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Abstract

Several peer-reviewed papers and reviews have examined the relationship between exposure to 

air pollution and COVID-19 spread and severity. However, many of the existing reviews on this 

topic do not extensively present the statistical challenges associated with this field, do not provide 

comprehensive guidelines for future researchers, and review only the results of a relatively small 

number of papers. We reviewed 139 papers, 127 of which reported a statistically significant 

positive association between air pollution and adverse COVID-19 health outcomes. Here, we 

summarize the evidence, describe the statistical challenges, and make recommendations for future 

research. To summarize the 139 papers with data from geographical locations around the world, 

we also present an open-source data visualization tool that summarizes these studies and allows 

the research community to contribute evidence as new research papers are published.
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INTRODUCTION

On May 16, 2022, the Associated Press reported that the US death toll from COVID-19 hit 

1 million. On March 23, 2022, the White House reported that the most common way that 

COVID-19 is transmitted from one person to another is through tiny airborne particles of the 

virus hanging in indoor air for minutes or hours after an infected person has been there (45). 

At the same time, several hundred papers have been published around the world, providing 

evidence of a potential link between exposure to air pollution [including fine particulate 

matter (PM2.5)] and an increased number of COVID-19 cases and deaths.

To support the scientific community in their work to mitigate risk and develop solutions to 

address the global COVID-19 crisis, investigators must evaluate the evidence and identify 

research opportunities on the potential associations between short- and long-term exposure 

to air pollution and COVID-19 health outcomes. Benmarhnia et al. (5) and Copat et 

al. (15) published the earliest reviews and discussed (a) potential biological mechanisms 

linking exposure to air pollution and COVID-19 outcomes; (b) how to clearly formulate 

causal questions of interest; and (c) considerations for using quasi-experimental designs. 

Subsequent literature reviews (1, 58, 65) were valuable but limited in scope. They often 

included no more than 20 studies and discussed primarily limitations related to the emerging 

literature at the beginning of the pandemic. They commonly focused on the need to 

consider socioeconomic confounding variables (1, 7, 15), additional routes of COVID-19 

transmission (1, 65), and the underestimation of case and mortality data (15). Particular 

studies emphasized more unique and underdiscussed aspects of the literature, such as 

the relationship of COVID-19 to rainfall, humidity, and climate change (68), as well as 

geographical variations between high- and low-income countries (65). All of these were 

narrative literature reviews, which led to a more subjective evaluation of the results.

Villaneuve & Goldberg (58) included nine studies in their review and focused on the 

methods in these few articles. Their primary objective was to critique the methodological 

approaches used in these studies and to advocate for peer review. Most recently, two 

additional review articles (39, 68) have summarized the results of a greater number of 

studies (51 and 68 articles, respectively). While these papers synthesized information about 

the state of the evidence, they omitted a deep dive into the statistical challenges and any 

quantitative review of the evidence.

This article offers a novel contribution to this expanse of research in a variety of ways. 

This review encompasses 139 articles, which substantially surpasses previous reviews in the 

scope of the included literature. Furthermore, this number of articles is important because 

it allows us to make more representative evaluations of the statistical challenges as well 

as opportunities that remain to improve the understanding of the association between air 

pollution and COVID-19.
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In this article, we aim to achieve three goals: (a) summarize the evidence regarding the 

association between exposure to air pollution and COVID-19 outcomes; (b) provide a 

deep-dive discussion of the main statistical challenges and shortcomings in existing work, 

which both prompt areas of future research; and (c) introduce a data visualization tool for 

summarizing the evidence in an interactive, dynamic, and accessible manner.

METHODS

The following two sections outline the methods by which we comprehensively searched 

the existing literature for studies on the effects of air pollution on COVID-19 spread and 

severity. We provide the search terms and databases used, in addition to the screening 

process and criteria for study selection to improve reproducibility. Finally, we describe the 

development of the online dashboard to visualize the results of the literature review.

Search Strategy

We conducted a literature search of the National Library of Medicine’s PubMed database 

(https://pubmed.ncbi.nlm.nih.gov/), Elsevier’s Embase database, Clarivate Analytics Web 

of Science database, Cochrane’s COVID-19 Study Register, and Cold Spring Harbor 

Laboratory’s medRxiv and bioRxiv databases. The full search queries used for each database 

are provided in Supplemental Table 1.

Study Eligibility Criteria and Study Selection

Inclusion/exclusion criteria were designed to identify original research describing the effects 

of air pollution on COVID-19 health outcomes (Figure 1). We included both peer-reviewed 

and preprint studies due to the quickly evolving nature of the topic. Although preprint 

studies are preliminary, we decided to include them because they provide useful information 

regarding statistical approaches and can inform future research directions. Only studies 

written in English and published online up to May 21, 2021, were included. We limited 

our evidence synthesis to articles that relied on data prior to widespread availability of the 

COVID-19 vaccine ( January 2021), as vaccination had a significant effect on the trajectory 

of COVID-19 health outcomes.

