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D E V E L O P M E N TA L  N E U R O S C I E N C E

Gene- environment interactions in the influence of 
maternal education on adolescent neurodevelopment 
using ABCD study
Runye Shi1†, Xiao Chang2,3,4,5†, Tobias Banaschewski6, Gareth J. Barker7, Arun L. W. Bokde8, 
Sylvane Desrivières9, Herta Flor10,11, Antoine Grigis12, Hugh Garavan13, Penny Gowland14, 
Andreas Heinz15, Rüdiger Brühl16, Jean- Luc Martinot17, Marie- Laure Paillère Martinot17,18,  
Eric Artiges17,19, Frauke Nees6,10,20, Dimitri Papadopoulos Orfanos12, Luise Poustka21,  
Sarah Hohmann6,22, Nathalie Holz6, Michael N. Smolka23, Nilakshi Vaidya24, Henrik Walter15, 
Robert Whelan25, Gunter Schumann24,26, Xiaolei Lin1*‡,  
Jianfeng Feng1,2,3,4,5,27*‡, IMAGEN Consortium§

Maternal education was strongly correlated with adolescent brain morphology, cognitive performances, and 
mental health. However, the molecular basis for the effects of maternal education on the structural neurodevelop-
ment remains unknown. Here, we conducted gene- environment–wide interaction study using the Adolescent 
Brain Cognitive Development cohort. Seven genomic loci with significant gene- environment interactions (G×E) 
on regional gray matter volumes were identified, with enriched biological functions related to metabolic process, 
inflammatory process, and synaptic plasticity. Additionally, genetic overlapping results with behavioral and disease-  
related phenotypes indicated shared biological mechanism between maternal education modified neurodevel-
opment and related behavioral traits. Finally, by decomposing the multidimensional components of maternal 
education, we found that socioeconomic status, rather than family environment, played a more important role in 
modifying the genetic effects on neurodevelopment. In summary, our study provided analytical evidence for G×E 
effects regarding adolescent neurodevelopment and explored potential biological mechanisms as well as social 
mechanisms through which maternal education could modify the genetic effects on regional brain development.

INTRODUCTION
Substantial brain development occurs during childhood, which contin-
ues up to early adolescence. While previous studies revealed high heri-
tability regarding structural adolescent brain (1), the role of variable 
environmental factors, especially family socioeconomic status (SES), 
during adolescent neurodevelopment remains one of the most impor-
tant questions in neuroscience. Neuroimaging studies have demonstrat-
ed that maternal education (ME), a central aspect of SES, is positively 

correlated with cortical surface areas in regions (middle and inferior 
temporal gyrus, superior frontal, inferior parietal, and postcentral) re-
lated to language, reading, various executive functions, and spatial skills 
(2), gray matter volume (GMV) of amygdala and hippocampal (3), and 
variability of regional growth patterns (4). Studies examining compos-
ite measures of SES and its different components suggested ME as one 
of the strongest predictors of children’s cognitive development (5–7), 
mental/physical health (8–11), and educational outcomes (7, 12).
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From the social perspective, ME is strongly associated with hu-
man capital and household wealth (13, 14), stable family structure 
(15), and supportive parenting behaviors (16), including cognitive 
stimulation, selection of academically advantageous childcare ar-
rangements, and high- quality child- directed speech (17, 18). How-
ever, from a biological perspective, it remains unknown how ME 
could interplay with genetic components in structuring adolescent 
neurodevelopment.

Gene- environment–wide interaction study (GEWIS) is a widely 
used approach for identifying genetic loci with differential effects on 
the phenotype stratified by the levels of environmental exposure. It 
has been previously used to characterize the molecular basis of 
posttraumatic stress on the risk of suicidal behaviors, and identified 
extracellular matrix biology and synaptic plasticity as biological in-
teractors on the genetic risk of suicidality (19). Here, by leveraging 
the genetic and neuroimaging data from a prospective multicenter 
adolescent cohort, we aim to investigate the interaction effects be-
tween ME and single- nucleotide polymorphisms (SNPs) on adoles-
cent neurodevelopment by conducting GEWIS using additive genetic 
model. Multiple variants were identified to achieve significant main 
and interaction effects on neurodevelopment, with enriched bio-
logical functions relating to metabolic process, inflammatory process, 
and synaptic plasticity. Results were validated using an independent 
adolescent cohort and via gene- based and gene- set analyses. Addi-
tionally, genetic correlation analysis was conducted between genetic 
variants with significant gene environment interactions and those 
associated with multiple behavioral and disease- related phenotypes 
to examine potentially shared biological mechanism. Finally, condi-
tional analyses indicated that, compared to family environment, ME 
is more likely to modify the genetic effects on neurodevelopment 
through socioeconomic status.

RESULTS
ME exhibited strong correlation with regional GMV
To facilitate comparisons across different educational systems, ado-
lescents from the Adolescent Brain Cognitive Development (ABCD) 
Study and IMAGEN study were grouped into three categories based 
on their ME level: mother completed a university education level, 
the equivalent, or above (High- ME); mother completed a high 
school education and the equivalent (Medium- ME); and mother 
completed less than a high school education (Low- ME). Baseline 
characteristics of these 13,862 adolescents stratified by ME levels are 
shown in Table 1. Neither study showed significant sex differences 
in the distributions of ME (X2 = 4.08, P = 0.130 for ABCD; X2 = 0.35, 
P  =  0.840 for IMAGEN). Higher ME was significantly associated 
with higher total GMV, adjusting for age, site, handedness, sex, and 
estimated intracranial volume (r = 0.09, P < 0.001). Brain regions 
exhibiting the strongest correlation with ME include middle tempo-
ral (r = 0.07, Padj < 0.001), fusiform (r = 0.07, Padj < 0.001), precen-
tral (r = 0.06, Padj < 0.001), inferior temporal (r = 0.06, Padj < 0.001), 
and frontal pole (r  =  0.05, Padj  <  0.001) [Fig. 1A and table S1; 
Benjamini- Yekutieli false discovery rate (BY- FDR) method]. We 
also examined the longitudinal associations between ME and struc-
tural neurodevelopment, and found that compared to High- ME, the 
effects of Medium- ME and Low- ME on total GMV remained sig-
nificant until mid- adolescence, although weakening over time (Fig. 
1B and table S2).

