Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Oct 1;488(Pt 1):259–265. doi: 10.1113/jphysiol.1995.sp020964

Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans.

C K Dyke 1, D N Proctor 1, N M Dietz 1, M J Joyner 1
PMCID: PMC1156719  PMID: 8568663

Abstract

1. We sought to determine whether the vasodilating molecule nitric oxide (NO) contributes to the forearm hyperaemia observed during prolonged rhythmic handgripping in humans. 2. Two bouts of exercise were performed during experimental protocols conducted on separate days. During each protocol the subject performed a 10 min and a 20 min bout of rhythmic (30 min-1) handgripping at 15% of maximum. Two exercise bouts were required to facilitate pharmacological interventions during the second protocol. Blood flow in the exercising forearm was measured every minute with plethysmography during brief pauses in the contractions. During both exercise bouts in the first protocol, forearm blood flow increased 2- to 3-fold above rest after 1 min of handgripping and remained constant at that level throughout the exercise. 3. During the 10 min bout of exercise in the second protocol, acetylcholine was given via a brachial artery catheter at 16 micrograms min-1 for 3 min to evoke NO release from the vascular endothelium. This caused forearm blood flow to increase above the values observed during exercise alone. 4. During the 20 min trial of handgripping in the second protocol, the NO synthase blocker NG-monomethyl-L-arginine (L-NMMA) was infused in the exercising forearm via the brachial catheter after 5 min of handgripping. The L-NMMA was infused at 4 mg min-1 for 10 min. 5. L-NMMA during exercise caused forearm blood flow to fall to values approximately 20-30% lower than those observed during exercise alone. When ACh was given during exercise after L-NMMA administration the rise in blood flow was also blunted, indicating blockade of NO synthase. These data suggest NO plays a role in exercise hyperaemia in humans.

Full text

PDF
265

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. B., Delp M. D., Goljan E. F., Laughlin M. H. Distribution of blood flow in muscles of miniature swine during exercise. J Appl Physiol (1985) 1987 Mar;62(3):1285–1298. doi: 10.1152/jappl.1987.62.3.1285. [DOI] [PubMed] [Google Scholar]
  2. Armstrong R. B., Laughlin M. H. Atropine: no effect on exercise muscle hyperemia in conscious rats. J Appl Physiol (1985) 1986 Aug;61(2):679–682. doi: 10.1152/jappl.1986.61.2.679. [DOI] [PubMed] [Google Scholar]
  3. Broten T. P., Miyashiro J. K., Moncada S., Feigl E. O. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol. 1992 May;262(5 Pt 2):H1579–H1584. doi: 10.1152/ajpheart.1992.262.5.H1579. [DOI] [PubMed] [Google Scholar]
  4. Burnett A. L., Lowenstein C. J., Bredt D. S., Chang T. S., Snyder S. H. Nitric oxide: a physiologic mediator of penile erection. Science. 1992 Jul 17;257(5068):401–403. doi: 10.1126/science.1378650. [DOI] [PubMed] [Google Scholar]
  5. Dietz N. M., Rivera J. M., Eggener S. E., Fix R. T., Warner D. O., Joyner M. J. Nitric oxide contributes to the rise in forearm blood flow during mental stress in humans. J Physiol. 1994 Oct 15;480(Pt 2):361–368. doi: 10.1113/jphysiol.1994.sp020366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dietz N. M., Rivera J. M., Warner D. O., Joyner M. J. Is nitric oxide involved in cutaneous vasodilation during body heating in humans? J Appl Physiol (1985) 1994 May;76(5):2047–2053. doi: 10.1152/jappl.1994.76.5.2047. [DOI] [PubMed] [Google Scholar]
  7. GREENFIELD A. D., WHITNEY R. J., MOWBRAY J. F. Methods for the investigation of peripheral blood flow. Br Med Bull. 1963 May;19:101–109. doi: 10.1093/oxfordjournals.bmb.a070026. [DOI] [PubMed] [Google Scholar]
  8. Gaskell W. H. On the Tonicity of the Heart and Blood Vessels. J Physiol. 1880 Aug;3(1):48–92.16. doi: 10.1113/jphysiol.1880.sp000083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirai T., Visneski M. D., Kearns K. J., Zelis R., Musch T. I. Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats. J Appl Physiol (1985) 1994 Sep;77(3):1288–1293. doi: 10.1152/jappl.1994.77.3.1288. [DOI] [PubMed] [Google Scholar]
  10. Hussain S. N., Stewart D. J., Ludemann J. P., Magder S. Role of endothelium-derived relaxing factor in active hyperemia of the canine diaphragm. J Appl Physiol (1985) 1992 Jun;72(6):2393–2401. doi: 10.1152/jappl.1992.72.6.2393. [DOI] [PubMed] [Google Scholar]
  11. Imholz B. P., van Montfrans G. A., Settels J. J., van der Hoeven G. M., Karemaker J. M., Wieling W. Continuous non-invasive blood pressure monitoring: reliability of Finapres device during the Valsalva manoeuvre. Cardiovasc Res. 1988 Jun;22(6):390–397. doi: 10.1093/cvr/22.6.390. [DOI] [PubMed] [Google Scholar]
  12. Joyner M. J., Nauss L. A., Warner M. A., Warner D. O. Sympathetic modulation of blood flow and O2 uptake in rhythmically contracting human forearm muscles. Am J Physiol. 1992 Oct;263(4 Pt 2):H1078–H1083. doi: 10.1152/ajpheart.1992.263.4.H1078. [DOI] [PubMed] [Google Scholar]
  13. Laughlin M. H. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am J Physiol. 1987 Nov;253(5 Pt 2):H993–1004. doi: 10.1152/ajpheart.1987.253.5.H993. [DOI] [PubMed] [Google Scholar]
  14. Marshall J. M., Tandon H. C. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat. J Physiol. 1984 May;350:447–459. doi: 10.1113/jphysiol.1984.sp015211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Leary D. S., Dunlap R. C., Glover K. W. Role of endothelium-derived relaxing factor in hindlimb reactive and active hyperemia in conscious dogs. Am J Physiol. 1994 Apr;266(4 Pt 2):R1213–R1219. doi: 10.1152/ajpregu.1994.266.4.R1213. [DOI] [PubMed] [Google Scholar]
  16. Persson M. G., Gustafsson L. E., Wiklund N. P., Hedqvist P., Moncada S. Endogenous nitric oxide as a modulator of rabbit skeletal muscle microcirculation in vivo. Br J Pharmacol. 1990 Jul;100(3):463–466. doi: 10.1111/j.1476-5381.1990.tb15829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sheriff D. D., Rowell L. B., Scher A. M. Is rapid rise in vascular conductance at onset of dynamic exercise due to muscle pump? Am J Physiol. 1993 Oct;265(4 Pt 2):H1227–H1234. doi: 10.1152/ajpheart.1993.265.4.H1227. [DOI] [PubMed] [Google Scholar]
  18. Strandell T., Shepherd J. T. The effect in humans of increased sympathetic activity on the blood flow to active muscles. Acta Med Scand Suppl. 1967;472:146–167. doi: 10.1111/j.0954-6820.1967.tb12622.x. [DOI] [PubMed] [Google Scholar]
  19. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  20. Wilson J. R., Kapoor S. Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans. J Appl Physiol (1985) 1993 Dec;75(6):2740–2744. doi: 10.1152/jappl.1993.75.6.2740. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES