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Abstract

Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying 

mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial 

oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen 

species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical 

catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation 

in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up 

Fe3+-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the 

controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme 

iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, 

causing excess iron release and the mitochondrial uptake of Fe2+ by the mitochondrial calcium 

uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, 

including H2O2, with which Fe2+ reacts to form highly reactive •OH through the Fenton reaction. 

•OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the 

MPT, and ultimately, cell death. Fe2+ also facilitates protein nitration. Targeting pathways of 

mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a 

promising strategy to intervene against APAP hepatotoxicity in a clinical setting.
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1. Introduction

1.1. Epidemiology of Acetaminophen Hepatotoxicity

Acetaminophen (also known as Tylenol®, paracetamol, and N-acetyl-para-aminophenol and 

commonly abbreviated for the latter as APAP) is one of the most used antipyretic and 

analgesic medications and is often combined with cough-and-cold remedies and narcotic 

pain relievers. APAP is generally very safe in therapeutic doses. However, an overdose of 

APAP causes severe liver injury, leading to elevations of serum transaminases (ALT and 

AST), hepatic necrosis, and even acute liver failure requiring liver transplantation [1]. APAP 

hepatotoxicity is the leading cause of acute liver failure in the United States, and up to 50% 

of cases are unintentional [2]. The currently recommended maximal therapeutic dose is 4 

g/day. However, it is estimated that 6% of adults in the USA are taking over 4 g/day due to 

APAP combination medications [3].

1.2. Metabolism of APAP

At therapeutic doses in humans, 85–90% of APAP becomes conjugated with sulfate and 

glucuronide and is excreted in urine. Only a small portion of APAP is metabolically 

activated by cytochrome P450 enzymes (mainly CYP2E1) to the toxic and reactive 

metabolite, N-acetyl-p-benzoquinoneimine (NAPQI). Under normal conditions, NAPQI is 

efficiently detoxified by conjugation with glutathione (GSH) [4]. After an overdose of 

APAP, the sulfate and glucuronide pathways become saturated, and CYP450 produces 

relatively more NAPQI. Subsequently, GSH becomes depleted by conjugation with NAPQI, 

and additional NAPQI can no longer be detoxified, which then leads to liver damage [5,6].

1.3. Risk Factors of APAP Hepatotoxicity

APAP toxicity shows a threshold dose dependence such that therapeutic doses are 

completely non-toxic, but the threshold dose causing liver damage varies between 

individuals. Not all individuals with APAP overdose progress to acute liver failure. 

Moreover, even at a therapeutic dose, APAP hepatotoxicity can occur under certain 

conditions. Accordingly, the safe upper limit of APAP for therapeutic indications remains 

controversial [7–9]. Genetic variation within the CYP450 system can cause differing 

sensitivity to APAP hepatotoxicity, as well as to other risk factors [10,11].

Malnutrition, fasting, and chronic liver disease may increase the risk of APAP hepatotoxicity 

by decreasing hepatic levels of GSH. A 6 h fast depletes hepatic GSH levels in mice by 

44% [12]. Patients with already low GSH stores as a result of fasting or malnutrition can 

develop severe hepatotoxicity at recommended doses of APAP [13]. Infants and adults who 

are alcoholic or who take certain CYP450-inducing drugs may also be more prone to liver 

injury from APAP [14–16]. Commonly used upregulating CYP450 drugs include rifampin, 

isoniazid, and phenobarbital. Chronic alcohol use also causes CYP450 enzyme induction 
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with the increased toxic metabolism of APAP to NAPQI and enhanced hepatotoxicity, even 

at therapeutic doses. Fibrates, nonsteroidal anti-inflammatory drugs (NSAIDs), and alcohol 

are associated with a higher incidence of death in patients with APAP-associated liver injury 

[17]. Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-

associated steatotic liver disease (MASLD) [18], is also associated with increased CYP2E1 

activity and is accompanied by an increased risk of APAP-induced hepatotoxicity [19].

1.4. Treatment for APAP Hepatotoxicity

Early diagnosis means early intervention, which is crucial to prevent APAP-induced 

acute liver failure (ALF). N-acetylcysteine (NAC) is the preferred antidote for APAP 

toxicity. NAC prevents hepatotoxicity by replenishing GSH stores, binding with NAPQI, 

and enhancing sulfate conjugation [20]. NAC may further limit APAP toxicity through 

antioxidant and anti-inflammatory effects. For maximal protection against liver injury, NAC 

should be given within 8 h after an APAP overdose in patients whose plasma APAP levels 

are above the “possible hepatic toxicity” line of the Rumack–Matthew nomogram [21,22]. 

NAC can be given intravenously or by mouth with similar efficacy for improving outcomes 

in APAP overdoses [23]. However, the indications and dosage for NAC are debated. Other 

treatments include activated charcoal and liver transplantation. Activated charcoal can be 

used within 4 h after taking APAP to limit the gastrointestinal absorption of APAP [24]. 

However, this treatment is ineffective in most cases because of the rapid absorption of APAP. 

Liver transplantation is the ultimate treatment for patients with ALF [25].