Two screeners reviewed each identified paper from the database searches using the 

Covidence online platform (https://www.covidence.org/). Duplicate papers were removed. 

The studies were then put through a coarse-grain selection process in which studies were 

excluded based on a review of the title and abstract. Papers that did not discuss air 

pollution and COVID-19 health outcomes were excluded. In the second round, full texts 

were reviewed. Studies that discussed the effects of short- or long-term exposure to air 

pollution on COVID-19 health outcomes were included. Studies were not restricted based on 

the temporal and spatial resolution of air pollution data and COVID-19 health data and also 

not restricted on the basis of COVID-19 health outcomes or confounder selections.

Studies investigating the effects of COVID-19 and the lockdowns caused by COVID-19 

on air pollution were excluded. In addition, many studies published early in the pandemic 

described the relationship between COVID-19 cases and air pollution without significant 

quantitative or statistical analysis. These studies concluded that air pollution is related to 
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coronavirus spread because early cases in the pandemic were concentrated in the highly 

polluted Po Valley and other highly polluted areas of China (23, 40). These studies, which 

provided only cursory analysis, were also excluded.

Visualization and Automation Methodology

The process of spatially and temporally summarizing and visualizing the results of this 

comprehensive literature review was automated using Python version 3.9.11 running in a 

Jupyter Notebook environment. This approach created an environment where researchers 

can easily reuse or customize the automation of the visualization and evidence synthesis 

process presented in this article.

We created a spreadsheet that contained the following features (manually annotated) that 

summarized relevant attributes of each article: digital object identifier (DOI), type of 

study (long-term, short-term time series, short-term cross-sectional), geographical area of 

study (country or countries examined), areal unit (smallest area/region type studied in each 

paper), outcome (cases, deaths, hospitalizations, etc.), statistical method (correlation, linear 

regression, mixed models, etc.), statistical significance (statistical significance was recorded 

for each air pollutant studied), covariates (covariates controlled for in the final model), and 

code availability for each paper (e.g., code made publicly available on GitHub). The DOI 

was used to access bibliographic databases to retrieve additional information on each article 

(e.g., number of citations). The study area information was used to georeference each article. 

These attributes allowed end users of the evidence synthesis visualization tool to filter and 

select specific groups of articles based on their attributes. This spreadsheet was also critical 

for determining statistical challenges and summarizing each paper for this review.

The spreadsheet was read using Python (see Supplemental Table 2), which then launched 

an automated workflow to generate a series of maps and Web applications that synthesize 

the articles using the following process. First, each article’s metadata is extracted from 

the Crossref metadata repository (https://www.crossref.org/) using the DOI provided. This 

search returns a properly formatted citation with the article, publication year, author names, 

and citation count. Next, each article’s annotated study area is geocoded using a proprietary 

Python library, ArcGIS API for Python (https://developers.arcgis.com/python/). The data 

extracted from Crossref, the geocoded data from the ArcGIS API for Python, and the 

previously mentioned manually entered article are together used to produce or update a 

series of information products that synthesize the collection of articles provided by the 

researcher (Table 1).

RESULTS

Here, we provide a summary of the articles selected after the literature review search and 

application of the exclusion/inclusion criteria. In particular, we focus on the study types, 

location of the studies, outcomes, exposures, statistical models used, overall findings, and 

covariates controlled for. Finally, we describe the visualization of the results from this 

literature review through the online dashboard and the process by which researchers can 

submit new articles for inclusion in the dashboard.
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Selected Studies

The search yielded 4,144 articles across all databases searched (Figure 1). After excluding 

research studies that did not discuss both air pollution and COVID-19 (based on abstract 

review), 219 articles were eligible for full-text review. Of these, 139 were research studies 

published in English that investigated the effects of air pollution on COVID-19 health 

outcomes (based on full-text review). Only 8 of the 139 articles included open access to their 

code. Of these 139 articles, 134 were peer-reviewed. These results can be visualized in the 

interactive database described above (Figure 2; http://bit.ly/3hzcsbv).

Study Types

The results were summarized by the type of air pollution effect being examined. Studies 

focusing on long-term effects of air pollution (63 papers) were grouped together. These 

studies examined the impact of air pollution exposure over a long period of time prior to the 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak. The underlying 

hypothesis of these studies is that exposure to air pollution over long periods of time 

negatively impacts respiratory health, thereby increasing susceptibility to SARS-CoV-2 

infection and more severe COVID-19 health outcomes. All these studies relied on a cross-

sectional study design.

Studies focusing on the short-term effects of air pollution on COVID-19 health outcomes 

(61 papers) were grouped together. These studies compared day-to-day variations in air 

pollution with day-to-day variations in COVID-19 health outcomes. Studies focusing on 

cross-sectional analyses of the short-term effects of air pollution on COVID-19 health 

outcomes (15 papers) were grouped together. These studies compared air pollution levels 

during the outbreak or shortly before the outbreak with COVID-19 health outcomes. The 

underlying hypothesis of both the time series and cross-sectional studies is that recent air 

pollution exposure increases the transmission of the virus or the severity of COVID-19.

