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Abstract

Sleep is a fundamental requirement of life and is integral to health. Deviation from optimal sleep 

associates with numerous diseases including those of the cardiovascular system. Studies, spanning 

animal models to humans, show that insufficient, disrupted or inconsistent sleep contribute to 

poor cardiovascular health by disrupting body systems. Fundamental experiments have begun 

to uncover the molecular and cellular links between sleep and heart health while large-scale 

human studies have associated sleep with cardiovascular outcomes in diverse populations. Here, 

we review preclinical and clinical findings that demonstrate how sleep influences the autonomic 

nervous, metabolic and immune systems to affect atherosclerotic cardiovascular disease.

As a fundamental and necessary biological process, sleep plays a pivotal role in 

maintaining health. A growing body of both clinical and preclinical research underscores 

the intricate interplay between sleep and essential biological processes, including those 

of the nervous, metabolic and immune systems1–3. Sleep insufficiency or disruption has 

been linked to a myriad of deleterious outcomes, encompassing impaired neuronal function, 

metabolic dysregulation, a compromised immune system and an increased susceptibility to 

atherosclerotic cardiovascular disease (ASCVD)4–6. As we learn more about the nuanced 

molecular, cellular and tissue mechanisms governing the relationship between sleep and 

health, it becomes increasingly evident that prioritizing adequate and quality sleep is key for 

fostering cardiovascular health.
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Sleep deficiencies are an important public health concern as two-thirds of US adults report 

insufficient or poor sleep7,8. Recently, the American Heart Association (AHA) included 

sleep as one of ‘life’s essential 8’ factors for cardiovascular health9 and the American 

College of Cardiology’s top recommendation for primary prevention of heart disease is to 

adopt a healthful lifestyle that includes sufficient sleep10. These guidelines are based on 

numerous associative studies that have consistently demonstrated the importance of adequate 

sleep to cardiovascular health. However, limited causal evidence exists for sleep’s impact on 

ASCVD. Experimental and randomization studies in humans and rodents have begun to fill 

this knowledge gap uncovering mechanistic associations that invariably include the complex 

interplay between sleep and several bodily systems11,12.

In this Review, we interweave results from clinical, translational and fundamental studies 

exploring the role of sleep in ASCVD. The Review synthesizes studies spanning the 

scientific spectrum, from animal models to humans, highlights the advantages and hurdles of 

animal models in sleep research (Box 1) and is organized around the idea that sleep affects 

cardiovascular health by engaging three core systems: the nervous, metabolic and immune 

(Fig. 1).

Clinical and epidemiological evidence associates sleep and ASCVD

Abundant clinical and epidemiological data link sleep and ASCVD in humans and emerging 

studies support a causal relationship. Sleep is a multidimensional state, and deviations in its 

abundance, timing and quality, in addition to sleep disorders such as obstructive sleep apnea 

(OSA), influence ASCVD risk.

Short and long sleep duration associate with ASCVD

Prospective data demonstrate that self-reported short sleep (<6 h per night) associates 

with higher rates of acute myocardial infarction (AMI) compared to 6–9 h of sleep per 

night (hazard ratio (HR) 1.20 (confidence interval (CI) 1.07–1.33))13. Applying Mendelian 

randomization analysis supports a causal effect of short sleep on ASCVD with a 21% 

increased incidence of AMI (HR 1.21 (CI 1.08–1.37)13. These results were confirmed by 

other Mendelian randomization analyses, thereby demonstrating links between genetically 

predicted short sleep and ASCVD (including AMI) and hypertension (HTN)14. Adding to 

this evidence are findings of a dose–response relationship between decreasing self-reported 

sleep duration and ASCVD occurrence (in individuals reporting 7 h, 6 h and <5 h of 

sleep compared with those reporting 8 h of sleep; relative risk 1.06 (CI 0.89–1.26), 1.30 

(CI 1.08–1.57) and 1.82 (CI 1.34–2.41), respectively)15. At the other extreme, excessive 

sleep (>9 h per night) entails elevated risk of ASCVD (relative risk 1.38 (CI 1.03–1.86))15. 

Similar findings have been acquired in diverse cohorts that include men and women across 

different racial/ethnic backgrounds16. The associations between short-versus-long sleep and 

ASCVD are likely disparate, with long sleepers potentially having greater sleep drive in the 

setting of underlying illness. This difference is captured in studies evaluating self-reported 

napping. Although those with short sleep (≤6 h per night) are at higher risk of major adverse 

cardiac events and death, the addition of self-reported napping does not raise their risk17. 

By contrast, individuals who sleep more than 6 h a night and report requiring daytime naps 
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are at increased risk of composite CVD events and death17, a result that suggests that sleep 

pressure has an important role in the association between sleep and ASCVD. However, 

these epidemiological studies are limited in their ability to draw causal relationships. It is 

unknown whether experimentally extending sleep to adequate levels among short sleepers 

improves atherosclerotic plaques and ASCVD risk. The feasibility of such experimental 

models of sleep extension in humans and direct analysis of cardiovascular disease remains a 

challenge among healthy or at-risk participants.

Poor sleep and daytime symptoms and habits affect ASCVD risk

Another key factor is the interaction between short and poor-quality sleep. Self-reported 

sleep problems associate with CVD, even after controlling for confounders (odds ratio 

(OR) 1.75 (CI 1.41–2.16))6. However, individuals reporting both short and restless/disturbed 

sleep are at highest risk (relative risk 1.55 (CI 1.33–1.81))18. In a prospective observational 

study using objective measures of sleep duration, insomnia or poor-quality sleep combined 

with a sleep duration of <6 h per night associates with risk of incident CVD (HR 1.29 

(CI 1.00–1.66))19. To achieve rigor and granularity for self-reported sleep data, we can 

apply advanced statistical methods and machine learning to assess sleep phenotypes and 

interactions. Latent class analysis, which identifies clusters with variable ASCVD risk, 

reveals that those with dissatisfactory/inefficient sleep and naps are at high risk of CVD 

(relative risk 1.29 and 1.38, respectively)20. Latent class analysis also identifies symptom-

based OSA-specific subgroups with high CVD risk. Individuals with OSA who have 

excessive daytime sleepiness are at highest risk of CVD compared to other symptom 

subgroups and those without OSA21, thus highlighting the importance of sleep drive—in 

this case measured by symptoms rather than requirement for napping—on cardiovascular 

risk. These findings demonstrate how combining sleep-related symptoms, even when they 

are daytime symptoms related to quality of life, with formal sleep diagnostics better 

assesses health risk. Indeed, the effects of short sleep on CVD mortality are amplified 

when combined with other daytime unhealthy/sedentary behaviors such as limited vigorous 

activity, excessive time spent watching television and elevated body mass index (BMI, 

relative risk 1.90 (CI 1.67–2.17))22.