ME modified the genetic effects on neurodevelopment via 
metabolic process, inflammatory process, and 
synaptic plasticity
To investigate the role of ME on the genetic effects on structural 
neurodevelopment, we conducted GEWIS using 7662 adolescents 
in the ABCD study. To reduce the false- positive rate, Bonferroni- 
corrected genome- wide significance levels considering the number 
of independent traits were applied (Materials and Methods). Eleven 
independent loci were identified with genome- wide significant main 
or interaction effects (fig. S1 and Fig. 2). Among the seven loci with 
significant interaction effects where SNP effects vary by levels of 
ME, three of them also showed significant main effects on regional 
brain GMV. Absolute effect sizes of these loci on regional GMVs 
were relatively larger and more significant in adolescents with Low- 
ME, and considerably weaker among those with Medium- ME and 
High- ME (Table 2). These results, especially those found in loci with 
significant main effects and effects in adolescents with Low- ME, 
suggested a possible role of the genotype as a diathesis and low ME 
as a stressor, while the results found in loci with nonsignificant main 
effects were more likely to indicate the differential susceptibility to 
ME levels. Detailed annotations for all 11 significant loci are listed 
in table S3.

One intergenic SNP, rs2081046 on chromosome 19, was found to 
be functionally associated with CCAAT enhancer binding protein α 
(CEBPA), a transcription factor involved in glucose and lipid me-
tabolism (20). This gene was also found to have immunomodulatory 
effects, such as regulating proinflammatory cytokines (21), and its 
deficiency or overexpression could abrogate granulocyte differentia-
tion (22) or induce monocytic differentiation in mixed lineage leu-
kemia (MLL) fusion protein- mediated leukemias (23). Three other 
SNPs were mapped to genes involved in glucose/lipid metabolic and 
inflammatory processes as well. Specifically, rs12411861 was an in-
tron variant of SORBS1, which encodes a Casitas B- lineage lympho-
ma (CBL)–associated protein involved in the insulin signaling, 
insulin- stimulated glucose transport (24, 25), and lipid biosynthetic 
process (26), while a few studies have also suggested a potential reg-
ulatory role of SORBS1 in immune system through the nuclear fac-
tor κB (NF- κB) pathway (27). For another two SNPs, rs1423687 was 
functionally mapped to OSMR involved in cytokine signaling, espe-
cially the interleukin- 6 (IL- 6) family (28, 29), and rs7372321 was an 
intro variant of ADAMTS9- AS2, which was widely studied in hu-
man cancers due to its relationship with the phosphatidylinositol 
3- kinase (PI3K)/AKT signaling pathway (30, 31) implicated in in-
flammation (32). In addition, the remaining SNPs showed evidence 
in synaptic activity of the brain, including an intron variant of CAC-
NA1A (rs73922613), which encoded a subunit of neuronal calcium 
channel (33) and was involved in a broad phenotypic spectrum of 
early developmental delay (34) and neuropsychiatric disorders (35), 
an intron variant of PTPRD (rs55829244) encoding a neuronal cell 
adhesion molecule and synaptic specifier, and a variant mapped to 
CDH11 (rs3964317) that correlated with altered dendritic complex-
ity and neuronal/synaptic activity (36).

Note that, although loci identified with significant SNP×ME ef-
fects exhibit more significant effects on brain development in pop-
ulation with Low- ME, this is not the case using a whole- genome 
evaluation (fig. S2). On the basis of external genome- wide association 
study (GWAS) results for regional brain GMV (37, 38), we found an 
increase of heritability among participants with High- ME. Moreover, 
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Table 1. Baseline characteristics for adolescents in the ABCD and IMAGEN cohorts, stratified by ME. continuous characteristics were described using mean 
and Sd, and categorical characteristics are presented as frequency and percentages per category. P values were obtained by one- way analysis of variance 
(ANOvA) test for continuous variables and chi- square test for categorical variables. ns: P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. high- Me, high maternal 
education, defined as mother completed a university education level, the equivalent, or above; Medium- Me, medium maternal education, defined as mother 
completed a high school education and the equivalent; low- Me, low maternal education, defined as mother completed less than a high school education.