Location of the Studies

The 139 studies examined the effects of air pollution on COVID-19 health outcomes across 

many different countries, primarily in North America, Europe, and Asia. Many of the studies 

focused on cities and provinces in China (32 papers), regions and provinces in Italy (32 

papers), and counties in the United States (29 papers), all regions where the SARS-CoV-2 

outbreak occurred early and was prominent. Other papers examined countries that were less 

prominent in the early part of the pandemic such as Spain (14 papers), United Kingdom 

(11 papers), Germany (9 papers), India (6 papers), Austria (5 papers), the Netherlands (5 

papers), South Korea (4 papers), Mexico (4 papers), Poland (4 papers), Pakistan (3 papers), 

Bangladesh (3 papers), Finland (3 papers), and Peru (3 papers).

COVID-19 Health Outcomes and Air Pollution Exposures

Five different COVID-19 health outcomes were reported across the 139 studies: cases, 

deaths, reproductive ratio, case fatality rate, and hospitalizations. The most frequently 

used health outcomes among both short-term and long-term studies were the number of 

COVID-19 cases (95 papers) and the number of COVID-19 deaths (65 papers) followed by 

case fatality rate (13 papers), hospitalizations (8 papers), and reproductive ratio (4 papers). 
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Supplemental Table 2 provides additional information about the health outcomes utilized 

across these studies. The air pollutants most frequently studied across the 139 studies were 

PM2.5 (107 papers), PM10 (67 papers), O3 (53 papers), NO2 (67 papers), SO2 (31 papers), 

and CO (33 papers). In addition, 18 papers included the Air Quality Index (AQI) and a few 

papers studied aerosols, NH3, and formaldehyde (HCHO). Note that many papers studied 

more than one pollutant.

Models

A wide diversity of modeling techniques was used in the 139 papers to make inferences 

about the relationship between air pollution and COVID-19 health outcomes. The most 

frequently used technique among both short-term and long-term studies was linear 

regression (32 papers) followed by Spearman and Kendall tau correlation estimation (30 

papers), negative binomial regression (18 papers), generalized additive models (10 papers), 

Poisson regression (15 papers), mixed models (13 papers), and geographically weighted 

regression (4 papers). Recent studies have used other, more complex techniques such as 

Bayesian modeling (3 papers) and artificial neural networks or machine learning (3 papers). 

See Supplemental Table 2 for more specific information on statistical modeling.

Statistically Significant Findings

Of the 139 studies, 127 reported a statistically significant positive association between air 

pollution and adverse COVID-19 health outcomes (Figure 3). Fifty-eight of the 63 papers 

that studied the long-term effects of air pollution found a statistically significant relationship 

with COVID-19 outcomes. Sixty-nine of the 76 papers that studied the short-term effects of 

air pollution found a statistically significant relationship with COVID-19 outcomes. For both 

short-term and long-term papers, a significant association between PM2.5 and COVID-19 

outcomes was reported in the highest proportion of papers (87% and 83%, respectively). 

PM10 and NO2 associations with COVID-19 were reported in the next highest proportion of 

both study types, followed by O3 and CO. A low proportion of papers reported statistically 

significant relationships between SO2 and COVID-19 outcomes for both short-term (35%) 

and long-term (29%) effects. AQI was significantly associated with COVID-19 outcomes in 

all long-term studies and 73% of the short-term studies.

Covariates

The variables that were adjusted for substantially differed between the papers. By design, the 

30 articles that used correlation did not adjust for any variables. The short-term time series 

articles tended to adjust for temperature, wind speed, humidity, precipitation, air pressure, 

and day of the week. Some articles did not adjust for any confounders, but a majority of the 

articles adjusted for some confounders. Variables that were adjusted for in the long-term and 

short-term cross-sectional studies varied the most. Fifty-one of the 57 cross-sectional articles 

that considered covariates, at the very least, adjusted for age structure, gender, income, race, 

or education. In other words, sociodemographic factors were generally well-controlled for; 

however, inclusion of other covariates varied substantially. A large proportion of papers 

(22 out of 57 papers) controlled for health care system capacity through variables such 

as number of hospital beds, number of physicians, number of COVID-19 tests available, 

etc. Many articles (27 out of 57 papers) also controlled for the overall health status of the 
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people by including, for example, the proportion of smokers and the proportion of people 

with known comorbidities (obesity, diabetes, chronic obstructive pulmonary disease, asthma, 

etc.). Seven out of the 60 articles controlled for the first case identified in the area (timing of 

the epidemic curve) and 5 of the 60 articles controlled for mobility/movement in the region. 

See Supplemental Table 2 for the specific covariates accounted for in each study.

Visualization of the Evidence

In this section, we describe our data visualization tool of evidence synthesis. Our open 

science approach was carried from creation of the database through visualization and 

evidence synthesis. Table 1 summarizes the types of information products produced by the 

evidence synthesis. A screenshot of the interactive dashboard (http://bit.ly/3hzcsbv) is shown 

in Figure 2 and is divided into several panels. A short video demonstrating the capabilities of 

the dashboard is available at https://vimeo.com/709361095.