Impact of sleep timing and variability on ASCVD

Sleep quality, timing, variability and entrainment with circadian rhythm are as influential 

on ASCVD as sleep duration. Night shift work is associated with increased incidence 

of ASCVD, and more years working night shifts result in greater CVD risk even after 

multivariable adjustment (<5-year HR 1.02 (0.97–1.08), 5–9-year HR 1.12 (CI 1.02–1.22), 

and ≥10-year HR 1.18 (CI 1.10–1.26))23. That these results are largely unchanged after 

adjusting for sleep duration suggests sleeping out of phase with normal circadian rhythm 

carries an intrinsic risk of ASCVD. Strikingly, it takes more than 24 years after night shift 

cessation for ASCVD risk to normalize. Even less extreme forms of out-of-phase sleep, like 

social jetlag with as little as 2–4-h deviation from individualized chronotype, shows a trend 

toward elevated ASCVD risk24. Despite no difference in sleep time, evening chronotype, 

compared to morning chronotype, is associated with a small but statistically significant 

rise in CVD prevalence (OR 1.07 (CI 1.04–1.10))25. Another consideration intertwined 

with circadian disorders is variability in sleep schedule, which associates with higher CVD 
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burden, even after adjustment for chronotype, work schedule, average sleep duration and 

insomnia symptom scores26. Each additional hour in the standard deviation of sleep duration 

or sleep-onset timing increases the risk of CVD by 39% and 18%, respectively. Individuals 

with irregular sleep duration and sleep-onset timing are more likely to have high coronary 

artery calcium burden27 and are at increased risk of cardiometabolic mortality28.

Analysis of multidimensional sleep and ASCVD

Principal component analysis (PCA) has been used to generate a sleep score that combines 

data from polysomnography (PSG), actigraphy and sleep questionnaires29. Higher scores—

indicating better sleep health—associate with reduced all-cause mortality (HR 0.75 (CI 

0.65–0.87) per one standard deviation increase in sleep score). The components of this 

multidimensional tool that contribute the most to mortality are sleep pattern regularity, 

sleep duration and apnea–hypopnea index (AHI). These features can represent consequences 

of OSA; alternatively, however, they can represent an intersection of multiple comorbid 

sleep conditions and symptoms. Another analysis explored whether adding the same 

multidimensional sleep data to the AHA’s Life’s Simple 7 score provided additional 

information regarding ASCVD risk. Although the Life’s Simple 7 score alone does not 

associate with incident CVD, adding sleep health scores does show an association with 

CVD incidence (HR 0.53 (CI 0.32–0.89))30, a result that prompted the AHA to incorporate 

sleep into Life’s Essential 8. Multidimensional sleep scores are also useful when combined 

with weighted genetic risk. Individuals with poor sleep and high genetic risk scores have 

the highest risk of ASCVD compared to individuals with better sleep scores and/or lower 

genetic risk, implying the importance of and interaction between predisposing genetic risk 

and environmental/lifestyle factors31. Advances in machine and deep learning will allow for 

integration of multidimensional sleep data to capture a myriad of comorbid sleep disease 

states and thus predict outcomes. For example, a deep neural network trained on 2,500 PSGs 

from seven studies can estimate mortality from PSG-based age estimation32. There is no 

one single measure of sleep that encapsulates all CVD risk. Therefore, it stands to reason 

that novel predictive risk scores that assess multiple parameters of sleep health will provide 

a better understanding of which individuals are at risk of ASCVD. Going beyond risk 

prediction, novel forms of heterogeneous treatment effects analyses combined with multiple 

feature domains will enable better estimation of treatment effects on CVD outcomes.

Obstructive sleep apnea and cardiovascular disease

OSA and CVD are closely connected. Large-scale epidemiological studies demonstrate that 

OSA positively associates with CVD and, on long-term follow-up, with CVD mortality33–36. 

These observations were preceded by smaller studies37–39, confirmed by other single-center 

cohorts40, and replicated in diverse cohorts41,42. Studies have found that adherence to OSA 

treatment with continuous positive airway pressure (CPAP) therapy benefits CVD43–46. 

However, randomized controlled trials (RCTs) evaluating CPAP for primary and secondary 

CVD prevention consistently show neutral findings47. This discrepancy may be due to a 

‘healthy user’ bias within observational data or the inherent limitations of RCTs including 

restrictive inclusion criteria and poor adherence to therapy. OSA affects almost one billion 

people worldwide48; therefore, it is unlikely that all CVD risk within this group is 

attributable to OSA. Endotyping and phenotyping OSA can achieve a precision approach 
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to treatment for specific disease outcomes49 including CVD endpoints. Endotypic processes 

that underlie OSA pathophysiology, including arousal threshold, loop gain, airway muscle 

compensation and pharyngeal collapsibility, have been suggested as targets for specific 

and novel treatments50 that would challenge the current one-size-fits-all approach. How 

treatment algorithms targeting these specific axes impact ASCVD outcomes needs to be 

fully assessed in future studies.

A critical deficiency in RCTs evaluating OSA treatment on ASCVD is the lack of inclusion 

of important symptom-based phenotypes. Individuals with OSA who have excessive daytime 

sleepiness are known to be at increased CVD risk21,51 and, conversely, OSA without 

excessive daytime sleepiness may have the same CVD risk as no OSA51. Additionally, 

OSA must be evaluated as part of a holistic, multidimensional approach to sleep. For 

example, outcomes for individuals with comorbid insomnia and OSA are much worse 

than for either condition alone52–55. As underlying mechanisms differ between OSA 

endophenotypes and ASCVD, future work must rigorously collect data to analyze OSA 

cohorts by their heterogeneous individualized subgroups. Clinicians must be vigilant in 

obtaining detailed history and objective evidence of comorbid sleep disorders to better 

understand sleep’s comprehensive impact on ASCVD. Through this lens, we will be able 

to explore intermediate endpoints that may represent the fundamental autonomic, metabolic 

and inflammatory pathways through which sleep disruption causes ASCVD.

Effects of sleep on the autonomic nervous system

The autonomic nervous system is composed of two branches, the sympathetic nervous 

system (SNS) and parasympathetic nervous system (PNS). The SNS and PNS highly 

innervate organs and arterial adventitia56 to modulate function through neurotransmitters, 

such as catecholamines and acetylcholine (ACh), respectively. While the SNS is considered 

a quick response, ‘fight-or-flight’ system, the PNS exerts slowly activated complementary 

effects to dampen bodily functions. When humans transition from the waking state to 

progressively deeper stages of sleep, SNS tone decreases and PNS vagal tone increases. 

Non-rapid eye movement (NREM) sleep, most notably slow-wave sleep, can be considered 

a phase that allows autonomic stability and metabolic recovery due to parasympathetic 

dominance57. This is in contrast to rapid eye movement (REM) sleep where SNS tone 

and neurotransmitter release rises, enhancing heart rate variability and elevating systolic 

and diastolic blood pressure58. These changes in SNS and PNS parallel the activity of 

the hypothalamic–pituitary–adrenal (HPA) axis, which is a vital neuroendocrine system 

connecting perceived stress to physiological reactions via glucocorticoids59. Individuals 

with OSA60, narcolepsy61 and chronic insomnia62 have higher sympathetic nerve activity, 

during both sleep and wakefulness, which may be caused by disturbed chemoreflex and 

baroreflex activity, altered cardiac electrophysiology, endothelial dysfunction or increased 

neural cardiovascular responsiveness. A persistent increase in SNS activity can favor the 

emergence of permitted local inflammatory zones. In chronic inflammatory settings and 

sleep-related hyperarousal states, this has detrimental effects that lead to comorbidities 

such as high blood pressure, cardiovascular mortality or insulin resistance63–65. These 

observations suggest interplay between the autonomic nervous system and sleep in the 

regulation of inflammation, which may be able to be harnessed therapeutically (Box 2). In 
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addition, sleep disruption may modulate changes in adrenal and gonadal androgen levels 

that in turn promote a pro-inflammatory state, thereby perpetuating sleep disturbance66. 

