Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1989 Sep;9(3):323–341. doi: 10.1007/BF00711413

Tissue-specific processing and polarized compartmentalization of clone-produced cholinesterase in microinjectedXenopus oocytes

Patrick A Dreyfus 1,2, Shlomo Seidman 1, Martine Pincon-Raymond 2, Monique Murawsky 2, Francois Rieger 2, Eduardo Schejter 1,3, Haim Zakut 3, Hermona Soreq 1
PMCID: PMC11567229  PMID: 2692828

Abstract

  1. To approach the involvement of tissue-specific elements in the compartmentalization of ubiquitous polymorphic proteins, immunohistochemical methods were used to analyze the localization of butyrylcholinesterase (BuChE) inXenopus oocytes microinjected with synthetic BuChEmRNA alone and in combination with tissue-extracted mRNAs.

  2. When injected alone BuChEmRNA efficiently directed the synthesis of small membrane-associated accumulations localized principally on the external surface of the oocyte's animal pole. Tunicamycin blocked the appearance of such accumulations, suggesting that glycosylation is involved in the transport of nascent BuChE molecules to the oocyte's surface. Coinjection with brain or muscle mRNA, but not liver mRNA, facilitated the formation of pronounced, tissue-characteristic BuChE aggregates.

  3. These findings implicate tissue-specific mRNAs in the assembly of the clone-produced protein and in its nonuniform distribution in the oocyte membrane or extracellular material.

Key words: butyrylcholinesterase, synthetic mRNA, Xenopus oocytes, coinjection, tissue specificity

References

  1. Anglister, L., and McMahan, U. J. (1985). Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle.J. Cell Biol.101735–743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnard, E. A. (1984). Multiple molecular forms of acetylcholinesterase and their relationship to muscle function. InCholinesterases: Fundamental and Applied Aspects, Proceedings 2nd International Meeting on Cholinesterases, Bled, Yugoslavia, (M. Brzin, E. A. Barnard, and D. Sket, Eds), de Gruyter, Berlin, pp. 49–71. [Google Scholar]
  3. Barnard, E. A., Miledi, R., and Sumikawa, K. (1982). Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes.Proc. R. Soc. London B215241–246. [DOI] [PubMed] [Google Scholar]
  4. Brandan, E., and Inestrosa, N. C. (1986). The synaptic forms of acetylcholinesterase binds to cell-surface heparan sulfate proteoglycans.J. Neurosci. Res.15185–196. [DOI] [PubMed] [Google Scholar]
  5. Brimijoin, S., and Rakonczay, Z. (1986). Immunology and molecular biology of the cholinesterases: Current results and prospects.Int. Rev. Neurobiol.28363–410. [DOI] [PubMed] [Google Scholar]
  6. Couteaux, R. (1955). Localization of cholinesterases at neuromuscular junctions.Int. Rev. Cytol.4335–375. [Google Scholar]
  7. Danilchik, M. V., and Gerhardt, J. C. (1987). Differentiation of the animal-vegetal axis in Xenopus laevis oocytes.Dev. Biol.122101–112. [DOI] [PubMed] [Google Scholar]
  8. Dascal, N., Snutch, T. P., Lubbert, H., Davidson, N., and Lester, H. A. (1986). Expression and modulation of voltage gated calcium channels after RNA injection in Xenopus oocytes.Science2311174–1150. [DOI] [PubMed] [Google Scholar]
  9. Dreyfus, P. A., Rieger, F., and Pincon-Raymond, M. (1983). Acetylcholinesterase of mammalian neuro-muscular junctions: Presence of tailed asymmetric acetylcholinesterase in synaptic basal lamina and sarcolemma.Proc. Natl. Acad. Sci. USA806698–6702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dreyfus, P. A., Zevin-Sonkin, D., Seidman, S., Prody, C., Zisling, R., Zakut, H., and Soreq, H. (1988). Cross-homologies and structural differences between human cholinesterases revealed by antibodies against cDNA-produced butyrylcholinesterase peptides.J. Neurochem.511858–1867. [DOI] [PubMed] [Google Scholar]
  11. Dumont, J. N. (1972). Oogenesis in Xenopus laevis (Daudin) 1. Stages of oocyte development in laboratory maintained animals.J. Morphol.136153–180. [DOI] [PubMed] [Google Scholar]
  12. Ellman, G. L., Courtney, D. K., Anders, V., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol.788–95. [DOI] [PubMed] [Google Scholar]
  13. Fuller, S. D., Bravo, R., and Simons, K. (1985). An enzymatic assay reveals that proteins destined for the apical or basolateral domains of an epithelial cell line share the same late golgi compartments.EMBO J.4297–307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibney, G., MacPhee-Quigley, K., Thompson, B., Low, M. G., Taylor, S. S., and Taylor, P. (1988). Divergence in parimary structure between the molecular forms of acetylcholinesterase.J. Biol. Chem.2831140–1145. [PubMed] [Google Scholar]
  15. Hall, Z. W. (1973). Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle.J. Neurobiol.4343–361. [DOI] [PubMed] [Google Scholar]
  16. Houamed, K. M., Bilbe, G., Smart, T. G., Constanti, A., Brown, D. A., Barnard, E. A., and Richards, B. M. (1984). Expression of functional GABA, glycine, and glutamate receptors in Xenopus oocytes injected with rat brain mRNA.Nature310318–321. [DOI] [PubMed] [Google Scholar]
  17. Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L. (1987). Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues.J. Biol. Chem.2624441–4444. [PubMed] [Google Scholar]
  18. Inestrosa, N. C., Fuentes, M. E., Anglister, L., Futerman, A. H., and Silman, I. (1988). A membrane-associated dimer of acetylcholinesterase from Xenopus skeletal muscle is solubilized by phosphatidylinositol-specific phospholipase C.Neurosci. Lett.90186–190. [DOI] [PubMed] [Google Scholar]
  19. Krieg, P. A., and Melton, D. A. (1984). Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs.Nucleic Acids Res.127057–7070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lockridge, O., and La Du, B. N. (1986). Amio acid sequence of the active site of human serum cholinesterase from usual, atypical and atypical-silient genotypes.Biochem. Genet.24485–498. [DOI] [PubMed] [Google Scholar]
  21. Lockridge, O., Bartels, C. G., Vaughan, T. A., Wong, C. K., Norton, S. E., and Johnson, L. L. (1987). Complete amino acid sequence of human serum cholinesterase.J. Biol. Chem.262549–557. [PubMed] [Google Scholar]
  22. Massolulie, J., and Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates.Annu. Rev. Neurosci.557–106. [DOI] [PubMed] [Google Scholar]
  23. Masu, Y., Nakayama, K., Tamaki, H., Harada, Y., Kuno, M., and Nakanishi, S. (1987). cDNA cloning of bovine substance-K receptor through oocyte expression system.Nature329836–837. [DOI] [PubMed] [Google Scholar]