The center panel of the dashboard shows a map depicting where the relationships between 

health outcomes and air pollution have been studied. The circle size represents the number 

of papers from studies that considered data from a particular country. Clicking on the 

graduated circle for a country displays a summary of the number of papers and the total 

number of citations for those papers. Panning and zooming the map allow researchers to 

focus on a particular region. The summary charts of total papers by country, papers by 

time, pollutants investigated, and statistical methods employed in the bottom panels of the 

dashboard change as the map changes. The leftmost panel provides background information 

on the dashboard and allows researchers to filter papers by publication date. Finally, the 

rightmost panel displays detailed information on a selected paper, including a DOI link.

An important feature of this tool is that it allows other researchers to upload more recent 

papers. We created a Web-based application (https://survey123.arcgis.com) that enables 

researchers to provide new data entries (new published papers) to be added to the dashboard. 

Researchers need to fill out two required fields to submit a new paper: the DOI of the 

paper and the geographical area of the study. Other fields in the form are optional; Figure 4 

depicts the complete list of fields in the survey (as a screenshot). We highly recommend that 

researchers fill out as many fields as possible to maintain the integrity and comprehensive 

nature of the database. After submitting a new paper, the entry will be checked for data 

sanity. If the entry passes the sanity check, the dashboard will be modified automatically.

DISCUSSION

In this article, we have reviewed the literature for air pollution effects on COVID-19 

health, summarized the evidence, and outlined the statistical methods used and challenges. 

Furthermore, we describe our development of an open-source data visualization tool to 

overcome the difficulty of synthesizing evidence from a large number of studies with 

heterogeneous study designs and statistical approaches from around the world. Overall, we 

found that 127 out of 139 papers reported a statistically significant positive association 

between air pollution and adverse COVID-19 health outcomes (Figure 3). However, many 

statistical challenges affect the validity of these studies, as summarized below.
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Methodological Challenges in Epidemiological Studies of Air Pollution and COVID-19

Understanding the relationship between short- and long-term exposure to air pollution and 

adverse COVID-19 health outcomes is crucial for developing solutions to this global crisis. 

In determining the strength of the evidence regarding the association between air pollution 

and its adverse effects on COVID-19 health outcomes, some well-known challenges in air 

pollution epidemiology become even more serious, and several additional complications 

emerge. These new challenges are mostly related to the reality that the data on COVID-19 

are imprecise, are constantly evolving, come from a variety of sources, and are primarily 

available only at the aggregate level (e.g., county, regional, or country level). Indeed, the 

quality of the data and the lack of available well-validated electronic health record data 

at the national level (particularly in the United States) render the general challenges in 

evaluating causality even more difficult to address. Villeneuve & Goldberg (58) pointed out 

similar methodological challenges and advocated for a peer review of these studies. We 

agree with their assessment and discuss these issues below through a more optimistic lens by 

highlighting research opportunities that could increase the scientific rigor of these studies.

Data quality.—The validity of the COVID-19 health outcomes data is questionable, as 

there is no uniform case definition of a COVID-19 death and diagnostic errors are made 

in COVID-19 cases (24). This lack of validity in COVID-19 health outcomes data could 

contribute to a high degree of over- or underreporting. Many infected people may have 

died without ever having been tested for SARS-CoV-2 infection; whereas in other cases, 

COVID-19 might have been secondary to the cause of an individual’s death. Even papers 

from the same location used data from multiple sources with different definitions of 

COVID-19 cases and deaths, which contributes to the variability in study results (9, 71). 

Alternatively, excess mortality is an outcome type that has been used in natural disasters 

and outbreaks to account for the difficulties in identifying cause-specific mortality. One 

of the studies used excess mortality as their outcome of interest (17). In addition, in the 

early phases of the pandemic, and even currently, SARS-CoV-2 testing was not universally 

available due to shortages in test kits and the relatively late adoption of mass-scale testing. 

Therefore, only a subset of the population has been tested, and we cannot account for those 

who are asymptomatic but infected. While outcome misclassification is of great concern, 

to actually bias the analyses, outcome misclassification would need to vary in both space 

and time as the exposure varies. This potential bias is possible to assess using validation 

data that diagnose COVID-19 accurately. In time series studies, to bias the analysis, the 

outcome misclassification will need to vary daily and be correlated with daily variation 

in air pollution. Thus, access to a nationwide registry with validated cause of death and 

hospitalization data is highly desirable. While they are far from ideal, specific data sets 

from China and Germany do provide standardization in the COVID-19 case and mortality 

definitions according to national laws (30, 62). These examples stand in contrast to the more 

heterogeneous reporting in the United States.