Moreover, signals through gonadal steroids together with inputs from the paraventricular 

hypothalamic nucleus can be integrated in the preoptic area of the hypothalamus, 

where activation of glutamatergic neurons elicits microarousals and subsequent sleep 

fragmentation67. Heightened autonomic activity together with sleep disruption may instigate 

the underlying causes of ASCVD by simultaneously affecting the interconnections between 

cardiac physiology, local inflammation and hormonal balance (Fig. 2).

Sleep and hypertension

SNS activation is a predominant contributor to HTN. OSA-related respiratory events 

increase sympathetic nerve activity68, drive nocturnal non-dipping of blood pressure69 

and lead to daytime HTN70, while CPAP treatment for OSA reduces nocturnal71 and 

daytime72,73 blood pressure. The influence of sleep on HTN can be characterized more 

effectively when multiple dimensions of sleep are combined. For example, systolic blood 

pressure is highest among those with moderate-to-severe OSA and a morning chronotype, as 

compared with intermediate OSA or evening chronotypes74. Short sleep and insomnia also 

associate with HTN. Compared to those sleeping >6 h a night, individuals with insomnia 

and <5 h of nightly sleep have elevated risk of HTN (OR 5.1 (CI 2.2–11.8))75. Short sleep 

(<6 h versus 7–8 h) raises the risk of HTN (OR 1.66 (CI 1.35–2.04)), an effect that persists 

even after adjusting for confounding variables76. These dynamics are not limited to short 

sleepers; those reporting >9 h of sleep per night also have increased HTN risk (OR 1.30 (CI 

1.04–1.62))76. These findings have been validated in prospective cohorts, in which reporting 

≤5 h of sleep per night associates with greater risk of developing HTN compared to sleeping 

7 h per night (HR 1.20 (CI 1.09–1.31)), an effect that obesity partially mediates77. Although 

they do not prove causation, prospective incidence data provide stronger evidence that 

sleep modulates autonomic and vascular function. For example, studies using actigraphy to 

assess objective sleep duration and consolidation demonstrate higher rates of both HTN and 

incident HTN over 5 years (OR 1.37 (CI 1.05–1.78))78. Experimental studies strengthen 

this association by revealing a causal relationship between sleep restriction (that is, 4-h 

time-in-bed restriction for 9 days) and 24-h blood pressure, increased morning plasma 

norepinephrine and attenuated vasodilatory capacity79.

Sleep and circadian regulation also have central roles in modulating diurnal blood 

pressure80. Evening chronotypes have a 1.3-fold OR for arterial HTN than morning types81. 

Derangements in blood pressure are regulated by wake–sleep states with significantly 

elevated systolic, diastolic and mean blood pressure during wakefulness compared to 

NREM sleep and these oscillations are accentuated in obesity-prone leptin-deficient (ob/ob) 

mice compared to wild-type controls82. In experimental manipulations, 30 days of sleep 

fragmentation impairs neurovascular coupling and decreases whisker-stimulated cerebral 

blood flow in normotensive and hypertensive mice83. Furthermore, sleep-fragmented mice 

have expanded vascular network density but unaltered arteriole vascular remodeling83. In 

genetic models of insufficient sleep, hypocretin-ataxin3 transgenic and hypocretin-deficient 

mice (both are models of human narcolepsy) display elevated blood pressure during NREM 

and REM sleep and blunted sleep–wake blood pressure changes84,85.
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Sleep and heart rate

Many aspects of cardiovascular physiology, including heart rate variability, are 

orchestrated by circadian rhythmicity. Accordingly, circadian misalignment leads to 

internal desynchronization of the HPA axis and can subsequently result in altered cardiac 

electrophysiology in mice86 and humans87. Perturbations in sleep-dependent cardiovascular 

sympathetic control also occur in narcoleptic hypocretin-deficient mice88. Mistimed sleep 

and unsynchronized behavior disrupt sinoatrial node rhythms and atrioventricular node 

activity in humans and mice89. In perfused heart preparations, susceptibility to ventricular 

tachycardia is increased at ZT12, compared to ZT0, and mice prone to catecholamine-

induced arrhythmogenesis elicit bidirectional ventricular tachycardia at ZT12, but not ZT0, 

upon caffeine or adrenaline administration89. These findings align with increased incidence 

of early morning sudden cardiac deaths in humans90. It is not yet fully understood whether 

mistimed or irregular sleep can predispose humans to arrhythmia or other cardiac events. 

However, a recent large-scale, longitudinal sleep study using wearable devices found inverse 

associations between REM and deep sleep and the odds of atrial fibrillation incidence91. 

Moreover, irregular shift workers showed prolonged correlated QT (QTc) interval and more 

frequent conduction or repolarization disorders compared to regular shift workers92,93.

Emerging metrics of sympathetic activation in sleep

Given early evidence demonstrating sympathetic activation in OSA68 and its ill effects on 

CVD94, a noninvasive measure of autonomic surges using PSG would help to improve risk 

stratification of patients. One such metric is the relationship between the pulse-rate response 

and OSA-related respiratory events (that is, apneas and hypopneas). Individuals with OSA 

who have high pulse-rate response are at increased risk of both CVD mortality and all-cause 

mortality (HR 1.68 (CI 1.22–2.30) and 1.29 (1.07–1.55), respectively), as compared to those 

with a pulse-rate response within the 25th–75th percentiles95. A clinical trial of CPAP 

for secondary CVD prevention shows CPAP has a protective effect among individuals 

with OSA who have an increased pulse-rate response96. While this novel approach is 

encouraging, evaluating the pulse-rate response represents more complex physiology than 

just autonomic function as it requires healthy cardiac conduction system responses and is 

limited by medications that interfere with chronotropy (for example, beta blockers). Another 

OSA-related metric is the respiratory event duration. Individuals with OSA who have shorter 

average respiratory event duration have an increased risk of all-cause mortality (1.31 (CI 

1.11–1.54))97. While this measure likely represents a combination of factors including 

arousal threshold, it may suggest higher autonomic tone. Short sleep duration, insomnia 

and poor sleep quality also contribute to lower high-frequency heart rate variability, another 

marker of imbalance between sympathetic and parasympathetic tone98.

The role of sleep in obesity and lipid metabolism

Sleep and its disorders shape metabolic function, including effects on obesity, diabetes and 

insulin sensitivity99,100, and lipid metabolism101. These metabolic syndrome components 

are important contributors to the development and progression of ASCVD (Fig. 3). Here, we 

give particular attention to obesity and lipid metabolism.
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Suboptimal sleep drives obesity and emergence of the metabolic syndrome

The associations between sleep, food consumption, obesity and energy balance in humans 

are numerous and have been reviewed in detail102. Sleep insufficiency both increases food 

consumption via alterations in the appetite hormones leptin and ghrelin, and alters meal 

timing and food choices, which can lead to obesity103–105. Sleep duration is shortest 

and most variable among obese children and associates with changes in insulin, low-

density lipoprotein cholesterol (LDL-c), and C-reactive protein (CRP)106. These phenomena 

highlight the importance of early-life sleep habits for future metabolic and ASCVD 

health. Night-to-night variability in sleep duration and daytime napping are independently 

associated with obesity in older men and women107. Other studies have validated these 

findings and further shown that irregular sleep–wake timing correlates with increases 

in obesity, fasting glucose and diabetes, 10-year CVD risk and comorbid metabolic 

abnormalities108. Recent human intervention experiments indicate that sleep restriction 

increases caloric intake without a commensurate rise in energy expenditure, thereby 

resulting in weight gain and added subcutaneous and visceral fat109. Importantly, among 

overweight adults who sleep fewer than 6.5 h per night, a randomized control trial of sleep 

extension reverses excess energy intake and reduces weight110. Weight and BMI cannot 

be viewed in isolation, and more granular measures such as lipid accumulation product, 

which accounts for both waist circumference and triglyceride levels, strongly associate with 

sleep disorders111. For example, lipid accumulation product was helpful in predicting risk 

of diabetes in individuals with OSA and, when combined with high-density lipoprotein 

cholesterol (HDL-c), heart disease.