2. Role of Mitochondria in Pathogenesis of APAP Hepatotoxicity

The toxic metabolite NAPQI, rather than APAP itself, causes hepatotoxicity [26]. The 

main mechanism causing liver injury is thought to be covalent NAPQI protein adduct 

formation, which leads to mitochondrial dysfunction, oxidative stress due to GSH depletion 

by conjugation with NAPQI, and cell death [27].

2.1. Mitochondrial Permeability Transition in APAP Hepatotoxicity

Mitochondria are a primary target of NAPQI. The expression of some CYP2E1 in the 

mitochondrial inner membrane rather than the endoplasmic reticulum may account, at 

least in part, for mitochondrial NAPQI protein adduct formation [28–30]. Mitochondrial 

protein adduct formation with NAPQI causes oxidative stress, which leads to various 

mitochondrial dysfunctions, including respiratory inhibition, decreased hepatic ATP, 

decreased mitochondrial membrane potential (ΔΨ), and the onset of the mitochondrial 

permeability transition (MPT) [31,32]. Interestingly, low-dose APAP, which does not cause 

necrosis in vivo, can still produce MPT-dependent mitochondrial depolarization, which is 

reversible [33,34].

The MPT is an abrupt increase in the permeability of the mitochondrial inner membrane to 

molecules of less than about 1500 Daltons in molecular weight [35,36]. Ca2+ activates MPT 

onset, whereas cyclosporin A (CsA) and non-immunosuppressive analogs like NIM811 

inhibit permeability transition (PT) pore opening [37,38]. In one model, PT pores are 

formed by the voltage-dependent anion channel (VDAC) in the outer membrane, the adenine 
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nucleotide translocator (ANT) in the inner membrane, and cyclophilin D (CypD) in the 

matrix. However, the genetic deletion of ANT1/ANT2 and VDAC does not prevent the 

onset of the MPT [39–41], although more recent studies in triple ANT1, 2, and 4 and CypD-

deficient mice and cell lines indicate that the MPT requires ANT and CsA-binding CypD 

[42,43]. Other studies suggest that dimers or oligomers of the mitochondrial F1Fo-ATP 

synthase or the c-rings of the FO subunit of the synthase form PT pores [44–46], but other 

studies show that Ca2+-induced PT pore-opening persists after genetic interventions that 

prevent assembly ATP synthase monomers, dimers, or oligomers [47–49]. Another recent 

study concludes that the ATP synthase is a negative rather than a positive regulator of PT 

pores [50]. In addition, regulated and unregulated conductance modes for PT pores have 

been described: one activated by Ca2+ and inhibited by CsA and the other not requiring Ca2+ 

for activation and not inhibited by CsA [51]. Consistent with regulated and unregulated pore 

opening, a different model of pore formation and gating proposes that PT pores are created 

by misfolded integral membrane proteins damaged by oxidants and other stresses. These 

misfolded proteins aggregate at exposed hydrophilic surfaces within the membrane bilayer 

to form aqueous channels. Chaperone-like proteins, including CypD, a peptidyl-prolyl cis-

trans isomerase or foldase, initially block conductance through these misfolded protein 

clusters. However, increased Ca2+ acting on CypD opens these regulated PT pores, which 

is an effect blocked by CsA. When protein clusters exceed chaperones available to block 

conductance, unregulated pore opening occurs [51,52]. Thus, in this proposal, PT pores 

comprise multiple different molecular species, which is a conclusion increasingly made in 

experimental studies [42,53–55]. Nonetheless, the precise molecular composition of the PT 

pore or pores remains controversial.

CsA specifically blocks the MPT by binding to CypD [56]. NIM811 (N-methyl-4-isoleucine 

cyclosporin) is a non-immunosuppressive derivative of CsA that inhibits the MPT 

equivalently to CsA in isolated mitochondria [38,57]. NIM811 is protective to cultured 

hepatocytes and livers in vivo after a variety of injurious stresses, including ischemia/

reperfusion injury, transplantation, massive hepatectomy, and cholestatic injury [58–61]. 

CsA and NIM811 also inhibit the MPT and attenuate APAP hepatotoxicity both in vivo 

and in vitro [31,33,62,63]. As discussed above, PT pores have two open conductance 

modes—a Ca2+-activated and CsA-sensitive regulated mode associated with early PT pore 

opening and an unregulated mode occurring later, which does not require Ca2+ and is not 

inhibited by CsA [51]. In cultured mouse hepatocytes, CsA and NIM811 delay but do not 

prevent APAP-induced mitochondrial depolarization, indicating that APAP initially induces 

a regulated MPT that is later superseded by an unregulated MPT [31]. Ultimately, the release 

of proapoptotic mitochondrial proteins, together with the cessation of ATP production, leads 

to cell death [31,64,65].