ABCD study

 All participants 
(N = 11,780)

High- ME  
(N = 9567)

Medium- ME 
(N = 1234)

Low- ME  
(N = 763)

P value

 Age (years), mean (Sd) 9.93 ± 0.64 9.93 ± 0.65 9.90 ± 0.64 9.89 ± 0.63 ns

 Male, N (%) 6147 (52.2%) 5000 (52.3%) 646 (52.4%) 370 (48.5%) ns

 ethnic, N (%)     ***

  White 7459 (63.3%) 6571 (68.7%) 517 (41.9%) 276 (36.2%)  

  Black 1840 (15.6%) 1156 (12.1%) 431 (34.9%) 199 (26.1%)  

  Other 2480 (21.1%) 1840 (19.2%) 286 (23.2%) 288 (37.7%)  

 Paternal education, N (%)     ***

  University, the 
equivalent, or above

7313 (77.1%) 6841 (85.6%) 275 (33.6%) 83 (16.5%)  

  high school and the 
equivalent

1418 (14.9%) 879 (11.0%) 383 (46.8%) 122 (24.2%)  

  less than high school 754 (7.9%) 271 (3.4%) 160 (19.6%) 299 (59.3%)  

 Socioeconomic 
condition, N (%)

    ***

  ≥$100K 4529 (42.0%) 4414 (49.3%) 73 (7.0%) 7 (1.2%)  

  $50K–$100K 3049 (28.3%) 2682 (30.0%) 257 (24.6%) 65 (11.0%)  

  <$50K 3193 (29.6%) 1858 (20.8%) 714 (68.4%) 519 (87.8%)  

 intracranial volume 
(liters), mean (Sd)

1.49 ± 0.14 1.50 ± 0.14 1.46 ± 0.14 1.43 ± 0.14 ***

 total brain volume 
(liters), mean (Sd)

0.66 ± 0.06 0.66 ± 0.06 0.64 ± 0.06 0.63 ± 0.06 ***

 IMAGEN study 

 All participants 
(N = 2082)

High- ME  
(N = 1056)

Medium- ME  
(N = 692)

Low- ME  
(N = 294)

P value

 Age (years), mean (Sd) 14.39 ± 0.40 14.39 ± 0.40 14.40 ± 0.41 14.40 ± 0.40 ns

 Male, N (%) 1021 (49.0%) 522 (49.4%) 335 (48.4%) 148 (50.3%) ns

 ethnic, N (%)    ns

  White 1859 (89.3%) 943 (89.3%) 626 (90.5%) 260 (88.4%)

  Black 24 (1.2%) 14 (1.3%) 4 (0.6%) 4 (1.4%)

  Other 199 (9.6%) 99 (9.4%) 62 (9.0%) 30 (10.2%)

 Paternal education, N (%)    ***

  University, the 
equivalent, or above

1062 (52.3%) 808 (77.2%) 197 (28.9%) 51 (18.0%)

  high school and the 
equivalent

557 (27.4%) 155 (14.8%) 339 (49.8%) 57 (20.1%)

  less than high school 411 (20.2%) 83 (7.9%) 145 (21.3%) 175 (61.8%)

 Socioeconomic 
condition

0.72 ± 1.03 0.58 ± 0.95 0.81 ± 1.07 0.96 ± 1.12 ***

 intracranial volume 
(liters), mean (Sd)

1.54 ± 0.15 1.55 ± 0.15 1.53 ± 0.14 1.51 ± 0.15 ***

 total brain volume 
(liters), mean (Sd)

0.60 ± 0.06 0.61 ± 0.06 0.60 ± 0.06 0.59 ± 0.06 ***
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following previous studies to control for potential confounding (39), 
we included both the covariate- by- environment and the covariate- 
by- gene interaction term in the GEWIS model as a sensitive analy-
sis. Sixteen of 17 SNPs identified with significant interaction effects 
exhibited Benjamini–Hochberg false discovery rate (BH- FDR)–
corrected significance (Padj < 0.05) (table S4), although none of them 
passed the stringent genome- wide significance due to small sample 
size and increased model complexity. The inclusion of multiple in-
teraction effects also complicates the interpretation of the G×E re-
sults, making it challenging to compare with the original GEWIS 
findings.

GEWIS findings were successfully validated
Both internal and external validation were performed (Fig. 3A). 
First, the leave- out ABCD samples with their siblings were used as 
an internal validation set, where 15 of 17 SNPs (88%) identified with 
significant interaction effects were also found to have BH- FDR– 
adjusted significant interaction effects (fig. S3), although not reach-
ing the genome- wide significance. Next, an independent external 
sample, IMAGEN cohort (n = 1982), was adopted to replicate the 
GEWIS findings. Because of the small sample size of IMAGEN and 
possible population heterogeneity due to age differences, study sites, 
etc., we examined the sign concordance of the SNP×ME effects be-
tween the two studies and reduction of P values after meta- analysis 
with ABCD (40). All significant SNP×ME effects identified in 
ABCD had the same effect direction with IMAGEN and smaller P 
values after meta- analysis with IMAGEN (table S5).

Gene- based and gene- set analyses indicated similar 
mechanisms underlying the G×ME interactions 
on neurodevelopment
To reveal the mechanisms of ME on neurodevelopment at a higher 
biological level, we performed gene- based analysis using summary 
statistics from our GEWIS in MAGMA. Eleven genes were identified 
to achieve Bonferroni- corrected genome- wide significant interac-
tions with ME (G×ME) on regional GMVs (table S6). Notably, we 

observed significant G×ME interactions for CSMD1 on the whole 
cortical (P = 3.84 × 10−12), subcortical (P = 2.36 × 10−7), and middle 
temporal (P = 5.39 × 10−7) GMV, with suggestive effects on lateral 
orbitofrontal (P = 1.10 × 10−5), medial orbitofrontal (P = 3.48 × 10−6), 
and thalamus (P = 2.40 × 10−6) GMV. CSMD1 encodes a complement 
pathway inhibitor in regulating C3/CR3- dependent axonal pruning 
(41) involved in the development of the central nervous system. Ab-
normal axonal pruning may induce both neurodegenerative and psy-
chiatric disorders (42–44), and CSMD1 has been reported to be 
correlated with cognitive functions including working memory and 
episodic memory (45, 46). Other significant genes included CTNNA2, 
which encodes a cell adhesion protein related to dendritic spine and 
synaptic connection stability (47–49), and ANK2, which encodes a 
major ankyrin- B polypeptides required for normal structural connec-
tivity in the central nervous system (CNS) (50). In addition, SORBS1 
(P = 5.32 × 10−6), with suggestive gene- based interaction effects, was 
also implicated in the SNP- based GEWIS.