Sleep and obesity in experimental studies

Sleep and obesity have a bidirectional relationship. A high-calorie diet enhances sleep 

pressure, as obese mice have reduced wakefulness in both the dark and light cycles and 

spend more time in NREM sleep with higher slow-wave activity112. Wake episode duration 

decreases following high-fat diet feeding, and body weight positively correlates with NREM 

sleep and negatively associates with wakefulness113,114. Sleep disruption also worsens in 

diet-induced obesity and leptin-deficient mice115,116, leading to sleep-disordered breathing 

characterized by increased flow-limited breathing and hypoxemia117 and more circadian 

variation in respiratory rate and diaphragmatic bursts during REM sleep118. However, 

obese female mice are less susceptible than males to sleep-disordered breathing and sleep 

fragmentation119. Importantly, dietary change and weight loss reverse obesity-dependent 

sleep alterations120. Regarding the effect sleep has on obesity onset and progression, 10 

days of sleep deprivation in mice heightens food intake and elevates weight gain, with 

the effects mitigated by melatonin121. When fed a high-fat diet, mice with a history of 

persistent sleep deprivation experience weight gain, insulin resistance, expanded heightened 

fat mass and more adipose tissue inflammation122, whereas prolonged sleep fragmentation 

leads to increased food intake, higher body weight gain123 and glucose intolerance124. 

Sleep-fragmented animals also develop larger subcutaneous and visceral fat depots, have 

more adipocyte progenitor cells in the visceral white adipose tissue and greater adipose 

tissue inflammation125. In a mouse model of shift work, timed sleep restriction leads to 

prolonged metabolic reprogramming of white adipose tissue and early leptin resistance in a 

Per1- and Per2-dependent manner126. Recurrent circadian disruption in mice fed a high-fat 
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diet results in increased weight gain, higher body fat mass, impaired glucose tolerance and 

insulin sensitivity127. In genetic models, ablation of wake-promoting hypocretin neurons 

in hypocretin/ataxin3 mice combined with high-fat diet promotes weight gain128,129. 

Consistent with this, daily light-phase, but not dark-phase, administration of suvorexant, 

a hypocretin antagonist, for 2–4 weeks ameliorates glucose tolerance in leptin-deficient mice 

and improves hepatic glucose metabolism130. In summary, the collective empirical evidence 

derived from human and animal studies underscores the detrimental effects insufficient and 

irregular sleep has on obesity development and progression.

Sleep and lipids

Poor sleep leads to dysfunctional lipid metabolism. Large epidemiological studies report 

increases in hepatic triglyceride content among the shortest sleepers (<5th percentile, 

average 5 hour per night) and elevated serum triglyceride among those with poor sleep 

quality. These associations are tempered after adjustment for BMI and OSA, suggesting 

more complex dynamics between sleep time, obesity and comorbid sleep disorders131. 

Poor sleep hygiene during transition from childhood to adolescence associates with an 

atherogenic lipid profile including lower HDL-c and increased triglyceride levels, an effect 

more prominent in adolescent girls132. Sleep architecture also affects dyslipidemia, as 

the ratio of slow-wave sleep to total sleep time correlates independently with triglyceride 

and total cholesterol levels, and microarousal index also independently associates with 

HDL-c and LDL-c133. Despite the highlighted studies, a systematic meta-analysis of 13 

prospective studies found no significant relationship between sleep duration or quality and 

the emergence of dyslipidemia134.

A meta-analysis assessing lipid profiles of individuals with OSA found higher total 

cholesterol, LDL-c and triglyceride as well as lower HDL-c than in individuals without 

OSA135. Moreover, there is a dose–response relationship between OSA severity and total 

cholesterol, LDL-c and triglycerideTG, such that oxygen desaturation index associates 

with total cholesterol while AHI better predicts LDL-c and triglyceride136. These findings 

indicate mechanisms involved in lipid metabolism may depend on the underlying sleep 

abnormality. In contrast to these large epidemiological studies, an experimental study found 

that a 5-h time-in-bed restriction for 4 nights suppresses postprandial triglyceride, which 

returned to baseline after one night of recovery sleep137. Interestingly, sleep-restriction 

participants in this study also reported feeling less full or satiated after meals.

In mice, chronic intermittent hypoxia, a feature of OSA, modulates sterol regulatory element 

binding protein 1 and stearoyl-coenzyme A desaturase 1 to increase total cholesterol, 

phospholipids, LDL-c, triglyceride and atherosclerosis138. In humans, however, oxidized 

LDL-c associates with OSA and overall dyslipidemia139. Among individuals with severe 

OSA, CPAP therapy to alleviate apnea events improves the clearance rate of radiolabeled 

lipids140. This study also presents an inverse correlation between cholesteryl ester clearance 

rate and hypoxemia (that is, total sleep time with oxygen saturation < 90% (T90%)), 

and carotid intima–media thickness. Some studies have validated these findings, showing 

CPAP therapy reduces total cholesterol141 and LDL-c142, but other studies have observed 

no meaningful changes143. Another interesting consideration is that disruption in different 
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sleep stages results in different effects on lipids. A clinical cohort study reveals that AHI 

in NREM specifically associates with elevated total cholesterol, LDL-c and apolipoprotein 

B, while REM AHI does not144. Sleep stage-specific impacts on metabolism are apparent 

throughout the metabolome. For example, while fatty acid oxidation rises during stage N3 

sleep and drops during wakefulness, the tricarboxylic acid cycle and glycolysis seem to be 

more active during REM sleep145.

The effects of sleep manipulation on lipids in murine models

Mouse sleep disruption increases serum cholesterol and LDL-c, decreases HDL-c and very 

low-density lipoprotein (VLDL)146, and mediates liver cholesterol through the circadian 

rhythm genes NR1D1 and CYP7A1 (ref. 147). Additionally, short-term (5 days) sleep 

deprivation suppresses the circadian expression of lipid metabolism genes in the liver 

and lowers daily peaks in serum cholesterol and triglyceride148. In long-term models, 

chronically shifting the light–dark cycle exacerbates atherosclerosis in female, but not male, 

apolipoprotein E-deficient (Apoe−/−) mice, a change that associates with heightened total 

serum cholesterol and atherogenic VLDL/LDL particles, independently of food intake149. 

In APOE*3-Leiden mice, however, the same method produced no obvious changes in lipid 

levels, although these mice exhibit lower total cholesterol levels than Apoe−/− mice150. 

Long-term sleep fragmentation does not impact body weight, total cholesterol or triglyceride 

in western-diet-fed Apoe−/− and LDL receptor-deficient (Ldlr−/−) mice12. Together, these 

results indicate that, in mice, while acute sleep disruption may engender short-term 

fluctuations in lipid levels, chronic poor sleep does not seem to modulate plasma cholesterol 

levels.

Sleep modulates inflammation and the immune system

Inflammation contributes to ASCVD. Following retention in the arterial wall, apolipoprotein 

B-containing lipoproteins undergo structural modifications and become immunogenic, thus 

inciting inflammation and the recruitment of circulating monocytes to the growing atheroma. 

