate here that HistoXGAN can 
be used to create realistic representations of tumor histology direct-
ly from imaging radiomic features and that biologic elements of tu-
mor aggressiveness can be identified from the recreated pathology 
images. As opposed to prior virtual biopsy approaches, generating a 
representative section of hematoxylin and eosin histology theoreti-
cally allows for characterization of any pathologic feature that could 
be performed from a true biopsy rather than restricting analysis to a 
limited set of outcomes used during training. In the presented mod-
el, this approach is currently most useful for deriving markers of 
tumor aggressiveness such as grade or other genomic markers of 
recurrence, which were predictable from generated histology, and 
could be used to aid in treatment decisions, such as the use of 
neoadjuvant chemotherapy versus endocrine therapy in hormone 
receptor–positive breast cancer. This approach could also be used for 
explainability of radiomic predictions; for example, if a radiomic 
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Fig. 6. A virtual biopsy reconstructing histology from radiomic features. An encoder was trained to predict a slide-level average SSL histology feature vector, using 
16,379 radiomic features extracted systematically from 934 breast tumors with paired MRI and digital histology available. Fivefold cross-validation was performed, with 
predictions pooled from the held-out test set. (A) Representative images from the scanned histology slide, reconstruction of the image from an average SSL histology 
feature vector, and reconstruction directly from radiomic features (predictions made using cases from the test set for each fold). (B) The mean difference between slide-
level average features and features from MRI virtual biopsy reconstruction (middle column) was close to the mean difference between tile features within tumors (left) 
and much less than the mean difference of image tile features between tumors (right). (C) To explore the biologic accuracy of generated images, we used 775 models 
trained in TCGA to predict RNA signatures as well as models to predict pathologist annotations of grade and histologic subtype. Predictions from these models largely fell 
into five orthogonal categories as shown in a correlation matrix. (D) Accuracy of predictions for these 777 RNA/histologic features were similar from generated histology 
and directly from MRI radiomics (without the intermediary of generated histology); in other words, features could only be predicted from generated histology if they were 
predictable from MRI radiomics. A number of clinically relevant prognostic signatures such as Prosigna and Oncotype were predictable from generated histology.



Howard et al., Sci. Adv. 10, eadq0856 (2024)     15 November 2024

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

13 of 17

feature is predictive of response to therapy, histology could be gen-
erated as a function of this feature to determine whether the ra-
diomic feature is highly correlated with known pathologic predictors 
of response such as tumor grade. With a larger training dataset across 
multiple cancer types, this tool could theoretically be applied as a 
first step to cancer lesion diagnosis in areas that are inaccessible, or 
as a quality control check, whereas if biopsy results are discordant 
with the predicted histology, it may suggest inadequate sampling 
and need for rebiopsy.

Several opportunities exist to build upon this study’s limitations. 
HistoXGAN was developed using histology across the TCGA data-
set with predominantly solid tumors, and although performance 
was accurate across a wide array of OncoTree diagnoses, this ap-
proach did not generalize to hematologic malignancies such as AML 
(as indicated by the poor performance in reconstructing the CPTAC 
AML dataset). Similarly, this approach may not reconstruct repre-
sentative histology for benign neoplasms or lesions not represented 
in TCGA. Using generative approaches for discovery of biologic 
pathways requires a high degree of confidence in the accuracy of the 
generative model; for example, the identified pathologic characteris-
tics associated with PIK3CA alteration and HRD status are relatively 
subtle, and it can be difficult to verify the accuracy of features de-
rived from generative images although they are consistent with pri-
or reports. However, the fact that known pathologic features such as 
grade and histologic subtype are accurately encoded by HistoXGAN 
provides some confidence that this approach can be used to describe 
histologic associations with rare mutations that have not yet been 
fully characterized.