2.2. Apoptosis and Necrosis in APAP Hepatotoxicity

Whether apoptosis or necrosis is the major mode of cell death in APAP hepatotoxicity 

has been a controversial topic. The MPT plays an important role in the development 

of both necrotic and apoptotic cell death [66]. Specifically, the uncoupling of oxidative 

phosphorylation after the MPT causes ATP depletion, which leads to necrotic cell killing, 

whereas the mitochondrial outer membrane rupture after MPT-induced mitochondrial 
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swelling causes cytochrome c release and apoptosis. In vitro, APAP mainly induces necrosis 

in cultured mouse hepatocytes. However, apoptosis increases when necrotic cell death is 

blocked [67]. Animal studies suggest that APAP-induced hepatic damage is predominantly 

oncotic necrosis rather than apoptosis [68]. Although modest caspase activation resulting 

from the release of mitochondrial proteins may occur after APAP, it is insufficient to actually 

cause significant apoptotic cell death [69]. Nonetheless, a human study reported increased 

serum apoptotic markers in patients with APAP-induced acute liver failure and suggested 

the predictive role of apoptotic markers in the progression of acute liver failure after APAP 

overdose [70].

2.3. c-Jun N-Terminal Protein Kinase Activation in APAP Hepatotoxicity

In mice and cultured mouse hepatocytes after APAP exposure, c-Jun N-terminal protein 

kinase (JNK), a mitogen-activated protein kinase (MAPK), becomes phosphorylated, 

signifying activation [71]. Phospho-JNK (p-JNK) then translocates to mitochondria by 

binding and phosphorylating the outer membrane protein SAB, an abbreviation for the 

SH3 domain-binding protein that preferentially associates with Bruton’s tyrosine kinase 

[72,73]. The subsequent release of protein tyrosine phosphatase nonreceptor type 6 (PTPN6) 

from SAB in the intermembrane space leads to the dephosphorylation of mitochondrial 

tyrosine-protein kinase c-SRC [74]. Decreased phospho-c-SRC leads to the inhibition of 

the respiratory chain, which enhances the generation of reactive oxygen species (ROS) 

[73,75]. The amplified oxidant stress then causes sustained JNK activation and promotes 

an APAP-induced MPT [32,76]. Platanosides, a botanical drug combination, decrease liver 

injury from APAP overdose in mice, possibly by preventing sustained JNK activation [77]. 

After low-dose APAP is given to mice, reversible hepatic mitochondrial dysfunction occurs 

associated with transient JNK activation [33].

3. Role of Oxidative Stress in APAP Hepatotoxicity

Oxidative stress is a principal mediator of toxicity and has been suggested as an important 

mechanism in APAP-induced hepatotoxicity. ROS formation increases after APAP exposure 

and agents that augment antioxidant defenses and scavenge ROS protect against APAP 

toxicity in vitro and in vivo [78]. The formation of ROS like O2•− occurs selectively in 

mitochondria after the initial metabolism of APAP and originates at least in part from 

Complex III of the respiratory chain [79–82].

The Fenton or iron-catalyzed Haber–Weiss reaction is critical following oxidative stress 

during APAP toxicity [83]. Initially, superoxide (O2•−) may be formed by activated 

NADPH oxidase, loosely coupled CYP2E1, and the NAPQI-dependent disruption of the 

mitochondrial respiratory chain. Dismutation catalyzed by superoxide dismutase (SOD) 

converts O2•− to H2O2. After an APAP overdose, H2O2 cannot be completely detoxified 

by glutathione peroxidase since its cofactor, GSH, becomes depleted by NAPQI. O2•− also 

reduces ferric iron (Fe3+) to ferrous iron (Fe2+). Fe2+, thus, formed reacts rapidly with H2O2 

to form the highly reactive hydroxyl radical (•OH) [27,81,83]. •OH, in turn, damages protein 

and DNA, as well as causing lipid peroxidation and the breakdown of membranes. However, 
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the most critical effect of this oxidative stress is the induction of the MPT, which produces 

bioenergetic failure and, ultimately, cell death [31,63].

4. Iron Metabolism

Iron is essential in the catalysis of many, if not most, enzymatic reactions that involve 

electron transfer and play a critical role in cellular survival. However, free iron is toxic 

due to its ability to generate free radicals via the Fenton reaction and to catalyze lipid 

peroxidation chain reactions [83,84]. Thus, the control of this necessary but potentially toxic 

metal is important for human health and disease. Iron homeostasis is tightly controlled by 

the regulation of its cellular import, storage, and intracellular movement [85,86].

4.1. Cellular Iron Metabolism

In animal cells, non-heme iron is transported into cells through two main pathways: 

transferrin (Tf)-bound iron uptake and non-Tf-bound iron (NTBI) uptake. NTBI uptake 

occurs when the body absorbs dietary iron from the intestinal lumen, or when Tf becomes 

saturated with iron because of iron overload. Although the exact NTBI uptake pathway 

is unclear, it is proposed that reductases, such as duodenal cytochrome b (Dcytb), reduce 

Fe3+ to Fe2+, which is then imported into cells via divalent metal transporter 1 (DMT1) or 

ZRT/IRT-like proteins (ZIPs) [87–89].

Under physiological conditions, almost all serum iron is bound to Tf. The uptake of Tf-

bound iron through Tf receptor-1 (TfR1) is the major pathway for the delivery of iron 

into cells [85,86]. Tf-dependent iron delivery begins with the binding of diferric Tf to 

TfR1 on the cell surface, followed by the endocytosis of the Tf-TfR1 complex. As pH 

decreases during endosome maturation and fusion with lysosomes, Fe3+ dissociates from 

Tf, and both Tf and TfR1 recycle to the cell surface for another round of iron uptake. 