To examine whether the identified genes with significant G×ME 
interaction effects converged on functional gene sets and pathways, 
we conducted gene- set analysis using MAGMA. Eight significant 
gene sets (table S7) were identified to be involved in neurodevelop-
ment, including four sets related to inflammation regulation and 
synaptogenesis: GOBP_regulation_of_mast_cell_activation_involved_ 
in_immune_response, GOBP_tachykinin_receptor_signaling_path-
way, GOBP_chemorepulsion_of_axon, and Curated_gene_sets_gery_ 
cebp_targets. These gene sets were found to have differential effects 
on accumbens (P = 1.21 × 10−6), lateral occipital (P = 9.47 × 10−7), 
caudal middle frontal (P  =  1.03  ×  10−6), and posterior cingulate 
(P = 3.15 × 10−7) GMVs separately, stratified by the levels of ME.

Significant genetic overlaps were observed between G×ME 
effects on regional neurodevelopment and related traits
Independent SNP effect concordance analyses (iSECAs) were con-
ducted to investigate the overlap between our GEWIS summary statis-
tics and related traits, including neuropsychiatric and neurological 
disorders, and physical, psychological and disease- related phenotypes. 
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Fig. 1. The influence of ME on regional GMVs. (A) Spearman correlations between Me and regional GMvs, adjusting for age, site, handedness, sex, and estimated intra-
cranial volume. Regions in gray indicate nonsignificant correlations after Bh- FdR correction. (B) longitudinal effects of Me on cortical (left) and subcortical brain GMvs. 
Both GMvs (top) and GMv change rate (bottom) for participants with high, medium, and low levels of Me are estimated. the bands indicate 95% confidence intervals for 
predicted GMv at the top and relative regression coefficients at the bottom.
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Significant genomic overlaps (P < 1.0 × 10−3) were observed between 
variants with significant SNP×ME effects on medial orbitofrontal/
middle temporal and related traits (Fig. 3B). These variants were also 
reported to be related to height, body mass index (BMI), rheumatoid 
arthritis (RA), depression, and Alzheimer’s disease (AD). These re-
sults indicated that the biological mechanisms through which ME 
could modify the genetic effects on specific brain regions are likely to 
overlap with behavioral and disease- related phenotypes. While sig-
nificant pleiotropy was observed between G×ME effects on regional 
brain GMVs and GWAS of related traits, we did not find significant 
evidence for concordance or discordance effect directions (fig. S4).

ME is more likely to modify the genetic effects on 
neurodevelopment through socioeconomic status rather 
than family environment
To investigate whether the influence of ME on neurodevelopment 
could be explained by social/family environments or genetic pathways 
(51), we first examined the association between SNPs with significant 

SNP×ME effects and educational attainment/ME in a large meta- 
analysis (52). Neither significant associations were observed be-
tween these SNPs and educational attainment (table S8) nor ME as 
well as other related environmental variables, adjusting for age, gen-
der, and population stratification (table S9). We also found no differ-
ences in both the SNP×ME effects and the SNP- ME correlations 
between genetically related and unrelated mother and child dyads 
(fig. S5). These results suggested that ME is more likely to modify the 
genetic effects on neurodevelopment through environmental inheri-
tance rather than genetic inheritance. To decompose the multidimen-
sional components of ME, we separately adjusted for socioeconomic 
and family environmental factors in our GEWIS analysis. We found 
that most$ of SNPs with significant SNP×ME effects remained sig-
nificant when adjusting for family environmental factors including 
family conflict score and parenting monitoring score, while few 
SNPs remained significant when adjusting for household (house-
hold income) and neighborhood socioeconomic status [area depri-
vation index (ADI)] (Fig. 3C). These results jointly suggested that, 
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Table 2. Genomic loci showing genome- wide significant main or interaction effects with ME on brain GMVs. SNPs with significant main or interaction 
effects were clumped using PliNK, and only those with the smallest P values in each locus are shown in the table. the position of SNP was built upon GRch38. 
BetA indicates the effect of each SNP on regional GMv among participants with high, medium, and low levels of Me. As Me was treated as a continuous variable, 
the genetic effects were estimated using a horizontal shift of Me. MAF, minor allele frequency.

Phenotype SNP (Chr:BP) Allele MAF High- ME Medium- ME Low- ME G×ME effect

BETA P BETA P BETA P BETA P

 cuneus rs7372321  
(3:64728139)

c/t  0.09 0.10  0.001  −0.28 1.07 × 10−5  −0.65 1.84 × 10−7  0.38 9.22 × 10−9

 lateral 
orbitofrontal

rs57466991 
(8:41762594)

A/G  0.17 0.03  0.112  −0.20 2.29 × 10−7  −0.42 2.05 × 10−8  0.22 1.02 × 10−8

 lingual rs35179353 
(21:19854073)

c/t  0.11 0.06  0.016  −0.27 1.13 × 10−6  −0.59 5.27 × 10−8  0.32 9.14 × 10−9

 Middle 
temporal

rs964508578 
(8:9081668)

c/t  0.53 0.03  0.018  −0.13 3.81 × 10−7  −0.29 2.13 × 10−9  0.16 1.68 × 10−10

 rs1493536 
(11:129307277)

c/t  0.44 0.00  0.897  0.14 8.71 × 10−9  0.29 5.42 × 10−9  −0.14 3.87 × 10−8

 Brain stem rs55829244 
(9:9533520)

t/G  0.12 0.02  0.310  −0.22 4.91 × 10−8  −0.46 1.01 × 10−8  0.24 1.10 × 10−8

 cortex rs1423687 
(5:39103314)