Hematopoiesis is enhanced and contributes to the circulating monocyte pool, exacerbating 

vascular inflammation and atherogenesis. Inflammatory mediators like cytokines and growth 

factors perpetuate inflammation leading to atheroma growth and instability. Although our 

knowledge of the influence of sleep at each stage of plaque growth is incomplete, studies 

have begun to identify important mechanistic links (Fig. 4).

The effect of sleep on cytokines

Cytokines orchestrate many inflammatory processes in ASCVD including activating 

endothelial cells, recruiting and programming leukocytes in atheroma, and destabilizing 

plaque. Persistent sleep disruption, such as chronic insomnia151 or circadian 

misalignment152, promotes prolonged pro-inflammatory cytokine responses that instigate 

chronic health complications such as ASCVD.

Although the contributions of interleukin-6 (IL-6) and tumor necrosis factor (TNF) to 

atherosclerosis are complex, several human and animal studies have documented increased 

plasma IL-6 and TNF after prolonged sleep deprivation. Sleep inconsistency measured over 
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seven nights associates with heightened IL-6 and CRP153. Furthermore, increased levels of 

circulating IL-6 and TNF correlate with sleep irregularity in older adults154. Importantly, 

individuals experiencing an acute cardiovascular event combined with preexisting OSA have 

higher serum levels of IL-6 than individuals without OSA155. Persistent sleep fragmentation 

in mice raises plasma IL-6, which normalizes with recovery sleep11. By contrast, sleep 

fragmentation does not affect plasma TNF levels in humans156,157 or rodents158. In a murine 

model, complete sleep deprivation induces a cytokine storm before death159. Increased 

wakefulness after sleep onset, a measure of insomnia, associates with increased IL-6 and 

CRP160. After a single night of forced prolonged (4 h) wakefulness after sleep onset in 

healthy individuals, monocytes produce more IL-6 and TNF161. Additionally, inflammatory 

responses to sleep disruption vary by sex as women experiencing wakefulness after sleep 

onset have greater immune and cytokine activation162. A large epidemiological study of 

short sleepers confirmed these sex differences in cytokine levels163. Serial 24-h evaluation 

of plasma IL-6 and TNF among individuals with chronic insomnia found that although 

average 24-h levels of these fatigue-inducing cytokines are consistent, their major peaks 

shift significantly151, a result that suggests dysregulated circadian rhythm and highlights 

the importance of sample collection timing in epidemiological and experimental studies. 

Interestingly, as with ASCVD risk, habitual sleep time of more than 7–8 h per night 

also associates with higher levels of IL-6 and CRP164. However, the association between 

sleeping more than 7–8 h per night and inflammation remains to be fully determined, is 

experimentally difficult to test and is likely influenced by comorbidities, which themselves 

associate with ASCVD.

The IL-1 cytokine family is influential to immune responses. IL-1 is either increased165 

or unchanged157 upon acute sleep deprivation, whereas IL-1Ra, an atheroprotective natural 

inhibitor of IL-1, is increased after sleep disruption165,166, which may be a homeostatic 

response to higher IL-1 levels. It has been shown that five nights of sleep restriction 

increases peripheral blood mononuclear cell production of IL-6 and IL-1β167. IL-1β 
maturation and production are controlled by the NLR family pyrin domain containing 3 

(NLRP3) inflammasome, which can be promoted by cholesterol crystals in atherosclerotic 

lesions168. While information is scarce regarding how prolonged sleep disruption impacts 

NLRP3 activation in innate immune cells, a recent report showed that plasma exosomes 

isolated from sleep-fragmentated animals trigger NLRP3 activation in endothelial cells, 

resulting in more deposition of IL-1β and IL-18 in atherosclerotic lesions169.

Obstructive sleep apnea and pathways of inflammation

The underlying pathobiology by which the sequelae of obstructive respiratory events lead 

to ASCVD is unclear, although many theories exist. Many studies have demonstrated an 

association between OSA and elevated systemic inflammatory biomarkers, including CRP, 

IL-6 and TNF, among others170,171, and levels of these cytokines are highest after an acute 

cardiovascular event among those with OSA, relative to those without it155. To assess how 

treating OSA affects systemic inflammation, a study evaluated composite serum proteomic 

inflammatory scores based on 92 inflammatory proteins before and 3 months after CPAP 

initiation. Among participants with OSA who have elevated baseline inflammatory scores, 

there is significantly decreased inflammatory protein expression after OSA treatment172. 
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Studies with more limited panels of systemic inflammatory markers173,174 or oxidative 

stress markers175 do not show similar benefits from CPAP. Monocytes from individuals with 

severe OSA display higher NLRP3 inflammasome activity, which correlates with hypoxemia 

indices and is mediated by hypoxia-inducible factor-1α (HIF-1α)176. This increase in 

HIF-1α among individuals with OSA has been validated177, although others have found 

that intermittent hypoxemia selectively activates nuclear factor kappa B (NF-κB), rather than 

HIF-1α178.

Another hypothesis is that immune priming results from local pharyngeal inflammation 

due to mechanical trauma and strain related to OSA airway collapse. Among individuals 

with OSA, 18F-fluorodeoxyglucose uptake on positron emission tomography with magnetic 

resonance imaging (PET/MRI) of the pharyngeal mucosa correlates with a composite 

proteomic inflammatory score from nasal lavage samples179. In a cluster of individuals 

with high baseline inflammation, application of CPAP—which stabilizes the upper airway

—results in significant reductions in monocyte chemoattractant protein 4 (MCP-4), 

transforming growth factor beta 1 (TGFβ1) and vascular endothelial growth factor-α 
(VEGFα). Others have also shown decreases in pharyngeal lavage cytokines (that is, IL-6 

and IL-8) and leukocytes one year after initiation of CPAP180. This local inflammatory 

response and immune cell priming may perpetuate systemic inflammation and ASCVD 

progression.

Sleep-dependent changes in leukocyte abundance and generation

Emerging data have revealed that sleep modulates leukocyte abundance and production. 

Short-term sleep restriction results in changes in tissular and circulating immune cell 

abundance, likely due to redistribution of cells between organs and peripheral blood 

rather than alterations in generation181. For example, in animals, 1–3 days of sleep 

deprivation leads to a stress-induced increase in splenic and bone marrow B cells without 

impacting cell production182. Similarly, short paradoxical sleep deprivation redistributes 

leukocytes by releasing cells from the bone marrow, resulting in decreased bone marrow 

cellularity and elevated blood monocytes and neutrophils183. In a skin allograft model, 

both CD4+ and CD8+ T cells exited the spleen and lymph nodes of mice undergoing short 

sleep restriction184. However, most of these short-term studies have not directly profiled 

hematopoietic stem and progenitor cells (HSPCs) or their proliferation and differentiation. 

More work is needed to understand how short-term insufficient or disrupted sleep 

manipulates HSPC programming, proliferation, differentiation and lineage commitment.