A ferrireductase (Steap3) then reduces dissociated Fe3+ to Fe2+ within the endosomal/

lysosomal compartment. Fe2+ subsequently exits the endosomal/lysosomal compartment 

into the cytosol via DMT1 or ZIP14 [90,91]. The release of Fe2+ from endosomal/lysosomal 

membranes appears to involve an Fe2+/H+ exchange mechanism [92]. Iron released to 

the cytosol is in a soluble, chelatable state, which constitutes the labile iron pool (LIP). 

From this pool, iron can be stored in ferritin, utilized for metabolism (e.g., imported 

into mitochondria for the synthesis of heme and Fe-S clusters), used to generate ROS, or 

exported from the cell by ferroportin 1 (FPN1) [85,86]. Notably, lysosomes are additionally 

involved in intracellular iron recycling because of the degradation of many macromolecules 

containing iron inside the lysosomal lumen [93].

4.2. Mitochondrial Iron Metabolism

Mitochondria utilize iron for the synthesis of heme and Fe-S clusters [94–97]. Iron 

moves into mitochondria using the following hypothesized mechanisms: (i) Iron-loaded 

endosomes/lysosomes interact directly with mitochondria by a “kiss-and-run” mechanism, 

leading to mitochondrial iron uptake [98]. (ii) Iron from ferritin transfers into mitochondria 

after ferritin complex degradation [99–101]. These mechanisms remain incompletely 

understood and need further study.
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Two transporters, the mitochondrial calcium uniporter (MCU) and the two isoforms of 

mitoferrin (Mfrn1/2), play essential roles in transporting iron across the inner membrane. 

MCU catalyzes the electrogenic mitochondrial uptake of both Ca2+ and Fe2+ driven by 

the negative inside mitochondrial ΔΨ, which is blocked by the specific MCU inhibitor, 

Ru360 [81,102–104]. Mfrn1 and its paralog Mfrn2 also mediate mitochondrial iron uptake 

in erythroid and non-erythroid cells, respectively [105,106]. Because mitochondrial iron 

uptake is needed for heme synthesis, the deletion of Mfrn1 in hematopoietic tissues leads to 

anemia [106]. Some evidence indicates that Mfrn2 physically interacts with MCU, possibly 

as a component and/or regulator of the MCU complex [107].

Once imported into mitochondria, iron is utilized for the synthesis of heme and Fe-S 

clusters, which are incorporated into respiratory and other enzymes inside the mitochondria 

or exported to the cytosol to become prosthetic groups for cytosolic enzymes. Mitochondrial 

iron is also stored in mitochondrial ferritin (FTMT) [108].

4.3. Role of Iron in Common Models of Acute Liver Injury

However, when mitochondrial iron uptake results in iron overload and simultaneously 

H2O2 is generated by mitochondrial respiration that cannot be detoxified by antioxidant 

systems, Fe2+ and H2O2 react to form •OH, leading to lipid peroxidation, mitochondrial 

dysfunction, DNA damage, and a form of necrotic cell death now called ferroptosis 

[83,104,109,110]. Iron chelators like desferal and starch-desferal decrease mitochondrial 

ROS formation, MPT opening, and cell killing in cultured rat hepatocyte models of hypoxia/

ischemia [104]. Desferal also protects against lethal injury to cultured hepatocytes from tert-
butyl hydroperoxide, as does the lipid radical scavenger, N,N-diphenyl-p-phenylenediamine 

(DPPD) [111,112]. Another iron chelator, deferasirox, protects against concanavalin A-

induced hepatic injury and fibrosis in rats [113]. Cytoprotection by iron chelators against 

hypoxia/ischemia, oxidative stress, and APAP hepatotoxicity infers a critical role for iron in 

the pathogenesis of injury, most likely by catalyzing •OH formation and subsequent lipid 

peroxidation [104,111,114–117].

5. Iron and Acetaminophen Hepatotoxicity

5.1. Evidence for Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity

After APAP overdose, the mitochondrial generation of ROS is a critical factor triggering 

the MPT, and iron promotes this oxidative stress [81]. Iron chelators and antioxidants that 

scavenge ROS protect against APAP toxicity in vitro and in vivo [114,118–121]. Treatment 

with the iron chelator, desferal (also called deferoxamine or desferrioxamine), increases 

the time required for APAP to induce ROS and mitochondrial dysfunction in cultured 

mouse hepatocytes [122]. After iron chelation with desferal, the addition of iron to the 

culture medium restores the sensitivity of hepatocytes to APAP toxicity in vitro [114,120]. 

Moreover, the treatment of mouse hepatocytes with the iron donor 3,5,5-trimethyl-hexanoyl 

ferrocene (TMHF) causes APAP-induced ROS formation and mitochondrial dysfunction to 

occur at earlier time points than APAP treatment alone, which is partially prevented by 

desferal [122].
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Several fluorescent probes can visualize intracellular iron movement between organelles. 