A/G  0.35 1.2 × 10−3  0.913  0.12 1.11 × 10−8  0.23 7.18 × 10−9  −0.12 5.21 × 10−8

 rs12411861 
(10:95539609)

G/A  0.18 −3.0 × 10−3  0.824  0.12 2.36 × 10−8  0.25 7.56 × 10−9  −0.13 4.62 × 10−8

 rs3964317 
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A/G  0.38 −0.02  0.164  0.10 2.48 × 10−7  0.22 1.50 × 10−8  −0.12 1.03 × 10−8

 rs73922613 
(19:13549883)

A/G  0.05 0.01  0.617  −0.28 1.68 × 10−8  −0.57 5.54 × 10−9  0.29 1.26 × 10−8

 rs2081046 
(19:33262430)

t/c  0.28 −0.04  0.003  0.10 6.27 × 10−7  0.23 9.34 × 10−10  −0.13 2.87 × 10−11
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compared to micro- family environment, macro- SES may play a 
more manifested role in modifying the genetic effects on neuro-
development.

DISCUSSION
Here, we investigated the interaction effects between SNP/gene and 
ME on structural brain development using large- scale adolescent co-
horts. Eleven independent SNPs with genome- wide significant main 
or interaction effects were identified, with middle temporal most 
susceptible to the effect modification by ME. Most loci showing sig-
nificant interactions with ME also achieved genome- wide signifi-
cance for main effects on neurodevelopment. Considering that the 
impacts of these loci on regional GMVs were larger and more sig-
nificant with lower levels of ME, the diathesis- stress model (53, 54) 
may be considered in interpreting these G×ME interaction results, 
especially for those loci with significant main effects. Specific geno-
types may work as diatheses by increasing the vulnerability of indi-
viduals’ brain development in low ME environments, while higher 
ME may be interpreted as a protective factor for child’s brain devel-
opment. These loci were mapped to functional genes involved in 
synaptic plasticity (i.e., CACNA1A and PTPRD), metabolic process 
(i.e., SORBS1), and immune process (i.e., CEBPA and OSMR). Syn-
aptic plasticity refers to the dynamic modulation of the strength of 
synaptic connections, enabling neural activities generated by the ex-
ternal environment to shape brain morphology and functions (55). 
Previous studies have reported that metabolism played an important 
role in neuronal development and neural activities. Specifically, glu-
coses work as a main energy source for neuronal differentiation, 
morphogenesis, and synaptic function (56), while lipids, such as my-
elin, work as components of cellular structural machinery (57) and 
bioactive molecules (58) implicated in neuronal signaling processes 
(59). Meanwhile, immune system is crucial to the production of 
brain- derived neurotrophic factor (60, 61), survival of multiple neu-
ral cells (62, 63), regulation of myelination (64, 65), and formation 
and pruning of the synapses (66, 67) via diverse pathways including 
phagocytosis and complement cascade. Other mapped genes were 
reported to be associated with related phenotypes, including CNS 
development, neurocognition (such as math capability and memo-
ry), psychiatric disorders (such as bipolar and depression), and neu-
rodegenerative disorders (such as AD and Parkinson’s disease).

The GEWIS findings obtained from the ABCD cohort were fur-
ther validated in both the leave- out sample of ABCD and IMAGEN, 
an independent and large- scale cohort of adolescents. Eighty- eight 
percent of the SNPs with significant interaction effects were validated 
in the internal validation using the leave- out ABCD sample. Because 
of limited sample size of IMAGEN and potential heterogeneity 
between the two studies, we adopted a robust validation approach by 
checking the concordance of effect directions and reduction of P val-
ues after meta- analyzing both cohorts (40). The external validation 
yielded concordant directions for all significant SNP×ME effects be-
tween ABCD and IMAGEN, suggesting replicability of the original 
GEWIS results. It is important to note that age is crucial for the re-
producibility of the GEWIS results: Adolescent GMV changes dur-
ing this critical period follow a quadratic pattern (68); in addition, 
moderation effects of age in the study of both genetic and environ-
mental influences were highlighted in previous studies (69). Besides, 
gene- based analysis also confirmed the role of SORBS1 in interact-
ing with ME during brain development. Previous studies suggested 

that CSMD1 play critical roles in regulating axonal pruning through 
phagocytosis (41), and consistently, we observed differential effects of 
CSMD1 on cortical and regional GMVs (including middle temporal, 
thalamus, lateral orbitofrontal, and medial orbitofrontal) among ado-
lescents with high ME compared to those with low ME. Notably, 
these brain regions form the default mode network (DMN) (70) and 
are largely activated in tasks requiring participants to understand and 
interact with others (71). Our results confirmed previous findings 
that environmental factors, including high levels of income (72), ME 
(72), and supportive parental practices (73, 74), could interact with 
genes in inducing high within- DMN connectivity in children and 
adolescents (75). Further, gene- set analysis strengthened the findings 
of metabolic and immune alterations as potential interactive pathways 
where ME could modify structural brain development.

Next, inspired by the Scarr- Rowe hypothesis (76), which referred 
to a better realization of children’s genetic predisposition in resource- 
rich family environments, we conducted whole- genome analysis to 
calculate the heritability across different ME levels and found an in-
crease of heritability in high compared to low ME. As previous work 
has stressed out the importance of using the entire genome to en-
tangle the contribution of gene- environment interactions (54), it 
should be cautious that significant results found in participants with 
Low- ME cannot be interpreted as higher heritability.