Growing evidence suggests that long-term sleep disruption or insufficiency modifies 

immune cell production, a process known as hematopoiesis. Long-term (16 weeks) sleep 

fragmentation in atherogenic mice compromises hypothalamic control over medullary 

hematopoiesis, resulting in heightened hematopoietic stem cell proliferation in the bone 

marrow12. The underlying mechanism involves a sleep fragmentation-induced decrease 

in hypocretin production in the lateral hypothalamus, a change that dampens hypocretin 

signaling to pre-neutrophils in the bone marrow, thereby leading to elevated colony-

stimulating factor 1 production and myeloid-biased hematopoiesis. Consequently, sleep-

fragmented mice display monocytosis that leads to expanded aortic immune cell infiltration 
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and augmented atherosclerotic lesion formation in western-type diet-fed, atherosclerosis-

prone Apoe−/− mice; these findings are phenocopied in hypocretin-deficient Apoe−/− 

mice. There are conflicting data on how extended sleep restriction influences lymphocyte 

generation167,185,186. Whether sleep recovery can reverse the adverse effects of persistent 

sleep disruption on hematopoiesis and inflammatory recall is understudied and warrants 

further investigation (Box 3).

In humans, chronically restricting sleep by 1.5 h every night for 6 weeks increases the 

numbers of circulating CD14+CD16− classical monocytes, CD14−CD16+ non-classical 

monocytes, and Lin−CD34+ HSPCs, changes that suggest enhanced hematopoietic 

activity11. HSPCs retrieved from participants after 6 weeks of sleep restriction display 

altered epigenetic programming and myeloid-biased differentiation cues11. Other studies 

similarly report that one week of sleep restriction is sufficient to expand circulating 

blood monocytes and neutrophils187,188. Indeed, in humans, healthful and sufficient sleep 

curtails hematopoiesis and reduces circulating monocytes189, neutrophils190, B cells and T 

cells157,191, the precursors of mature dendritic cells192 and natural killer cells187, while 

basophil and eosinophil numbers are unaffected. Accordingly, self-reported insufficient 

sleep boosts circulating monocytes, neutrophils, and total and memory CD4+ T cells193. 

Similar findings were reported in a study of young adults, in whom irregular sleep 

patterns (incorporating sleep duration and sleep onset) correlate with increased generation 

of circulating immune cells194. A study of white blood cell counts in a large cross-

sectional analysis reported that sleep duration relates to higher all-cause mortality195. 

Investigating monocyte subsets in individuals with OSA shows elevated circulating CD16+ 

monocytes, increased programmed cell death ligand 1 expression and heightened formation 

of monocyte–T cell complexes196, observations that normalize after initiation of CPAP197. 

These studies support the idea that more than a week of chronic insufficient sleep expands 

hematopoiesis and immune cell generation leading to circulating leukocytosis, an important 

ASCVD risk factor in humans198. Finally, there are important associations between sleep, 

aging and the immune system. For example, sleep abundance declines in the elderly which 

may influence the rate of ‘inflammaging’ in ASCVD (Box 4).

Sleep-related modulation of endothelial cell function

In addition to its effects on immune cell production and biology, sleep impacts endothelial 

cell inflammation. Circulating levels of soluble adhesion molecules, such as intracellular 

adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) or E-selectin, 

are increased following short-term sleep deprivation in humans199. OSA also associates 

with complement system activation and higher levels of C3a leading to vascular endothelial 

cell inflammation and dysfunction200,201. Moreover, OSA increases microRNAs miR-92a 

and miR-630, which are implicated in endothelial inflammation202. T cells in individuals 

with OSA have expanded cytotoxicity and specifically target vascular endothelial cells, 

parameters that CPAP improves203, while VCAM-1 (but not ICAM-1) abundance is 

independently associated with higher incidence of coronary artery disease in individuals 

with moderate-to-severe OSA204. Exposing human coronary artery endothelial cells to 

serum retrieved from individuals with OSA results in chemoattractant activity and 

augmented VCAM1, ICAM1 and IL8 mRNA expression, whereas these effects are less 
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potent with serum retrieved individuals with OSA treated with CPAP205,206. Mechanistic 

studies suggest endothelial dysfunction in individuals with OSA may involve sterol 

regulatory element binding protein 2, miR-210 and mitochondrial alterations207.

Proper vasodynamics are important to vascular health. Moderate sleep restriction for 

8 days lowers flow-mediated brachial artery vasodilation208, while short nightly sleep 

duration associates with nitric oxide-dependent vasodilator dysfunction209. In line with 

this, individuals sleeping 6 h or fewer show increased occurrence of pathological 

vascular inflammation, while carotid wall thickness positively associates with sleep 

fragmentation210. In mice, sleep fragmentation induces vascular endothelial dysfunction 

and instigates morphological changes in vessels, changes that include the emergence 

of elastic fiber disruptions and elevated markers of senescence211. In accordance, a 

recent report demonstrated that circulating exosomes from mice undergoing persistent 

sleep fragmentation promote endothelial cell injury and exacerbate atherosclerosis 

through exosomal miR-182–5p-dependent upregulation of endothelial NF-κB and NLRP3 

signaling169. Fluctuations in clock genes may also contribute to endothelial dysfunction 

upon sleep loss, as overexpression of a circadian regulator, cryptochrome 1, in vascular 

endothelial cells mitigates pro-inflammatory cytokines, adhesion factors and NF-κB activity 

caused by sleep deprivation212. Taken together, these findings show that sleep additionally 

benefits ASCVD by preserving endothelial cell function.

Conclusion

Healthy sleep is essential for cardiovascular health. A growing body of data from humans 

and animal models causally connect poor sleep and increased ASCVD and have begun 

to uncover the underlying mechanisms. While further work is needed to better understand 

this association, the autonomic nervous, metabolic and immune systems clearly link sleep 

to ASCVD. Sleep is a body-wide phenomenon; therefore, insufficient or poor-quality 

sleep elevates ASCVID risk by dysregulating intercommunication among multiple systems. 

Furthermore, the relationship between sleep and CVD is bidirectional as emerging data 

suggest cardiovascular complications perpetuate underlying sleep disturbances213,214.

While epidemiological studies clearly associate insufficient or poor sleep with increased 

risk for ASCVD, causal evidence remains limited. Thorough and expanded assessments 

of specific sleep interventions, in humans and mice, are needed to demonstrate the direct 

influence of sleep on ASCVD and its molecular and cellular drivers. Most of the data 

summarized here illustrate the impact of inadequate sleep and sleep disorders on ASCVD. 

However, we cannot assume that reversing sleep deficiencies will translate to favorable 

ASCVD outcomes in clinical populations without rigorous empirical evidence. Indeed, 

as outlined in this Review, reversal of OSA symptoms with CPAP has generated mix 

results on ASCVD risk. Behavior-change therapy to increase sleep represents a feasible 

intervention110, with low implementation burden and cost, that might meaningfully lower 

ASCVD risk. Additionally, personalized treatment of sleep disorders may also have ASCVD 

benefit. However, there is a critical need to test behavioral sleep intervention programs, 

explore new pharmacological and device-based options and refine treatment plans. Future 

studies in clinical populations will need to causally demonstrate that improving sleep 
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among short or poor sleepers mitigates ASCVD and its underlying autonomic, metabolic 

and inflammatory drivers. Such data would not only uncover novel biological connections 

between sleep and ASCVD but also influence public health policy, lifestyle guidelines and 

clinical management.
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BOX 1

Animal models in experimental sleep studies

Mice and rats are the most widely used animals in biomedical research. There is 

extensive understanding of their physiology, genetics and behavior with numerous 

genetically manipulated strains available. Technologies and reagents have been developed 

for their specific use and the animals reproduce rapidly, expediting experimental results 

and knowledge. However, their use in experimental sleep science and extrapolation of 

data to human sleep biology faces unique hurdles. Zeitgebers (ZTs), external rhythmic 

cues including light and food, entrain circadian biological rhythms of all animals. Unlike 

humans, rodents are nocturnal as approximately 80% of their sleep occurs during the 

light (inactive, ZT0-ZT12 in experimental laboratory settings) phase and 20% during the 

dark (active, ZT12-ZT24) phase. Rodent sleep is more fragmented compared to humans 

and they cycle through sleep stages more rapidly. Even in well-controlled settings, 

rodent sleep is highly sensitive to diverse genetic and environmental factors. Nonetheless, 

animal studies enable causal mechanistic investigations that uncover biological details at 

a scale that is not achievable in humans.