The exogenously added calcein-acetoxymethylester (AM) is de-esterified in the cytosol to 

release calcein-free acid, whose fluorescence is quenched by chelatable Fe2+ [92,104,123]. 

Mitoferrofluor (MFF) is another iron indicator that accumulates electrophoretically into 

mitochondria in response to ΔΨ and then binds covalently to mitochondrial proteins. 

Like green-fluorescing calcein, red-fluorescing MFF is quenched by chelatable Fe2+ [124]. 

Calcein and MFF can be used together or in combination with fluorescent indicators of 

mitochondrial ΔΨ, such as red-fluorescing tetramethylrhodamine methylester (TMRM) and 

green-fluorescing rhodamine 123 (Rh123) [81,124]. To visualize lysosomes, cells can be 

pre-loaded with red-fluorescing rhodamine-dextran, which is taken up via endocytosis and 

delivered to the lysosomes [116].

In cultured mouse hepatocytes, APAP causes lysosomes to rupture and release rhodamine-

dextran into the cytosol within 4 h (Figure 1, top row). The mechanism underlying 

APAP-induced lysosomal rupture is not known. The APAP metabolite, NAPQI, may 

react covalently with lysosomal membrane components to cause the rupture. In parallel, 

cytosolic calcein fluorescence becomes quenched, though this is not the case for the 

fluorescence of calcein-free acid added to the extracellular medium, indicating an increase 

in cytosolic Fe2+ due to its release from lysosomes (Figure 1, bottom row) [81]. Starch-

desferal suppresses the increase in cytosolic and mitochondrial Fe2+ after APAP [81]. 

Since membrane-impermeant starch-desferal is taken up via endocytosis into the lysosomal/

endosomal compartment like rhodamine-dextran, the prevention of APAP-induced increases 

in cytosolic and mitochondrial Fe2+ by starch-desferal confirms that endosomes/lysosomes 

are the source of mobilizable chelatable iron entering the cytosol and mitochondria 

during APAP hepatotoxicity. Other sources of iron may promote the Fenton reaction in 

mitochondria. For example, ROS promote heme oxygenase 1 (HO-1) translocation to 

mitochondria in cardiomyocytes, leading to iron release from heme [125]. Further study 

is needed to determine whether HO-1 is involved in APAP hepatotoxicity.

5.2. Role of the Mitochondrial Calcium Uniporter in Mitochondrial Iron Uptake during 
Acetaminophen Hepatotoxicity

Movement into the mitochondria of Fe2+ released from ruptured lysosomes is mediated by 

MCU, an electrogenic Ca2+ transporter that also conducts Fe2+, since the MCU inhibitors, 

Ru360 and minocycline, block MFF quenching but not calcein quenching after APAP 

[81]. Further support for this role of MCU is provided by studies using mice with 

a hepatocyte-specific MCU (hsMCU) deficiency. In wildtype hepatocytes, mitochondrial 

MFF fluorescence is bright but subsequently progressively decreases after APAP exposure, 

beginning within 4 h and becoming virtually complete after 12 h (Figure 2A, bottom row). 

In parallel, mitochondrial depolarization (the loss of Rh123 fluorescence), signifying the 

onset of the MPT, begins to occur within 8 h and is complete within 12 h (Figure 2A, 

top row). By contrast, in hsMCU KO hepatocytes that are deficient in MCU, mitochondrial 

MFF quenching and mitochondrial depolarization are suppressed after APAP (Figure 2B). 

Nonetheless, cytosolic calcein fluorescence is just as strongly quenched after APAP in 

MCU-deficient hepatocytes as in wildtype hepatocytes showing that lysosomes still release 

Fe2+ (Figures 1 and 3). Both in vitro and in vivo, lysosomal iron chelation with starch-
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desferal and the inhibition of MCU-mediated mitochondrial iron uptake protect against 

APAP-induced hepatotoxicity [81,116,117,126]. Notably, both the global- and hepatocyte-

specific deficiency of MCU decreases APAP hepatotoxicity in vivo as assessed by ALT 

release and necrosis by histology without altering hepatic APAP metabolism [126]. In 

addition, the co-treatment of APAP with FeSO4 dramatically increases APAP-induced 

hepatotoxicity, which is prevented by desferal [27].

5.3. Possible Roles of Kupffer Cells and JNK in Iron-Dependency of Acetaminophen 
Hepatotoxicity

Kupffer cells are liver-resident macrophages that are involved in the phagocytosis of 

senescent red blood cells and the recycling of iron [127]. Kupffer cells are also a potential 

source of oxidant stress promoting cell death [128]. Human and mouse studies indicate that 

Kupffer cells and infiltrating monocyte-derived macrophages have both injury-promoting 

and injury-repair functions after APAP overdose [129–133]. Although MCU deficiency in 

hepatocytes decreases liver necrosis and ALT release after APAP in mice, MCU deficiency 

in Kupffer cells does not alter APAP hepatotoxicity [126].