In particular, our virtual biopsy approach as formulated is cur-
rently very limited—Only a single histopathology tile is generated, 
and this histopathology tile represents the averaged features across 
the entire tumor and thus does not capture heterogeneity; genera-
tion is performed at a single magnification; and training was only 
performed on invasive breast carcinoma without inclusion of be-
nign lesions. Different magnifications may be needed to predict dif-
ferent histologic features; for example, lobular versus ductal subtype 
was not predictable from MRI-generated histology, but grade was 
predictable, and the former may require a lower resolution to accu-
rately assess subtype. Although HistoXGAN could be retrained at 
other resolutions, current SSL-based feature extractors were trained 
at a 20× resolution, which may limit the accuracy of lower-resolution 
reconstruction, and feature extractors optimized at lower resolutions 
may be needed (21, 22). In our current dataset, the exact alignment 
of tumor pathology within the full MRI image is not available, which 
limits our ability to translate regional radiomic features into sepa-
rate histology images. Curation of a dataset with multiple histology 
images representative of different tumor regions could allow a vir-
tual biopsy to be performed from regional radiomic features to fully 
capture tumor heterogeneity and generate multiple discrete tumor 
images per patient. Our virtual biopsy approach focused on character-
izing cases with known breast tumors, and similar encoders would 
need to be trained with cases of benign disease if such a tool was 
used to distinguish malignant potential of lesions.

In summary, this work presents HistoXGAN, an architecture inte-
grating SSL and GANs to facilitate interpretable manipulation of digi-
tal pathology images while maintaining important disease-specific 
morphological traits. Evaluations in more than 11,000 images dem-
onstrate quantitatively accurate reconstructions as well as qualitative 
expert pathologist endorsements of similarity. This technology can 

greatly aid in the interpretability of artificial intelligence models, find 
novel biologic insights into targetable pathways to accelerate bio-
marker development, and even be leveraged to noninvasively sample 
cancer histology for a true virtual biopsy.

MATERIALS AND METHODS
Data sources and image extraction
Patient data and whole-slide images were selected from 29 tumor–
type datasets from TCGA (n = 8120) and 8 corresponding tumor 
types from CPTAC (n = 1327) along with CPTAC AML cases (n = 
88) were used for model validation (table S7). Slides and associated 
clinical data were accessed through the Genomic Data Commons 
Portal (https://portal.gdc.cancer.gov/). Ancestry was determined us-
ing genomic ancestry calls from the work published by Carrot-Zhang 
and colleagues (46). Annotations for HRD score were taken from 
Knijnenburg et al. (47) and binarized at a score of ≥42 for training of 
HRD models. The cohort of 768 cases collected from University of 
Chicago with a wide array of OncoTree diagnoses was collected from 
Institutional Review Board (IRB)-approved protocol 20-0238 from 
patients diagnosed from 2007 to 2020; this cohort was exempted 
from consent requirements due to the retrospective/deidentified na-
ture of this cohort (data S2 and S3). The cohort of 934 matched pairs 
of tumor histology/MRI images was collected from University of 
Chicago under IRB-approved protocol 22-0707 from patients diag-
nosed from 2006 to 2021, who prospectively consented to a biospec-
imen repository (table S8). All samples in the above cohorts with 
image tiles extractable with our Slideflow pipeline were included in 
the analysis, which was a preestablished inclusion criterion due to 
the necessity of extracted image tiles in downstream analytic steps. 
Slide images were extracted using the Slideflow pipeline with a tile 
size of 51 pixels per 400 μm and filtering to remove tiles with >60% 
gray space (48). For GAN training and for applications with weakly 
supervised models without an attention component, the slides were 
only extracted within pathologist-annotated tumor regions of inter-
est. For attention-based MIL models, the tiles were extracted from 
unannotated slides.

GAN and encoder training
The HistoXGAN architecture is a custom version of StyleGAN2, com-
posed of a generator G, discriminator D, and an encoder E (fig. S1). 
Model training consists of two important modifications to the Style-
GAN2 architecture. First, the latent vector z used for each batch dur-
ing the generator training is replaced with the feature vector extracted 
by the SSL encoder. Second, a weighted L1 loss comparing the SSL-
extracted image features from the real image to those extracted from 
the generated image is added to the generator loss.

The HistoXGAN and StyleGAN2 networks used in this study 
were trained with 25,000,000 images across the entire TCGA dataset 
with a batch size of 256, with a lambda weight of 100 for the above 
L1 loss. Models were trained with CTransPath (21) and RetCCL (22) 
encoders. For a naïve comparator encoder, an Encoder4Editing ar-
chitecture was trained to minimize an equal ratio of the Learned 
Perceptual Image Patch Similarity and Deep-image Structure and 
Texture Similarity metrics between the real and generated images 
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from the unmodified StyleGAN2 network, as these yielded the most 
accurate image representation compared to other non-SSL–based 
comparisons such as L1 loss, L2 loss, and structural similarity. To 
demonstrate the necessity of the HistoXGAN architecture (which 
enables direct projection of SSL features into the StyleGAN latent 
space), we evaluated both an Encoder4Editing and SingleStyle en-
coder, trained to minimize the same L1 loss from (1). Encoders were 
trained for 200,000 epochs with a batch size of 8.