Ecological fallacy.—Only 5 of the 139 studies in our case study were individual-level 

studies as opposed to ecological studies (8, 10, 38, 50, 57). Ecological fallacy is a formal 

fallacy in the interpretation of statistical data that occurs when inferences about the nature of 

individuals are deduced from inferences about the group to which those individuals belong 
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[see for example Jackson et al. (31)]. While ecological studies are useful in generating 

preliminary evidence in data-scarce settings, increasing the scientific rigor of research in 

this area will require access to nationally representative, individual-level data on adverse 

COVID-19 health outcomes, including information about patients’ residential addresses, 

demographics, and individual-level confounders. More data at the individual level are 

becoming available, but only for subsets of the population. With these data, it will be 

possible to leverage the extensive literature to augment aggregate data with individual-level 

data and adjust for ecological bias (35, 59). These types of studies could substantially 

increase the credibility of the results; however, developing a national and publicly available 

registry on individual-level data on COVID-19 patients is an enormous challenge that will 

require many privacy, legal, and ethical trade-offs (54).

Other determinants of COVID-19.—Ecological data typically do not allow for 

adjustment by individual risk factors such as age, gender, ethnicity, or occupation. Age 

is one of the strongest predictors of survival for most conditions, including COVID-19. 

Gender-based differences in time-activity patterns contribute to different levels of air 

pollution exposure between men and women, and women have been shown to be more 

susceptible to several environmental exposures (13). Occupation has also been an important 

factor in the COVID-19 pandemic; those who provide medical care as well as other essential 

workers, such as those working in meat-packing plants, are at increased risk of developing 

SARS-CoV-2 infection (44). These challenges can be overcome by having access to some 

individual-level data that provide this additional information. Each of the five articles in 

this review that had access to individual data controlled for some but not all these factors. 

In particular, occupation was not explicitly considered except for a binary variable that 

indicated whether an individual was working from home or not (38).

Accounting for differences in socioeconomic status.—Disadvantaged people 

(e.g., those without health insurance, those who are undernourished, and those with 

poorly managed underlying health conditions, such as cardiovascular conditions and/or 

diabetes) have a greater susceptibility for both contracting SARS-CoV-2 and dying from 

COVID-19. Myriad social and economic factors contribute to high rates of infection and put 

individuals at higher risk from the sequelae of COVID-19, and disparities in COVID-19–

related outcomes may be due to social deprivation rooted in long-standing racial and 

socioeconomic inequities. This issue has been raised by a number of authors [see for 

example Chowkwanyun & Reed (12) and Yancy (63)]. Differences in socioeconomic status 

do not vary daily, so they will not affect the results of time series analyses; however, they 

are very important confounders in long-term effect studies of air pollution exposure and are 

potential effect modifiers in both short- and long-term effect studies. Thirty-six of the 78 

cross-sectional studies considered these factors. Even without individual-level covariates on 

socioeconomic status, it is possible to conduct studies stratified by subsets of geographical 

location that have certain characteristics (such as a high percentage of residents in poverty 

or a high percentage Black population). These studies could provide important insights 

into the factors that increase vulnerability to adverse COVID-19 health outcomes due to 

short- or long-term exposure to air pollution. None of the 139 studies used this stratification 

approach.
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Granularity of data.—It is difficult to gather individual-level data especially in an 

emerging pandemic. If data need to be aggregated to a unit of area, smaller areas 

are preferable to larger ones. Fine variations in confounding variables and air pollution 

concentrations can drastically vary if the unit of area is very large. The most common unit 

of area used in the studies reviewed were counties in the United States (15 out of 29 papers), 

provinces in Italy (14 out of 32 papers), and cities or provinces in China (26 out of 32 

papers). The largest county in the United States has ~10 million people, the largest province 

in Italy has ~4 million people, and the largest province in China has ~126 million people. 

It is clear that grouping this many people into a single data point will reduce accuracy of 

the estimates. A few of the reviewed papers attempted to combat this issue by using very 

small units of area. Coker et al. (14) used Italian municipalities, which are much smaller 

than Italian provinces (7,914 municipalities versus 110 provinces). Konstantinoudis et al. 

(34) used English Lower Layer Super Output Areas (LSOAs) rather than the larger local 

authority level used in similar papers (333 local authorities versus 32,844 LSOAs). Future 

studies in the United States should follow this approach and attempt to use zip code–level 

data (nearly 42,000 zip codes versus 3,100 counties) to improve their analyses, especially 

as no cross-sectional study included in this review used a more granular unit of area than 

county.

Exposure error.—In all the studies included in our evidence synthesis, except for a few 

of the individual-level studies where home location was collected (8, 10, 50, 57), the same 

level of air pollution exposure was assigned to everyone living in large geographical areas. 

Therefore, spatial differences in exposure were not captured. Several statistical approaches 

have been developed to propagate the different sources of uncertainty associated with 

exposure error into the statistical model to estimate health effects [see for example Dominici 

et al. (19), Gryparis et al. (25), and Szpiro et al. (56)]. These approaches have not yet been 

implemented in studies of air pollution exposure and adverse COVID-19 health outcomes 

and represent an exciting area of future research.