JNK activation in the cytosol and translocation of p-JNK to mitochondria are important 

early events promoting the MPT and cell death in APAP hepatotoxicity [32]. Recent in vivo 

studies in mice show that neither desferal nor Fe2+ treatment affects JNK activation and 

its translocation to mitochondria after APAP overdose [27]. These findings suggest that the 

effect of iron is not at the early stages of the response to APAP but specifically at later events 

within mitochondria.

5.4. “Two Hit” Hypothesis

Overall, these results support a “two hit” hypothesis for the role of oxidative stress and iron 

in APAP hepatotoxicity (Figure 4) [81] (see also [104]). In the first hit, CYP2E1 metabolizes 

APAP to NAPQI, which induces mitochondrial protein adduct formation, the disruption 

of mitochondrial respiration, and consequent generation of (O2
•− and H2O2. These ROS 

also activate JNK, which translocates to mitochondria to further inhibit respiration with the 

feed-forward effect of enhancing mitochondrial ROS generation even more. In the second 

hit, toxic NAPQI causes lysosomal breakdown and the release of chelatable Fe2+ into the 

cytosol. Fe2+ is then taken up into mitochondria via MCU. In the presence of O2
•− and 

H2O2, such mitochondrial Fe2+ loading induces •OH formation via the Fenton reaction, 

which in turn causes MPT onset, mitochondria depolarization, bioenergetic failure, and cell 

death. Iron imported into mitochondria also facilitates protein nitration by peroxynitrite 

(ONOO−), which is formed from the reaction of O2
•− with nitric oxide (NO) [27].

5.5. Ferroptosis during Acetaminophen Hepatotoxicity

Iron has long been known to promote lipid peroxidation and cell death in various models 

of cell injury (see [112,115,120,134,135]). During APAP toxicity to cultured hepatocytes, 

DPPD, a scavenger of lipid radicals, prevents both lipid peroxidation and cell death 

[111,136]. Similarly, ferrostatin-1, a scavenger of alkoxyl radicals that propagate lipid 

peroxidation chain reactions, protects against APAP-induced hepatotoxicity in mice [137]. 

Non-apoptotic iron-dependent cell death involving lipid peroxidation and mitochondrial 
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iron-loading has more recently been named ferroptosis [110,138]. A novel ferroptosis 

inhibitor, mifepristone, prevents APAP-induced hepatotoxicity in vitro and in mice in 

vivo [139], and growth arrest-specific 1 (GAS1) overexpression promotes ferroptosis and 

aggravates APAP-induced hepatocellular injury both in vitro and in vivo [140].

5.6. Role of Peroxynitrite and Protein Nitration in Acetaminophen Hepatotoxicity

Protein nitration is an important pathophysiological event in APAP hepatotoxicity [141,142]. 

During APAP overdose, respiratory chain dysfunction leads to the generation of O2•−, 

which reacts with NO to form reactive and toxic ONOO− in the mitochondrial matrix 

[27,143]. The mitochondrial uptake of iron released from lysosomes then promotes ONOO−-

dependent nitration of protein tyrosine residues to form nitrotyrosine protein adducts 

[27,144]. This stress further induces the MPT in APAP toxicity (Figure 5). Consistent 

with this mechanism in vivo after APAP overdose, desferal and the MCU blocker, 

minocycline, attenuate immunostaining for nitrotyrosine protein adducts and the release 

of the mitochondrial intermembrane protein, cytochrome c, which is a consequence of 

mitochondrial swelling after MPT onset [27]. The co-treatment of APAP with FeSO2 in 

mice further increases nitrotyrosine staining and the release of cytochrome c, as well as 

causing lipid peroxidation, which desferal inhibits [27]. Moreover, the mitochondria-specific 

SOD mimetic, mito-TEMPO, protects against APAP-induced liver injury and nitrotyrosine 

protein adduct formation in mice [145].

5.7. Aldehydes as Drivers of Acetaminophen Hepatotoxicity

•OH from Fenton chemistry reacts with unsaturated lipids to initiate a lipid peroxidation 

chain reaction with the formation of lipid radicals (L•), lipid peroxides (LOOH), and 

peroxyl radicals (LOO•). Iron is an important catalyst to then promote a subsequent 

alkoxyl radical (LO•) and more LOO• formation. Notably, the spontaneous non-enzymatic 

beta-scission of LO• generates a variety of aldehydes, including malondialdehyde (MDA) 

and 4-hydroxynonenal (4-HNE), which are often used as biomarkers for lipid peroxidation. 

However, MDA, 4-HNE, and other aldehydes formed downstream of lipid peroxidation are 

toxic, reactive, and mutagenic, with MDA reported to be the most mutagenic and 4-HNE the 

most toxic [146–148].