Considerable overlap was observed between genetic variants 
interacting with ME and those associated with neuropsychiatric/
neurological disorders and physical/psychological traits. This indicated 
that ME could affect neuropsychiatric/neurological disorders and 
related traits via similar pathways as in the neurodevelopment of cor-
responding brain regions, highlighting the consideration of envi-
ronmental background when studying genetic relationships between 
phenotypes. It has been called genetic correlation–by–environment 
interactions in previous studies (77), referred to changes in pleiotro-
pic effects across different environments. Although marginal asso-
ciations have been reported between ME and neuropsychiatric/
neurological disorders (10, 78–82), focusing on brain regions with 
significant interactions revealed consistent findings with previous 
studies that these common genetic variants are linked to pathways 
involved in metabolic and inflammatory disorders, neuropsychiatric 
disorders, and intelligence.

From the social context, ME reflects multiple environmental di-
mensions, summarized by family environment and SES. Higher levels 
of ME demonstrate significant associations with higher family in-
come (14, 83), maternal psychological well- being (84), stable family 
structure, as well as better parenting patterns (18). Results from our 
analysis suggested that SES (household and neighborhood condi-
tions), rather than micro- family environment (such as family conflict 
and parenting patterns), played a more important role in modifying 
the genetic effects on neurodevelopment. This finding has important 
implications for welfare state policy and interventions aimed at ad-
dressing the negative effects of social inequality during adolescent 
brain development. Specifically, adequate efforts could be allocated in 
improving family income and social housing assistance. However, it 
did not mean that the role of parent- child communication should be 
negated. The decomposition of the interaction effects between gene 
and ME into different environment pathways could be much more 
complex as shown in previous studies (51, 85, 86).

There are several limitations associated with our study. First, due 
to limited availability of adolescent cohorts, sample sizes in both the 
discovery and validation step of our study remained relatively small 
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compared to existing GWASs, which could lead to decreased statistical 
power in detecting the true gene- by- environment interaction effects. 
Moreover, when ME was treated as a continuous variable to increase 
statistical power, we may overlook the potential departure from linear-
ity. Second, due to our research aim of discovering biological processes 
that may be influenced by ME, we mainly focused on the SNP- level 
annotations in this research regardless of the whole- genome informa-
tion. It should be particularly cautious when interpreting this result in 
terms of heritability. Third, only genes with the strongest evidence of 
SNP association were considered in the annotation and interpretation 
of GEWIS results. Those with moderate or low SNP associations were 
omitted since the Variant- to- Gene (V2G) evidence score from Open-
Target was mostly derived from a single mapping method, which lacks 
reliability. Fourth, the overlap between genetic variants that signifi-
cantly interact with ME on brain development and those significantly 
correlated with neuropsychiatric/neurological disorders and related 
traits only demonstrated pleiotropy instead of causal relationships. Fu-
ture research is needed to explore the causal relationship between 
these variants and confirm the role of ME on modifying the genetic 
effects on diseases and related traits. Further, although we did not find 
any evidence to support correlations between genotypes and ME, the 
potential existence of gene- environment interactions cannot be ig-
nored (87). Trio- based analysis was needed to further elucidate differ-
ent sources of gene- environment interactions, which was out of our 
scope. When decomposing components of ME, environment factors 
in different pathways were adjusted separately in the GEWIS model, 
ignoring the complex relationships between socioeconomic factors 
and family environment. More complex covariate adjustment method 
should be developed to solve this problem.

MATERIALS AND METHODS
Data sources
Data from two adolescent cohorts were used throughout this study. 
The ABCD study was used to identify SNP/gene × ME interaction 
effects on structural brain development, and the IMAGEN study 
was used for replication. Detailed descriptions about these two co-
horts are described elsewhere (88, 89). Demographic and environ-
mental factors and neuroimaging data from the curated annual 
ABCD release 2.0 (age 9 to 10 years, N = 11,811) and IMAGEN (age 
at 14 years, N = 2082) were used in the analyses. Quality- controlled 
T1- weighted neuroimaging data were processed using FreeSurfer 
v6, and regional GMVs were extracted using aparc and aseg atlases. 
Details on the preprocessing of neuroimaging data can be found in 
(90) for ABCD and at https://github.com/imagen2/imagen_mri for 
IMAGEN. Participants with regional GMVs beyond 4 Interquartile 
Ranges (IQRs) were regarded as outliers and excluded from the 
analyses. Genotype data were quality controlled using PLINK 1.90, 
where SNPs with call rates <95%, minor allele frequency <1%, and 
deviation from the Hardy- Weinberg equilibrium with P < 1 × 10−10 
were excluded from the analysis. Because of genetic diversity (91) 
and low linkage disequilibrium (LD) levels of African populations 
(92), a total of 2387 ABCD subjects self- reporting ancestral origins 
as Black or African American were excluded. Considering that 
ABCD is oversampled for siblings and twins, and thereby has a nest-
ed structure, we randomly selected one participant within a family 
(the kinship relationship between participants was decided by ge-
netically inferred zygosity status in acspsw03 file). The excluded 
participants in this step together with their siblings were further 

used as an internal validation set. Details on preprocessing of the 
genotype data can be found in (93, 94, 95). After stringent quality 
control, a total of 5,020,358 SNPs and 7662 participants in ABCD, 
and 5,966,316 SNPs and 1982 participants in IMAGEN were includ-
ed in the final analyses.