Multiple methods of experimental rodent sleep manipulation have been developed. The 

most common approaches are by physical or tactile sleep disruption with a rotating wheel 

or platform, an automated sweep bar or gentle handling. Such interventions have the 

advantage of compromising sleep in any animal model or strain, can be incorporated 

with additional experimental interventions and have more subtle and nuanced impact 

on stress responses. Chronic mild physical sleep fragmentation with a sweep bar does 

not cause overt systemic stress or result in circadian and molecular clock changes11,12, 

allowing researchers to distinguish between the effects of sleep and circadian rhythm. 

Physical models of frequent sleep disruption, such as rotating or shaking platform or 

forced locomotion, may stimulate systemic stress responses depending on the setting215–

217. Pharmacological and genetic interventions offer organ-specific and tissue-specific 

manipulation of sleep-mediating genes and pathways218–221; however, influences on 

circadian timing and developmental effects must be carefully considered. Optogenetic 

and chemogenetic tools allow for the most sophisticated and precise manipulation of 

sleep-licensing neural circuits with rapid and precise spatiotemporal control over specific 

neuronal structures and populations222,223. Finally, intermittent hypoxia recapitulates 

sleep apnea where hypoxic episodes cause awakenings224,225.

Experimental sleep manipulation in rodents has enabled profound insights into the 

links between sleep and atherosclerosis. Animal models allow unfettered access and 

manipulation of relevant cells, tissues and organs enabling the discovery of complex 

and intertwining biological pathways including the autonomic nervous, metabolic 

and immune systems. Insights gained from rodent models of experimental sleep 

manipulations are robust and rigorous and have led to new mechanistic discoveries 

advancing our knowledge on the role of sleep in cardiovascular health.
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BOX 2

Interplay between sleep and the autonomic system in modulating inflammation

Chronic activation of the SNS mediates inflammatory responses in CVD through 

various neurotransmitters, including norepinephrine, ATP, neuropeptide Y and nitric 

oxide226. This sympathetic control can be direct, through pro-inflammatory cytokine 

production and increased adhesion to endothelial cells, or indirect, by regulating 

leukocyte distribution, production or recruitment. However, causal mechanistic data 

connecting sleep-mediated SNS activity and inflammatory CVD remain limited. In 

mice, frequent sleep fragmentation (every 30 s) elevates systemic corticosterone217 

and SNS abrogation attenuates inflammation in multiple models of CVD227. Acute 

and chronic sleep fragmentation expand cytokine production in cardiovascular tissue 

and elevate systemic norepinephrine. Chemical sympathectomy blunts these responses 

and sleep recovery normalizes inflammation but not norepinephrine levels228. Sleep 

fragmentation-induced expression of inflammatory cytokines in heart and spleen is 

abated by blockade of alpha-adrenergic or beta-adrenergic receptors229. These findings 

suggest pharmacological manipulation of autonomic responses can reduce inflammation 

resulting from sleep disruption. In humans, increased sympathetic activation has been 

observed due to sleep fragmentation in the setting of OSA-related respiratory events68. 

Increased pulse rate response to OSA events represents a noninvasive measure of these 

sympathetic surges and is associated with worse CVD outcomes95. Stabilization of 

breathing and sleep fragmentation through OSA treatment among individuals with an 

elevated pulse rate response results in lower rates of major adverse CVD events96.

The PNS has a key role in the regulation of inflammation via the ‘cholinergic 

anti-inflammatory pathway’ that is mediated via the vagus nerve and its major 

neurotransmitter, ACh230. The vagus nerve collects information on the inflammatory 

status of multiple organs via its sensory fibers and conveys signals back to the brain; 

a process known as the inflammatory reflex. Importantly, vagus nerve stimulation can 

modulate local inflammation by ACh-mediated suppression of cytokine production by 

macrophages231. Accordingly, manipulation of the inflammatory reflex shows promising 

therapeutic potential in many inflammatory diseases, including ASCVD232.

In the heart, ACh mediates anti-inflammatory effects233 through systemic and local 

attenuation of inflammation and decreased leukocyte infiltrates. Whether sleep affects 

the vagus inflammatory reflex is poorly understood. In mice, vagal afferents affect 

sleep via TNF234 and, in a rat model, vagal nerve stimulation attenuated insufficient 

sleep-induced pro-inflammatory cytokine levels in the blood235. The spleen is a key 

organ in orchestrating the vagus nerve control over inflammation, where activated 

catecholaminergic fibers release norepinephrine, which promotes ACh production by 

local β2-adrenergic receptor-expressing cells, including B cells and T cells236. Using a 

lipopolysaccharide (LPS)-induced sepsis model, a recent study described a microbiota–

vagus nerve–spleen axis in modulating systemic inflammation upon sleep deprivation237. 

Further studies are warranted to understand whether persistent sleep manipulation 
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influences cholinergic anti-inflammatory pathways by suppressing vagal tone and local 

ACh production.
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BOX 3

Sleep recovery and the resolution of inflammation

Can sleep recovery revert the effects of chronic suboptimal sleep on hematopoiesis? In 

mice, the number and proliferation of bone marrow hematopoietic progenitors remains 

raised after 4 weeks of sleep recovery following 16 weeks of sleep fragmentation11. 

However, a longer sleep recovery opportunity (10 weeks) normalizes hematopoiesis. 

These findings indicate that sleep persistently impacts the hematopoietic system. 

Indeed, sleep fragmentation exerts long-lasting effects on HSPCs by restructuring 

their epigenome11. Accordingly, a secondary immunological challenge after sleep 

fragmentation and recovery results in immunological recall responses that lead to an 

exaggerated, myeloid-biased inflammatory burst and worse outcomes11. Similarly, in 

human experimental sleep manipulation studies, 3 to 5 days of sleep restriction increases 

circulating blood monocytes and neutrophils187,188, while subsequent recovery sleep 

lowers monocytes and lymphocytes, but not neutrophils188. The effects of prolonged 

repetitive patterns of sleep loss and recovery have also been investigated in the context 

of inflammation. Healthy individuals exposed to three sleep disturbance/recovery cycles

—each consisting of three nights of various sleep interruptions (including delayed sleep 

onset, frequent awakenings and advanced sleep offset times) followed by one night of 

recovery sleep—showed an increase in plasma IL-6 levels238. Men, but not women, 

displayed increased circulating numbers of CD8+ T cells and monocytosis, and the latter 

remained elevated even after recovery sleep238. Similar sex-specific effects of repetitive 

sleep loss with intermittent recovery were reported with regards to plasma IL-8 levels and 

progressively increased vasodilatory changes of small vessels239. In a slightly different 

experimental setting, a repetitive five-night sleep restriction/two-night recovery protocol 

induced increased IL-6 expression by monocytes, which remained heightened following 

recovery240. While these sleep intervention studies were not perceived as stressful by 

the participants, a dysregulated rhythm of serum cortisol and altered glucocorticoid 

sensitivity in monocytes was reported, indicating a compromised interplay between stress 

and the immune system that may contribute to the inflammatory sequelae. Moreover, 

prolonged sleep interruption may affect the resolution of inflammation, which is in 

part mediated by specialized pro-resolving mediators that are dysregulated in CVD241. 