Lipid peroxidation in APAP hepatotoxicity was initially indicated by the appearance of 

exhalated hydrocarbons in mice in vivo and by MDA formation in liver homogenates in 

vitro that inducers and inhibitors of P450 enzymes, respectively, up and down modulate 

[149,150]. However, these studies were performed with mice fed a vitamin E-deficient diet 

high in polyunsaturated fatty acids that made the animals sensitive to lipid peroxidation 

induced by APAP [150,151]. A follow-up study with mice fed a regular diet showed 

minimal evidence for lipid peroxidation after APAP [152]. Furthermore, mice fed a diet high 

in vitamin E diet do not show decreased APAP hepatotoxicity, suggesting that endogenous 

defense mechanisms are normally sufficient to prevent excessive lipid peroxidation after 

APAP [152]. Additionally, the co-treatment of Fe2+ with APAP increases lipid peroxidation 

in vivo in mice, which desferal almost completely prevents [27,153]. Nonetheless, other 

reports show that APAP stimulates lipid peroxidation in isolated mouse and rat hepatocytes 

in vitro [154,155], and mass spectroscopy reveals lipid peroxides derived from n-6 fatty 
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acids, mainly from arachidonic acid, after APAP overdose [137]. Moreover, 4-HNE adduct 

formation increases after APAP in mice fed normal chow [156].

N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) is an activator of 

mitochondrial aldehyde dehydrogenase-2 (ALDH2) and is responsible for detoxifying 

aldehyde oxidation to fatty acids [157]. After APAP in vivo, Alda-1 decreases 4-HNE 

adduct formation, APAP-induced liver injury, and mitochondrial dysfunction, indicating that 

lipid peroxidation-derived aldehydes are important mediators of APAP hepatotoxicity. Lipid 

peroxidation may occur relatively selectively in mitochondria that are the source of •OH 

from Fenton chemistry and whose membranes are enriched in arachidonic acid.

6. Summary and Conclusions

Iron-catalyzed free radical generation in mitochondria plays an important role in APAP 

toxicity (Figure 5). Initially, the toxic APAP metabolite, NAPQI, binds to mitochondrial 

proteins to inhibit mitochondrial respiration. Inhibited respiration leads to increased levels of 

ubisemiquinone and flavin semiquinone, which transfer their unpaired electrons to oxygen 

to form O2•−. Respiratory inhibition is further amplified through JNK activation, leading 

to greater O2•− generation. O2•− reacts with nitric oxide to produce peroxynitrite or is 

converted to H2O2 by SOD. Since NAPQI depletes GSH after APAP overdose, GSH is 

no longer available to detoxify peroxynitrite and H2O2, as would occur normally. NAPQI 

also damages lysosomes, causing Fe2+ release into the cytosol and subsequent uptake into 

mitochondria via the MCU. Mitochondrial loading with Fe2+ facilitates nitrotyrosine protein 

adduct formation and Fenton chemistry with H2O2 to produce the highly reactive •OH. 

•OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, and induction 

of the MPT, ultimately leading to cell death. Accordingly, blocking pathways of iron 

movement into mitochondria via MCU, preventing iron-related mitochondrial •OH and 

ONOO− formation, and accelerating aldehyde metabolism are potential novel strategies to 

intervene against APAP hepatotoxicity in a clinical setting.
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•OH hydroxyl radical

ΔΨ membrane potential

Alda-1 N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide
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ALDH2 mitochondrial aldehyde dehydrogenase-2

ALF acute liver failure

AM acetoxymethylester

ANT adenine nucleotide translocator

APAP N-acetyl-para-aminophenol, acetaminophen

CsA cyclosporin A

CypD cyclophilin D

DMT1 divalent metal transporter 1

DPD dipyridyl

DPPD’ N N’-diphenyl-p-phenylenediamine

FPN1 ferroportin 1

FTMT mitochondrial ferritin

GAS1 growth arrest-specific 1

GSH glutathione

HDM hormonally defined medium

4-HNE 4-hydroxynonenal

HO-1 heme oxygenase 1

JNK c-Jun N-terminal protein kinase

LIP labile iron pool

L• lipid radicals

LOO• peroxyl radical

LOOH lipid peroxide

MAPK mitogen-activated protein kinase

MASLD metabolic dysfunction-associated steatotic liver disease

MCU mitochondrial calcium uniporter

MDA malondialdehyde

MFF mitoferrofluor

Mfrn mitoferrin

MPT mitochondrial permeability transition
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NAC N-acetylcysteine

NAPQI N-acetyl-p-benzoquinone imine

NO nitric oxide

NTBI non- transferrin-bound iron

ONOO− peroxynitrite

p-JNK phospho-JNK

PI propidium iodide

PT permeability transition

PTPN6 protein tyrosine phosphatase nonreceptor type 6

Rh123 rhodamine 123

ROS reactive oxygen species

SAB SH3 domain-binding protein that preferentially associates with 

Bruton’s tyrosine kinase

SOD superoxide dismutase

Tf transferrin

TfR1 Tf receptor-1

TMHF 3,5,5-trimethyl-hexanoyl ferrocene

TMRM tetramethylrhodamine methylester

VDAC voltage-dependent anion channels

ZIPs ZRT/IRT-like proteins
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Figure 1. 
Acetaminophen-dependent lysosomal permeabilization and release of Fe2+ into the cytosol. 