Deep learning model training for quantitative assessment
All deep learning models for outcome prediction were trained using 
the SlideFlow platform. For comparison of predictions of grade, his-
tologic subtype, single gene expression between real/generated images 
(Fig. 3 and fig. S6), as well as for illustration of PIK3CA/HRD (Fig. 5), 
and for prediction of tissue source site and ancestry (Fig. 4), we used 
Xception-based (49) weakly supervised models with ImageNet (8) 
pretraining, trained for between one and three epochs with batch size 
of 32. For separate visualization of attention and model predictions 
(fig. S9), and for prediction of image features for reconstructed 
histology from MRI (Fig. 6), we used an attention-MIL architecture 
trained for 20 epochs. All models were trained with a learning rate of 
0.0001 and weight decay of 0.00001. Models for grade, histologic sub-
type, and single gene expression were trained/evaluated with cross-
validation for TCGA datasets and retrained across all of TCGA for 
application to external datasets; other models were trained across the 
entire TCGA cohort.

Visual representation of transition between histology states
Several approaches are used to demonstrate the robustness of tra-
versing histology feature space within HistoXGAN images. For visu-
alization of grade, histologic subtype, and gene expression patterns 
(Fig. 3 and fig. S6), a simple logistic regression model was trained to 
predict these outcomes using averaged SSL-extracted feature vectors 
across the annotated tumor region from each slide to obtain a coef-
ficient vector vcoef. Using a randomly selected baseline feature vector 
from the corresponding cancer dataset, interpolation is performed 
between vbase – vcoef to vbase + vcoef, with images generated at fixed 
intervals along the interpolation. For visualization along the gradi-
ent of a pretrained model M (as in Figs. 4 and 5), we apply gradient 
descent to iteratively update a base vector to minimize the loss (2) 
between the model prediction and the target prediction

For visualization of principal components of model predictions 
(Fig. 4 and fig. S8), a single gradient from the loss as per (2) is gener-
ated across a sample of base vectors across the entire dataset. Princi-
pal components analysis is used on the resulting gradients to generate 
20 orthogonal components c1,2,…n of gradients, and then interpola-
tion is performed between vbase – ci to vbase + ci.

Reconstruction of histology from MRI images
Dynamic contrast enhanced MRI images acquired on 1.5- or 3-T 
magnet strength scanners and digital histology images scanned at 
40× with an Aperio AT2 scanner were obtained for 934 patients. 
Radiomic features were extracted from the region of each dynamic 
contrast-enhanced (DCE)-MRI defined by a tumor mask. To gener-
ate the tumor masks and visualize results, we used the previously 
validated TumorSight Viz platform (50). Briefly, TumorSight Viz 
implements a fully automated segmentation approach consisting of a 

series of convolutional neural networks trained on pre-contrast and 
post-contrast DCE-MRIs to obtain an initial tumor mask. Following 
the tumor segmentation process, radiomic features were extracted from 
the pre-contrast and post-contrast DCE-MRIs along with mathe-
matically computed subtraction and percent enhancement volume 
maps. Features were also extracted from the peritumoral regions by 
eroding or dilating the tumor region by approximately 3 mm. Before 
feature extraction, each volume map was transformed into eight ad-
ditional maps using three-dimensional wavelet filters. Wavelet filters, 
using high- or low-pass filters in each dimension, enhance various 
frequency components of the volumes and are capable of capturing 
important textural information (51). The Pyradiomics library was 
used to generate the wavelet-transformed volume maps (52). Once 
all volume maps were generated, the features were extracted from a 
set of standard feature classes, resulting in a total of 16,379 generated 
features (table S9)3.