Physical distancing and timing of the epidemic curve.—The implementation of 

public health policies, which vary widely by jurisdiction, has been successful in reducing 

SARS-CoV-2 transmission and flattening the epidemic curve. For example, in Georgia, areas 

that did not adopt physical distancing practices experienced higher incidence and mortality 

from COVID-19 when compared with other areas in the state that did practice physical 

distancing. Cities in California that tend to have higher levels of fine particulate matter 

adopted stay-at-home policies earlier than did other regions. Because these policies differ by 

regional air pollution levels, including rural and urban areas within the same county, they 

can distort the observed associations between air pollution and adverse COVID-19 health 

outcomes. In order to partially account for this distortion, a few studies used hierarchical/

mixed-effects models with random effects at the geographic unit where public health policy 

is made (18, 21, 28, 36, 37, 42, 47, 51, 61).

There will be temporal differences in the number of COVID-19 cases and deaths by region. 

US counties were at very different stages on the epidemic curve, especially in early April 

2020. Larger cities are more populous and tend to have increased travel to and from 
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international locations, providing increased opportunity for the spread of COVID-19 early 

in the pandemic. These larger cities also tend to have higher concentrations of air pollution. 

In the context of cross-sectional analyses, there will be a greater number of cases and 

deaths in those cities that are further along on the epidemic curve, which further confounds 

analysis. Physical distancing and the timing of the epidemic curve are important potential 

confounders, especially for long-term studies and cross-sectional studies. Measuring these 

factors accurately while COVID-19 data are still accumulating is very challenging; however, 

several approaches can be implemented. For example, it is possible to conduct causal 

inference analyses using proxies for physical distancing and the stage of the epidemic as 

measured confounders in the regression analyses or included as covariates in propensity 

score analyses to ultimately compare geographical locations that are adjusted or matched 

with respect to these variables. Seven papers addressed timing on the epidemic curve by 

controlling for the first case (20, 49, 55, 61) and 5 papers partially addressed physical 

distancing by controlling for mobility (22, 26, 53, 60). These analyses can be informative, 

especially if augmented by sensitivity analyses to unmeasured confounding bias, such as the 

E-value (27). The E-value is defined as the minimum strength of association on the risk ratio 

scale that an unmeasured confounder would need to have with both the exposure and the 

outcome to fully explain away a specific exposure–outcome association, conditional on the 

measured covariates. Statistical software for E-value implementation is available (41). As 

more COVID-19 data (unfortunately) accumulate, these statistical analyses must be repeated 

routinely to assess the stability of the results with respect to the different phases of the 

pandemic and other potential unmeasured confounders. None of the articles calculated the 

E-value nor did any provide an in-depth analysis of unmeasured confounders.

Clustering of cases and deaths.—Unlike studies of long-term exposure to air pollution 

and chronic diseases where deaths can reasonably be assumed to be independent across 

individuals, both COVID-19 cases and COVID-19 deaths tend to occur in clusters. 

Clustering of cases and deaths has been widely reported, such as the now famous choir 

practice during which a large portion of attendees became ill or the tragic events in 

congregant settings such as retirement homes and long-term care facilities. Although some 

of the selected studies’ authors included random effects to account for clustering (18, 21, 28, 

36, 37, 42, 47, 51, 61), without individual-level data, it is simply not possible to account for 

this clustering.

Lag time.—A key consideration in short-term time series studies is the lag time between 

the time series of COVID-19 outcomes and the air pollution time series. Across these 139 

articles, 4 overall approaches were used: (a) choose a single biologically supported lag time 

such as 11 days for positive COVID-19 tests (cases) (3) and 18 days for deaths (33); (b) 

fit a different model for each single lag time (60); (c) fit a different model for each range 

of cumulative lags that is either the average or sum of pollutant concentration over x days 

before the given COVID-19 outcome value (46, 60, 67, 70); (d) use a distributed lag in 

which each lag concentration is given a distinct coefficient (16, 52); or (e) do not include a 

lag (2, 4, 6). We note the issue with multiple comparisons for statistical significance when 

considering many different lag ranges and recommend using either values that are in a 

biologically plausible range (6–12 days for cases and 2–3 weeks for deaths) or distributed 
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lags where the maximum lag is the biologically plausible one. Both cumulative lags and 

single lags are acceptable in trying to determine a relationship between COVID-19 and air 

pollution; however, researchers should be aware that they are testing different hypotheses. 

When using single lags, the hypothesis is that air pollution is involved in carrying or 

transporting those viral particles. Cumulative lags account for multiple hypotheses. One 

hypothesis is the same as for the single lag. The other is that air pollution exposure once 

the virus has entered the body increases the severity of the disease, which leads to a greater 

number of cases, hospitalizations, and deaths.

