Skip to main content
. 2024 Oct 29;9:100913. doi: 10.1016/j.crfs.2024.100913

Table 3.

Performance metrics of Artificial Neural Networks classifiers.

Pre-processing Model Seven-Class Models
Three-Class Models
Two-Class/Binary Models

Optimal Parameters ACC.cv ACC.p Optimal Parameters ACC.cv ACC.p Optimal Parameters ACC.cv Sens. cv Prec. cv Spec. cv F1.cv ACC.p Sens. p Prec. p Spec. p F1.p MCC.p
Unprocessed ANN dec = 0.001,size = 2 73.6 78.9 dec = 0.001,size = 4 100 98.9 dec = 0.001,size = 2 99.7 100 99.7 94.5 99.8 99.7 99.7 100 100 99.8 0.98
SG smoothing ANN dec = 0.001,size = 3 83.6 79.8 dec = 0.001,size = 4 100 100 dec = 0.001,size = 2 99.6 100 99.6 92.5 99.8 99.7 99.7 100 100 99.8 0.98
SG+1st deriv. ANN dec = 0.001,size = 3 87.7 76.6 dec = 0.001,size = 3 99.9 100 dec = 0.001,size = 1 99.8 99.9 99.9 98.0 99.9 99.8 99.8 100 100 99.9 0.99
SG+2nd deriv. ANN dec = 0.001,size = 3 87.9 78.3 dec = 0.001,size = 2 99.6 100 dec = 0.001,size = 1 99.8 99.9 99.9 99.0 99.9 99.8 99.8 100 100 99.9 0.99
SNV ANN dec = 0.01,size = 3 92.0 79.5 dec = 0.01,size = 3 100 100 dec = 0.01,size = 1 99.9 99.9 99.9 98.5 99.9 99.8 99.8 100 100 99.9 0.99
SNV + SG Smoothing ANN dec = 0.001,size = 2 73.0 68.1 dec = 0.01,size = 3 100 100 dec = 0.01,size = 1 99.9 99.9 99.9 98.5 99.9 99.8 99.8 100 100 99.9 0.99
SNV + SG+1st deriv. ANN dec = 0.001,size = 3 93.7 83.4 dec = 0.001,size = 2 99.8 100 dec = 0.001,size = 1 99.9 100 99.9 98.5 99.9 100 100 100 100 100 1.00
SNV + SG+2nd deriv. ANN dec = 0.001,size = 3 93.2 77.9 dec = 0.001,size = 2 99.9 100 dec = 0.001,size = 1 99.9 100 99.9 97.0 99.9 100 100 100 100 100 1.00
MSC ANN dec = 0.01,size = 2 71.6 57.1 dec = 0.001,size = 1 99.2 98.7 dec = 0.001,size = 2 99.7 99.9 99.7 93.5 99.8 99.8 99.8 100 100 99.9 0.99
MSC + SG Smoothing ANN dec = 0.001,size = 3 84.8 81.1 dec = 0.001,size = 1 99.2 99.3 dec = 0.001,size = 2 99.6 99.9 99.6 91.5 99.8 99.7 99.7 100 100 99.8 0.98
MSC + SG+1st deriv. ANN dec = 0.001,size = 3 87.7 76.6 dec = 0.001,size = 3 99.9 100 dec = 0.001,size = 1 99.8 99.9 99.9 98.0 99.9 99.8 99.8 100 100 99.9 0.99
MSC + SG+2nd deriv. ANN dec = 0.001,size = 3 83.9 77.4 dec = 0.001,size = 3 99.7 100 dec = 0.001,size = 1 99.8 99.9 99.9 97.2 99.9 100 100 100 100 100 1.00

The metric values for the trained models represent averaged classification parameters of 10-fold cross-validation repeated ten times. ACC.cv = Accuracy, Sens.cv = Sensitivity, Prec.cv = Precision, Spec.cv = Specificity, and F1.cv = F1 Score for cross-validation. ACC.p = Accuracy, Sens.p = Sensitivity, Prec.p = Precision, Spec.p = Specificity, and F1.p = F1 Score for the external validation set (test set). SNV = Standard Normal Variate; MSC = Multiplicative Scatter Correction; SG = Savitzky-Golay smoothing; 1st deriv. = 1st derivative; 2nd deriv. = second derivative. Size is the number of optimal number of neurons in the hidden layers selected based on cross-validation and oneSE rule. Dec = decay, regularization parameter. For the Seven-Class system, the classification involves seven groups: extra-virgin olive oil (EVOO), hazelnut oil (HZO), olive pomace oil (POO), refined olive oil (ROO), EVOO + HZO, EVOO + POO, and EVOO + ROO. The Three-Class system categorizes oils into three groups: authentic extra-virgin olive oil, edible oil adulterant (100%), or adulterated (1–40% adulteration) olive oil. The Two-Class system is a binary classification distinguishing between pure EVOO and adulterated olive oil (1–100% adulteration).