Ethics statement
All the cohort data used in this study comply with relevant ethical 
regulations. The ABCD study was supported by the National Insti-
tutes of Health (NIH), and the IMAGEN study was approved by local 
ethnical research committees at each research site: King’s College 
London, University of Nottingham, Trinity College Dublin, Univer-
sity of Heidelberg, Technische Universitat Dresden, Commissariat a 
l’Energie Atomique et aux Energies Alternatives, and University Med-
ical Center. Informed consent was sought from all participants and a 
parent/guardian of each participant if under 18 years in all studies.

Measures of mother- child relationship, SES, and 
family environment
Mother- child relationship
The kinships between mother- child dyads were self- reported. Ge-
netically related mothers were defined by those reported as the child’s 
biological mother, while non–genetically related mothers were de-
fined by those reported as the child’s adoptive mother, custodial 
mother, or others.
Maternal education
ME was categorized according to the highest degree attained by one’s 
biological mother. Adolescents whose mother completed a higher 
professional programs or university programs were coded as High- 
ME, those whose mother completed a general higher secondary edu-
cation or equivalent were coded as Medium- ME, and those whose 
mother was only involved in primary education/lower secondary edu-
cation were coded as Low- ME. For ABCD, High- ME: some college/
associate degree/bachelor’s degree/master’s degree/professional school 
degree/doctoral degree; Medium- ME: high school graduate/general 
educational development (GED) or equivalent diploma general; 
Low- ME: 1st to 12th grade. For IMAGEN, High- ME: professional 
qualification/bachelor’s degree/advanced diploma; Medium- ME: A 
levels or a BTEC (Business and Technology Education Council) 
national diploma/NVQ (National Vocational Qualification) or GNVQ 
(General National Vocational Qualification); Low- ME: O levels, GCSE 
(General Certificate of Secondary Education) or CSE (Certificate of 
Secondary Education)/less than primary school education.
Household and neighborhood SES
Household income was defined as the total combined family income 
for the past 12 months before the investigation. It is recoded as an 
ordinal variable: 0 for less than 50,000 US dollars, 1 for 50,000 to 
100,000 US dollars, and 2 for more than 100,000 US dollars. Neigh-
borhood SES was measured using the ADI, which was calculated 
based on the participant’s primary residential address. The ADI is 
based on census data on 17 different factors including income, edu-
cation, employment, and housing quality and provides rankings of 
neighborhoods as a national percentile (96). Higher ADI reflects 
greater disadvantages in terms of SES.
Family environment
Family conflict score was estimated as the average of nine questions 
from the ABCD Parent Family Environment Scale- Family Conflict 
Subscale Modified from PhenX, which assesses conflict between 
family members, including parents and children (97). Participants 

https://github.com/imagen2/imagen_mri
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with more than five missing answers were excluded. Missing values 
were imputed as the average score across all answered questions. 
Parental monitoring score was calculated as the average of the five 
questions from the ABCD Parental Monitoring Survey, which re-
flects overall high parental monitoring behaviors (98).

Statistical analysis
Correlation analysis
To examine the overall impact of ME on brain development, we 
combined data from ABCD and IMAGEN, and performed linear 
regression of ME on regional brain GMVs adjusting for age, site, 
handedness, sex, and estimated intracranial volume. To assess the 
longitudinal impact of ME on regional GMVs, we adopted a two- 
stage model fitting approach, where estimated intracranial volume 
was first estimated using a model linear in age adjusting for sex, site, 
and handedness, and regional GMVs were then fitted using qua-
dratic term of age and linear age by ME interaction. Model selection 
was performed using likelihood- ratio test (table S2), and BY- FDR 
was used to correct for multiple testing.
Gene- environment–wide interaction study
To investigate the interactions between genetic variants and ME on 
brain development, we assumed an additive genetic model where 
the number of risk alleles was treated as a continuous variable (coded 
as 0, 1, and 2), and regional brain GMVs were used as the pheno-
type. The primary analytic model included SNP, ME, and SNP×ME 
interaction term as variables of interest, and sex, baseline age, esti-
mated intracranial volume, site, handedness, and top m principal 
components of genomic marker variations (m = 20) as covariates 
using PLINK 2 (99). To save degrees of freedom and increase the 
statistical power, ME was also treated as a continuous variable (coded 
as 0, 1, and 2 for Low- ME, Medium- ME, and High- ME, respec-
tively). Since the genetic effects on brain GMV at Medium- ME 
(relative to Low- ME) were approximately half of those at High- ME 
(fig. S6), it is reasonable to treat ME as a continuous variable. A sen-
sitivity analysis for treating ME as a nominal categorical variable 
was further conducted to test the linearity of genetic effects with 
varying levels of ME. The main effect of SNP referred to the genetic 
effects in the population with low- ME (ME = 0). A horizontal shift 
of ME was applied to estimate the corresponding genetic effects for 
population with different ME levels. While previous studies have 
suggested potential confounding effects for G×E terms (39), we also 
included both the covariate- by- environment and the covariate- by- 
gene interaction term in the GEWIS model as a sensitive analysis. 
However, the inclusion of multiple interaction effects would make it 
challenging to interpret both the main genetic effect and G×E re-
sults, which cannot be compared with the GEWIS results directly.

Additionally, due to the emphasis on the utilization of whole- 
genome information (54), we calculated the polygenetic score (PGS) 
using external GWAS (37, 38) [PRSice- 2 (100)] for ABCD partici-
pants. Considering the possible genetic contribution difference in 
the brain morphology between adolescents and adults, we selected 
GWAS summary statistics, which was also conducted in adoles-
cents. Thus, only those for subcortical regions found with signifi-
cant G×ME results and intracranial volume that was used as a 
measurement for the total brain development were used. The herita-
bility was estimated by the correlation analysis between PGS and the 
corresponding GMV phenotype adjusted for sex, baseline age, site, 
handedness, and top 20 principal components of genomic marker 
variations.