Indeed, plasma levels of a prominent class of specialized pro-resolving mediators, called 

resolvins, were decreased following repeated exposure to sleep loss and remained low 

after a recovery sleep period242. Taken together, these findings suggest that recovery or 

‘catch-up’ sleep might be insufficient in restoring inflammatory alterations arising from 

prolonged sleep disruption.
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BOX 4

Sleep’s influence on ‘inflamm-aging’ in ASCVD

As we age, consolidated nightly sleep decreases, incidence of sleep disorders increases, 

our immune system shifts toward a more inflammatory and myeloid-dominant profile, 

and our risk for ASCVD rises dramatically. These changes raise the hypothesis that 

age-related alterations in sleep compromise immunological function and thus contribute 

to ASCVD. In older adults, the hematopoietic system becomes less heterogeneous and 

a myeloid bias emerges. In murine clonal tracking experiments, chronic sleep disruption 

expedites hematopoietic neutral drift, thereby accelerating the decline of hematopoietic 

heterogeneity and skewing the system toward a myeloid fate11. Clonal hematopoiesis, 

a premalignant expansion of often deleterious hematopoietic stem cell clones, results 

from somatic mutations common in epigenetic modifiers, such as Tet2 or Dmnt3a, and 

increased risk of CVD twofold243. Murine data suggest poor-quality sleep expedites 

mutant HSPC clonal expansion244. In mixed chimeric mice, sleep fragmentation 

accelerates the proliferation and expansion of Tet2-mutant HSPC clones, leading to 

more frequent mutant myeloid cells in the blood. In support of the hypothesis that 

healthy sleep restricts HSPC epigenetic dysregulation and promotes diversity, human data 

demonstrate that sleep duration and fragmentation in adolescents correlate with leukocyte 

DNA methylation patterns and epigenetic age245. Symptoms of insomnia, including 

restlessness, difficulties falling asleep and frequent wake bouts, associate with increased 

epigenetic aging, as determined by DNA methylation levels, and immune senescence, 

including elevated counts of late differentiated T cells246,247. Additionally, individuals 

with severe OSA have shorter leukocyte telomers, and among these individuals, higher 

arousal index is associated with leukocyte telomere attrition over the prior decade248. 

Using PSG and sleep electroencephalography, estimations of ‘brain age’ can by derived 

that incorporate sleep fragmentation and changes in sleep architecture; greater age 

estimations associate with increased all-cause mortality and CVD32. Altogether, these 

observations support the hypothesis that poor-quality sleep contributes to systemic 

and cellular immunological aging and thus increased risk of age-related inflammatory 

diseases like ASCVD.
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Fig. 1 |. Sleep and atherosclerotic cardiovascular disease are connected through the integration of 
the nervous, immune and metabolic systems.
Sleep calibrates ASCVD by modulating multiple core body systems. Interference of 

adequate sleep including sleep duration, quality and timing adversely affects the function 

of the nervous, metabolic and immune systems, which predisposes to ASCVD and its 

complications, including myocardial infarction and stroke. Emerging studies suggest these 

connections between ASCVD and sleep are bidirectional and peripheral metabolic, nervous 

and immune imbalance alter sleep.
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Fig. 2 |. Sleep and autonomic nervous balance.
Sleep exerts a modulatory effect on the activity of the autonomic nervous system. Persistent 

sleep disturbances lead to elevated SNS and HPA activity during sleep and wakefulness 

and modulate the tone of the PNS. Consequently, desynchronization of the HPA axis 

compromises heart electrophysiology leading to extremities in heart rate variability, while 

aberrant SNS and PNS activation triggers nocturnal non-dipping of blood pressure (BP) 

and daytime HTN. In addition, sleep manipulates SNS/PNS equilibrium instigating adverse 

immune responses in the heart including accentuated inflammatory cytokine production. 

Altogether, sleep deficiencies promote heart rate alterations, HTN and inflammation via 

compromising the autonomic nervous system, thus exacerbating ASCVD.
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Fig. 3 |. Sleep and the metabolic system.
Sleep and the metabolic system share a bidirectional relationship. While sleep disturbances 

promote food intake and can cause subsequent weight gain, excess consumption of a sugar-

rich and cholesterol-rich diet increases sleep drive with curtailed sleep quality. On the 

one hand, insufficient or irregular sleep can fuel metabolic syndrome by affecting hepatic 

triglyceride and cholesterol output via the modulation of hypoxia-dependent metabolic 

genes in the liver. Consequently, persistent sleep disruption may result in an atherogenic 

lipid profile with heightened LDL-c and triglyceride and lower HDL-c levels. On the other 

hand, suboptimal sleep hygiene propagates fat mass accumulation, adipocyte progenitor cell 

production and adipose tissue inflammation. Prolonged metabolic reprogramming of the 

adipose tissue contributes to leptin resistance as well as glucose intolerance and insulin 

resistance, thereby predisposing to cardiometabolic complications.
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Fig. 4 |. Sleep protects from ASCVD by modulating inflammation.
The beneficial impacts of proper sleep on the immune system are manifold; thus, insufficient 

or poor-quality sleep exerts various adverse effects on inflammation that underlies 

atherosclerosis. Prolonged sleep disruption compromises neuroimmune communication 

axes that modulate leukocyte numbers and function via neuropeptide, SNS or PNS 

innervations. (1) Blunted hypocretin signaling from the lateral hypothalamus to bone 

marrow pre-neutrophils following sleep fragmentation heightens colony-stimulating factor-1 

(CSF-1)-mediated medullary hematopoiesis and results in subsequent monocytosis and 

neutrophilia. Consequently, increased aortic immune cell infiltration drives exacerbated 

atherosclerotic lesion formation. (2) Enhanced sympathetic and compromised anti-

inflammatory parasympathetic inputs to secondary lymphoid organs and neuroimmune 

cardiovascular interfaces at the adventitia — that is, artery tertiary lymphoid organs 

(ATLOs) — augment the production of pro-inflammatory cytokines including IL-6, TNF 

and IL-1β, further inciting an inflammatory milieu. Whether this affects local lymphocyte 

function and repertoire remains unknown. (3) Sleep disturbances promote endothelial cell 

dysfunction characterized by enhanced chemoattractant activity, including CCL2 release 

and increased expression of adhesion molecules, such as ICAM-1, VCAM-1 or E-selectin. 

Circulating exosomes promote endothelial cell injury via increased miR-182-5p-dependent 

NF-κB and NLRP3 signaling, thus licensing IL-1β and IL-18 production. These effects 

compromise endothelial cell integrity and further facilitate immune cell entry into the 

atheroma. (4) Persistent sleep fragmentation poses profound and lasting changes on 

hematopoietic stem cells via epigenetic restructuring, leading to exaggerated myeloid-biased 
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inflammatory bursts. Consequently, aortic macrophages derived from recruited monocytes 

may be strongly pro-inflammatory, defective of rate-limiting processes, such as lipid 

handling or efferocytosis and more prone to necrotic death, further fueling plaque growth 

and instability. ACh, acetylcholine; CORT, corticosterone; HCRTR1, hypocretin receptor 1; 

NA, noradrenaline.
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