Histologic features were extracted from tumor tiles from the 
matched histology samples using an SSL feature extractor, and the 
average feature vector in the tumor region was calculated for each 
case. An encoder was trained for five epochs with a single leaky rec-
tified linear unit hidden layer to convert MRI radiomic features to 
SSL histologic features. The MRI encoder was trained with a two-
component loss, an L1 loss between the encoder prediction and mean 
SSL histologic feature vector, and an L1 loss between features ex-
tracted from an image generated from encoder prediction and the 
mean SSL feature vector. This was performed across five cross-folds 
of the University of Chicago dataset, such that a predicted feature 
vector was generated for each patient in the dataset. Accuracy of 
reconstruction was assessed by comparing predictions for grade, tu-
mor histologic subtype, and 775 clinically relevant gene expression 
features that can be identified from histology for reconstructed 
images to predictions from the same models applied to the original 
whole-slide images. Predictive models for these clinically relevant 
gene expression signatures were trained first using threefold cross-
validation in TCGA to verify accuracy of predictions (fig. S10), with 
a composite model trained across TCGA for use in assessment of 
reconstruction from MRI. For comparison, logistic regression mod-
els were trained from MRI features using the same cross-folds to 
predict these clinical and gene expression features directly from 
MRI features.

Pathologist image interpretation
To assess accuracy of reconstructed images from HistoXGAN and 
the three comparator encoders, four pathologists were presented 
with one image from each cancer in the CPTAC validation set, along 
with reconstructed images from HistoXGAN and alternative encod-
ers presented in a random order. Study pathologists were asked to 
select the generated image most similar to the original image (i.e., 
which image would most likely represent a nearby section of the 
same tumor). This process was repeated with the CTransPath, RetCCL, 
and UNI feature extractors.

To characterize the histologic features identified by deep learning 
models that were predictive of PIK3CA alterations and HRD status, 
20 random images were selected from the TCGA-BRCA dataset, and 
gradient descent was used to alter the base feature vector to produce 
a high/low likelihood of predicted PIK3CA alteration or high/low 
HRD score. Images were generated at fixed steps during this transi-
tion, and study pathologists were asked to qualitatively describe 
tumor, cytoplasmic, stromal, immune, and vascular changes that 
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occur during this transition. Features that were consistently identi-
fied by most of the pathologists were selected to identify a consensus 
for pathologic features representing each of these image transitions.

To verify the veracity of these associations, previously reported 
annotations (53) for epithelial, nuclear, and mitotic grade, as well as 
for necrosis, inflammation, and fibrous foci were compared among 
cases with or without PIK3CA alteration or high HRD score. In addi-
tion, to determine the minimum number of annotations that would 
be needed to confirm these associations with traditional whole-slide 
image review, we repeated these comparisons using 50, 100, 200, 
400, or 800 cases of the total TCGA-BRCA cohort, sampled ran-
domly for 100 iterations.

Statistical analysis
For analysis of the perceptual accuracy of reconstruction of grade, 
histologic subtype, and single gene expression (Tables 2, 3, and 4), 
the Pearson correlation coefficient was computed between the av-
eraged model prediction across all tiles from whole-slide images and 
the averaged prediction across regenerated tiles from extracted 
features from all tiles across these images. For TCGA cohorts, the 
predictions were grouped from held-out test sets with threefold cross-
validation, whereas for CPTAC cohorts, the predictions were all made 
from the same model. For comparison of previously annotated his-
tologic features (such as tubule formation or nuclear pleomorphism) 
between PIK3CA-altered/non-altered and HRD high/low cases, ad-
justed odds ratios and corresponding Wald statistics were computed 
for each histologic feature using a multivariable logistic regression 
for all features. For comparison of predictions from MRI-generated 
images versus real whole-slide images, Pearson correlation coef-
ficient was computed, and FDR correction was performed with 
Benjamini Hochberg (54) method with false discovery/family wide 
error rate of 5%. Identical analysis was performed for predictions 
from logistic regression trained from MRI features to directly pre-
dict model outputs. All statistical testing performed was two-sided 
at an α = 0.05 level. Key analyses, in particular, accuracy of histo-
logic image reconstruction, were performed in duplicate (represent-
ing a technical replicate) with identical results. Error bars on bar 
graphs in figures represent SE.

Supplementary Materials
The PDF file includes:
Figs. S1 to S11
Tables S1 to S9
Legends for data S1 to S5

Other Supplementary Material for this manuscript includes the following:
Data S1 to S5
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