To replicate the GEWIS results, we first conducted an internal 
validation using sibling pairs in ABCD, where the shared family en-
vironment within siblings was modeled as the random effect (lmer 
1.1- 34 package). The BH- FDR method was used for multiple test-
ing. Next, we performed the same analytic steps in IMAGEN 
(m = 20) as an external replication set and check for the effect 
concordance on significant interaction effects between ABCD and 
IMAGEN. Inverse variance weighted meta- analysis was used to de-
tect the concordance of interaction effects between GEWISABCD and 
GEWISIMAGEN. Because the presence of passive gene- environment 
correlations may influence the estimated G×ME interactions, that 
is, the child inherits both genotypes and environments from their 
parents (87), Pearson’s correlation analysis was used to test the inde-
pendence between identified loci with significant G×ME interac-
tions and ME. We also tested for other family environmental factors 
and socioeconomic factors due to their correlations with ME. The 
BH- FDR method was used for multiple testing correction.
Functional mapping
Significant SNPs in GEWIS were identified based on their P values 
for the main or interaction effects and clumped by LD for indepen-
dence [r2 < 0.6 in the 1000 Genomes phase 3 reference (101)] within 
a 250- kb window using PLINK 1.9. SNPs within genes are mapped 
to genes based on physical positions. For SNPs in intergenic regions, 
it is challenging to identify possible causal genes underlying associa-
tion signals requiring a profound understanding of how they alter 
gene expressions, instead of solely relying on proximity- based ap-
proaches. Thus, V2G pipeline from Open Targets Genetics (www.
opentargets.org) were used to map them to genes with evidence 
scores. The V2G model integrates evidence from molecular pheno-
type quantitative trait loci, chromatin interaction, in silico function-
al predictions, and distance between the variant and the canonical 
transcript start site of genes (102). Only mapped genes with the 
strongest evidence score were reported in the interpretation of 
GEWIS results.
Gene- based and gene- set analyses
Gene- based association analyses were performed in MAGMA v1.08 
(103) in Functional Mapping and Annotation (FUMA) platform 
(104) using G×ME summary statistics from the GEWIS conducted 
in ABCD. Associations were tested using the SNP- wise mean model, 
in which the sum of −log (SNP P values) for SNPs located within 
the transcript region was used as the test statistic. LD correction 
was estimated from the 1000 Genomes phase 3 reference. P values 
from the gene- based association analyses were then used to test 
whether candidate gene sets belong to specific biological pathways 
or processes.
Multiple testing corrections
As suggested by Vrieze et al. (105), G×E interactions in association 
studies were much more difficult to identify than main effects, re-
quiring a sample size of more than 50,000 participants to reach 80% 
power at the significance threshold of 5 × 10−8. Thus, we adopted a 
two- step approach to increase the statistical power. First, we con-
ducted GEWIS studies in all the brain phenotypes. Then, we applied 
multiple testing method to only those phenotypes identified with 
significant G×E effects (P < 5 × 10−8). As these phenotypes were 
correlated to some extent, we estimated the effective number of in-
dependent variables based on matrix spectral decomposition, using 
Li and Ji’s method (106). Thus, the Bonferroni- adjusted significant 
thresholds were set at P  <  1.25  ×  10−8 (5.0  ×  10−8/4). For gene- 
based and gene- set significance, we applied adjusted significance of 

http://www.opentargets.org
http://www.opentargets.org
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P  <  1.25  ×  10−6 (5.0  ×  10−6/4) and suggestive significance of 
P < 2.50 × 10−5 (1.0 × 10−4/4).
Genetic overlap
Several important neuropsychiatric and neurological disorders, and 
physical, psychological, and disease- related phenotypes involved in 
neurodevelopment were selected according to Brouwer et al. (107). 
Summary statistics were obtained from public GWAS for intelligence 
(108), memory (109), height (110), BMI (110), waist circumference–
adjusted BMI (111), triglyceride (110), obesity (112), diabetes (113), 
inflammatory bowel disease (114), multiple sclerosis (114), RA (115), 
aggression (116), attention- deficit/hyperactivity disorder (117), au-
tism (118), depression (119), schizophrenia (120), bipolar disorder 
(121), AD (122), and Parkinson’s disease (110). To investigate the ge-
netic overlap between SNPs with significant G×ME effects on region-
al GMVs and those with strong associations with these traits, we 
performed iSECA (123), which examines pleiotropy and concordance 
of effect directions between two phenotypes by comparing expected 
and observed overlap in sets of SNPs with different P value thresh-
olds. Binomial exact test was adopted to test for pleiotropy, and Fisher’s 
exact test was used to test for effect direction concordance. Empirical 
P values were generated through permutation testing over 1000 times, 
and P values for pleiotropy and effect concordance were corrected 
using the BY- FDR method.
Decomposition of ME
As ME could reflect different social and family advantages, we ad-
justed resource- related factors (ADI and household income) and 
family relationship–related factors (family conflict score and parent-
ing monitoring score) in the GEWIS model by adding one specific 
environment factor and the interaction effect with genotype identi-
fied in GEWISABCD. Genome- wide nonsignificance of the G×ME ef-
fect after the adjustment of other environmental factors suggests that 
the moderating effect of ME on genetically influenced brain develop-
ment could be mediated by the corresponding environmental factor.
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