Panel data.—Another consideration for short-term time series is how to combine estimates 

across different cities/regions. A few different approaches have been used thus far: (a) do a 

separate estimation of coefficients for each areal unit (4, 6); (b) use all the data in one large 

regression (29); (c) same as method b except for the use of cluster robust standard errors 

(67); (d) include fixed effects for each county (30, 69); (e) perform a meta-analysis with 

random effects (60, 64); and ( f ) use geographically weighted regression (46). Methods b, 

c, and d do not account for the fact that the short-term relationship between air pollution 

and COVID-19 outcomes can vary by location. Instead, a single number represents the 

relationship. Methods a, e, and f allow for the short-term relationship between air pollution 

and COVID-19 outcomes to vary by location. Method a is an extreme version of this 

approach whereby each location is given its own slope by running separate regressions. 

Method d operates under the assumption that the true relationship for each location is 

drawn from an overall distribution. It partially pools the estimates so that estimates from 

locations with small population sizes will be pulled toward the overall mean. Geographically 

weighted regression in this context will have estimates that are influenced by relationships 

in surrounding areas. The effect of air pollution on COVID-19 spread and severity is 

likely different in different regions. In sum, so that the overall estimate of the effect is 

not influenced heavily by outliers and smaller areal unit estimates are pulled toward the 

mean, we recommend a random slope model or meta-analysis with random effects for future 

articles.

Modeling.—A large fraction (~25%) of the papers reviewed did not control for other 

factors. Cross-sectional studies will have a substantial amount of bias if they do not control 

for covariates. Twenty-one of the 78 cross-sectional papers did not control for any other 

factors in their models. These papers conducted either a correlation analysis or a univariate 

linear regression, and readers should understand and interpret results within this context. 

Nineteen of the 61 short-term time series papers did not include covariates. Time series 

studies will also introduce some degree of bias and will also have higher variance in 

their estimates by choosing not to control for other covariates because air pollution levels 

are correlated with meteorological variables such as temperature, wind speed/direction, 

humidity, and rainfall (48).

Of the 64 cross-sectional studies that employed regression approaches, the majority of them 

used linear regression followed by negative binomial regression and Poisson regression. The 

normality assumption from linear regression generally holds when each individual unit has a 

large population. However, especially when using United States counties, LSOAs in England 
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(34), or municipalities in Italy (14), the normality assumption may not hold because the 

number of people in each unit can be fewer than 100 and the COVID-19 cases and deaths 

could be zero or close to zero. In these settings, methods for modeling count data such 

as negative binomial regression or Poisson regression may be necessary (33 papers used 

these models). Another key consideration is whether the relationship between air pollution 

and COVID-19 cases and deaths is linear in nature. It is likely that the relationship is 

nonlinear, which means negative binomial and Poisson models may be more appropriate. 

In addition, 11 of the papers employed generalized additive models (GAM) to capture this 

nonlinear relationship. Chakrabarty et al. (11), for example, explore the relationship between 

air pollution and COVID-19 using GAMs on their cross-sectional data. Wang et al. (60) used 

GAMs for their time series study. GAMs are quite flexible, but they do not generally provide 

a numerical result for the relationship between air pollution and COVID-19. The primary 

result is instead a visualization.

Finally, the association of air pollution with COVID-19 is likely not constant across 

geographical areas within a country, and it is likely that areas close to each other have 

similar effects. One can account for these geographic differences in the relationship in many 

ways. Four of the 139 papers used geographically weighted regression (32, 43, 46, 66) to 

account for geographical variations. In this approach, parameters vary continuously across 

the entire area of study. A similar approach would be a hierarchical model with a random 

slope component in which the relationship between air pollution and COVID-19 varies at a 

geographic unit of area that is larger (e.g., states) than the smallest unit of area considered in 

the study (e.g., counties).

Reproducibility.—To discover crucial linkages between air pollution and adverse 

COVID-19 outcomes in a more definitive, causal manner, both the data used for the analyses 

as well as the code should be made publicly available. Transparency and shared resources 

will assist in the global push toward uncovering solutions to the COVID-19 pandemic and 

instituting public policies that will protect the health of people worldwide. Only 8 of the 

139 selected papers in our evidence synthesis included publicly available code. Because 

this research area is rapidly developing, access to code will be critical to validate results 

and build on the conclusions. It is difficult to reproduce results and continue work on these 

areas without code availability. In Wu et al. (61), we made both the data and code publicly 

available.

Geographical Variation and the Need for Data Visualization

A majority (83 papers) of the 139 papers reviewed studied the relationship between air 

pollution and COVID-19 in Italy, the United States, and China. Most of the remaining 

papers studied air pollution and COVID-19 in Western Europe and South Asia. Based on the 

existing studies, the relationship between air pollution and COVID-19 likely varies around 

the world. As a result, findings from studies conducted primarily in three countries are 

not necessarily generalizable to other countries, particularly those with different climates. 

It is particularly noticeable that none of the 139 papers analyzed data from Africa, Russia, 

Australia, a majority of Eastern European countries, Middle Eastern countries, and South 

American countries. These gaps in the literature were easily identified despite the large 
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number of studies because of the dashboard we created, which was able to effectively 

summarize and visualize the study designs and results.