Wildtype mouse hepatocytes were isolated from mice injected with 70 kDa rhodamine-

dextran and then loaded with 1 μM calcein-AM. Rhodamine-dextran labeled lysosomes, 

whereas calcein-AM was de-esterified to release calcein-free acid into the cytosol. In 

the presence of 20 mM of fructose plus 5 mM of glycine to prevent cell death after 

APAP-induced disruption of mitochondrial metabolism, hepatocytes were then exposed to 

acetaminophen (APAP, 10 mM). Before APAP (0 h), rhodamine-dextran-labeled lysosomes 
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were intact, and cytosolic calcein fluorescence was bright in comparison to the fluorescence 

of 300 μM of calcein-free acid placed in the extracelluar medium. At 4 h after APAP, 

many rhodamine-dextran-labeled lysosomes disappeared in parallel with the quenching of 

calcein fluorescence. This calcein quenching signified increased cytosolic chelatable Fe2+. 

As lysosomes disappeared, diffuse red fluorescence appeared in the cytosol, signifying that 

acetaminophen permeabilized many lysosomes. After [116].
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Figure 2. 
Suppression of mitochondrial iron uptake and depolarization after acetaminophen treatment 

of hepatocytes deficient in the mitochondrial calcium uniporter. Wildtype and hsMCU 

KO hepatocytes were loaded with 300 nM of Rh123 plus 1 μM of MFF and exposed 

to 10 mM APAP in the presence of 20 mM of fructose plus 5 mM of glycine. 

Rh123 is a green-fluorescing indicator of mitochondrial ΔΨ. Mitoferrofluor (MFF) 

accumulates electrophoretically into mitochondria, binds covalently, and becomes quenched 

as mitochondrial Fe2+ increases. (A) In wildtype (WT) hepatocytes, red mitochondrial MFF 
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fluorescence was bright at 0 h but subsequently quenched progressively, beginning within 

4 h and becoming virtually complete after 12 h (bottom row). Mitochondrial depolarization 

(loss of green Rh123 fluorescence) began to occur at 8 h and was complete after 12 h 

(top row). (B) In hsMCU KO hepatocytes, mitochondrial MFF quenching and mitochondrial 

depolarization were suppressed after APAP. After [126].
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Figure 3. 
Increased cytosolic Fe2+ in MCU-deficient hepatocytes after acetaminophen. Hepatocytes 

were loaded with 300 nM of TMRM plus 1 μM of calcein-AM and incubated with 300 μM 

of calcein-free before exposure to 10 mM APAP in the presence of 20 mM fructose plus 

5 mM glycine. TMRM is a red-fluorescing indicator of mitochondrial ΔΨ. When MCU-

deficient hepatocytes were exposed to 10 mM APAP, mitochondrial depolarization (loss of 

TMRM fluorescence) was suppressed. However, the green cytosolic calcein fluorescence 
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decreased substantially similarly to wildtype hepatocytes, signifying increased cytosolic 

chelatable Fe2+. After [126].
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Figure 4. 
Two-hit model of APAP hepatotoxicity. After an overdose of APAP, the first hit occurs 

when APAP causes GSH depletion, NAPQI protein adduct formation, and the inhibition 

of mitochondrial respiration, which induces O2
•− and H2O2 formation. ROS-induced JNK 

phosphorylation and activation further enhance respiratory inhibition and mitochondrial 

ROS formation. The second hit occurs when NAPQI damages lysosomes and releases 

Fe2+ into the cytosol, which is then taken up into mitochondria via the electrogenic 

MCU to promote intramitochondrial •OH formation by the Fenton reaction. •OH, in turn, 

induces lipid peroxidation, the formation of toxic aldehydes, MPT onset, and mitochondrial 

bioenergetic failure, leading to the loss of cell viability. Starch-desferal chelates lysosomal 

iron to prevent the release of chelatable iron after lysosomal disruption and subsequent 

uptake into mitochondria to promote •OH formation. Ru360 and minocycline block 

mitochondrial iron uptake via MCU to also suppress iron-catalyzed •OH formation in the 

mitochondrial matrix. CsA and NIM811 inhibit MPT. Blocking either hit protects against 

APAP-induced hepatic injury.
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Figure 5. 
Role of iron in oxidative stress in APAP-induced mitochondrial damage. After an overdose 

of APAP, NAPQI binds to mitochondrial proteins to inhibit mitochondrial respiration. 

Respiratory inhibition leads to increased levels of flavin semiquinones and ubisemiquinone, 

which react with oxygen to form O2•−. Such respiratory inhibition and ROS generation are 

further amplified through ROS-driven JNK activation. O2•− reacts rapidly with NO to form 

ONOO−. The iron influx into mitochondria facilitates the reaction of ONOO− with proteins 

to produce nitrotyrosine adducts, ultimately promoting the MPT. SOD2 in mitochondria also 

converts O2•− to H2O2. Fe2+, which is released from damaged lysosomes, is taken up into 

mitochondria via MCU and reacts with H2O2 to form the toxic •OH, which induces L• 

formation. L• then initiates an oxygen-dependent chain reaction generating peroxyl radicals 

(LOO•) and lipid peroxides (LOOHs). In the presence of Fe2+, LOOH produces LO•. The 

beta scission of LO• then leads to the formation of reactive aldehydes like MDA and 4HNE, 

which also promote MPT onset. This figure was created with BioRender.com.
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