Importance of the Visualization and Evidence Synthesis Pipeline

Our proposed approach to the visualization of evidence synthesis uses an innovative, 

interactive dashboard that allows the user to learn about the characteristics of any single 

study included in the evidence base as well as to synthesize the evidence in various 

important ways. First, it enables an interactive geographical visualization of where the 

evidence is coming from, which allows us to easily identify underrepresented populations. 

Second, it allows a temporal visualization of how the evidence is accumulating in the 

context of a rapidly evolving area of research such as the COVID-19 pandemic. Third, 

our approach enables the research community to easily digest complex information from 

highly heterogeneous studies of different pollutants, different outcomes, and different study 

designs. For example, users can choose to visualize studies that meet specific criteria or that 

focus on a single pollutant (e.g., PM2.5). Most importantly, it enables other investigators 

to manually upload peer-reviewed studies, allowing the evidence synthesis to update 

dynamically as new studies on the topic are published. Finally, this approach is transferable 

to other contexts, and it can be used broadly to summarize evidence from heterogeneous 

studies in any area of research.

This study demonstrates that geography in evidence synthesis matters: Air pollution 

exposures and how those exposures interact with the health burden in the community differ 

based on where an individual is located. Therefore, our visualization approach can more 

clearly represent the nature of the research associated with a particular region, making it 

easier to visualize where there is a dearth of research and where additional research is 

needed to paint a fuller picture of the relationship between air pollution and COVID-19 

cases and deaths. Visualizing a body of research is essential for understanding the spatial 

distribution and patterns in the evidence that will inform future research efforts. This 

community-focused evidence synthesis approach has formative effects on how we move 

forward and publish papers as an international research community. Furthermore, from a 

perspective of equity and representativeness, where studies have been conducted becomes 

a more pronounced aspect of the work, and metadata on the geographic area of study 

could become a requirement of publishing papers; automation would make this process 

significantly easier.

CONCLUSIONS

Assessing the short- and long-term effects of air pollution on adverse COVID-19 health 

outcomes is a rapidly evolving area of research, and many more studies will likely 

be published in the coming months and years. For existing studies, we have reviewed 

the evidence and identified the statistical challenges that researchers have faced when 

analyzing the relationship between air pollution and COVID-19, and we have also offered 

recommendations for future studies. To account for the fact that there will be hundreds of 

additional papers published on this topic in the future, we also describe a new approach 

to synthesizing the accumulated evidence in an interactive and dynamic manner. Our 
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innovative approach to evidence synthesis allows for the visualization of spatial and 

temporal patterns in research that can be applied across many research areas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PRISMA figure displaying the screening process for the 4,445 studies identified in the 

database searches run on May 21, 2021. In the first round, duplicate studies were removed. 

In the second round, studies deemed irrelevant by title and abstract review were removed. 

Finally, studies deemed irrelevant by full-text review were removed, resulting in a total of 

139 studies included in the review.
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Figure 2. 
(Figure appears on preceding page) Screenshots of the evidence synthesis tool dashboard 

(http://bit.ly/3hzcsbv). (a) Zoomed out dashboard containing information from most 

countries, including the three most studied countries (Italy, China, United States). (b) 

Zoomed into Central Europe. The air pollutant types, papers within each country, and 

statistical methods chart have changed accordingly. In addition, the Austria graduated 

circle and a specific paper from Austria have been selected and the associated text is 
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displayed. The short video demonstrating the capabilities of the dashboard is available at 

https://vimeo.com/709361095.
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Figure 3. 
Evidence synthesis results stratified by the type of air pollutant studied. There were a total of 

139 studies (76 short-term, 63 long-term), and many studies studied multiple pollutants. The 

total number of studies (blue-green and pink), number of studies that reported a statistically 

significant positive association between the air pollutant and COVID-19 outcomes (blue-
green), and percent of papers that report significant results (white numbers) are presented for 

each pollutant. (a) Long-term studies (AQI, n = 3; CO, n = 10; NO2, n = 32; O3, n = 21; 

PM10, n = 27; PM2.5, n = 52; SO2, n = 14). (b) Short-term studies (AQI, n = 15; CO, n = 23; 

NO2, n = 35; O3, n = 32; PM10, n = 40; PM2.5, n = 55; SO2, n = 17).
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Figure 4. 
Screenshots of the fields in Survey123 (https://bit.ly/3hGdIti).
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Table 1

Types of information products produced by the automated evidence synthesis

Type Purpose Question

Location map Shows the spatial extent and concentration of the research Do research study areas include all impacted 
populations or varieties of the coronavirus?

Temporal animation Shows patterns of publication across space and time Does research represent all waves of COVID-19?

Map with filters Allows the user to filter based on pollutant, number of citations, 
or statistical method

Has a statistical method been used broadly?

Standalone Web 
application

Is intended for general users (nonresearchers). Shows the same 
information as other products but in a more user-friendly way

Are the scale and scope of the research 
understandable to the general public?
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