  24. McMahan, U. J., Sanes, J. R., and Marshall, L. M. (1978). Cholinesterase is associated with the basal lamina at the neuromuscular junction.Nature271172–174. [DOI] [PubMed] [Google Scholar]
  25. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J. Takahashi, T., Kuno, M., and Numa, S. (1984). Expression of functional acetylcholine receptor from cloned cDNAs.Nature307 604–608. [DOI] [PubMed] [Google Scholar]
  26. Mollgard, K., Dziegielewska, K. M., Saunders, N. R., Zakut, H., and Soreq, H. (1988). Synthesis and localization of plasma proteins within specific cell types in the developing fetal human brain: Correlation of mRNA translation with immunocytochemistry.Dev. Biol.128207–221.3289986 [Google Scholar]
  27. Opresko, L. K., and Karpf, R. A. (1987). Specific proteolysis regulates fusion between endocytotic compartments in Xenopus oocytes.Cell51557–568. [DOI] [PubMed] [Google Scholar]
  28. Palecek, J., Habrova, V., Nedvidek, J., and Romanovsky, A. (1985). Dynamics of tubulin structures in Xenopus laevis oogenesis.J. Embryol. Exp. Morphol.8775–86. [PubMed] [Google Scholar]
  29. Prody, C., Gnatt, A., Zevin-Sonkin, D., Goldberg, O., and Soreq, H. (1987). Isolation and characterization of full length cDNA clones coding for human cholinesterase from fetal human tissues.Proc. Natl. Acad. Sci. USA843555–3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts, W. L., Kim, B. H., and Rosenberry, T. L. (1987). Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases.Proc. Natl. Acad. Sci. USA847817–7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rosenberry, T. (1979). Quantitative simulation of endplate currents at neuromuscular junctions based on the reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase.Biophys. J.26263–289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rotundo, R. L. (1987). Biogenesis and regulation of acetylcholinesterase. InThe Vertebrate Neuromuscular Junction, Alan R. Liss, New York, pp. 247–284. [Google Scholar]
  33. Salpeter, M. (1967). Electron microscope radioautography as a quantitative tool in enzyme cytochemistry, I. The distribution of acetylcholinesterase at motor endplates of a vertebrate twitch muscle.J. Cell Biol.32379–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sikorav, J.-L., Krejci, E., and Massoulie, J. (1987). cDNA sequences of Torpedo marmorata acetylcholinesterase: Primary structure of the precursor of a catalytic subunit; Existence of multiple 5′-untranslated regions.EMBO J.61865–1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sikorav, J.-L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, B., and Massoulie, J. (1988). Complex alternative splicing of acetylcholinesterase transcripts inTorpedo electric organ; Primary structure of the precursor of the glycolipid-anchored dimeric form.EMBO J.72983–2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Silman, I., and Futerman, A. H. (1987). Modes of attachment of acetylcholinesterase to the surface membrane.Eur. J. Biochem.10 11–22. [DOI] [PubMed] [Google Scholar]
  37. Sorensen, K., Getinetta, R., and Brodbeck, U. (1982). An amphiphile-dependent form of human brain caudate nucleus acetylcholinesterase: Purification and properties.J. Neurochem.391050–1060. [DOI] [PubMed] [Google Scholar]
  38. Soreq, H. (1985). The biosynthesis of biologically active proteins in mRNA microinjected Xenopus oocytes.CRC Crit. Rev. Biochem.18199–238. [DOI] [PubMed] [Google Scholar]
  39. Soreq, H., Parvari, R., and Silman, I. (1982). Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from Torpedo electric organ.Proc. Natl. Acad. Sci. USA79830–834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Soreq, H., Zevin-Sonkin, D., and Razon, N. (1984). Expression of cholinesterase gene(s) in human brain tissues: Translational evidence for multiple mRNA species.EMBO J.31371–1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Soreq, H., Dziegielewska, K. M., Zevin-Sonkin, D., and Zakut, H. (1986). The use of mRNA translation in vitro and in ovo followed by crossed immunoelectrophoretic autoradiography to study the biosynthesis of human cholinesterases.Cell. Mol. Neurobiol.6227–237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Soreq, H., Malinger, G., and Zakut, H. (1987). Expression of cholinesterase genes in human oocytes revealed by in-situ hybridization.Hum. Reprod.2689–693. [DOI] [PubMed] [Google Scholar]
  43. Sytkowski, A. J., Vogel, Z., and Nirenberg, M. W. (1973). Development of acetylcholine receptor clusters on cultured muscle cells.Proc. Natl. Acad. Sci.70270–274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Toutant, J.-P., and Massoulie, J. (1987). Acetylcholinesterase. InMammalian Ectoenzymes (Kenny and Turner, Eds.), Elsevier, Amsterdam, pp. 289–328. [Google Scholar]
  45. Wallace, B. G. (1986). Aggregating factor from Torpedo electric organ induces patches containing acetylcholine receptors, acetylcholinesterase, and butyrylcholinesterase on cultured myotubes.J. Cell Biol.102783–794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wallace, B. G., Nitkin, R. M., Reist, N. E., Fallon, J. R., Moayeri, N. N., and McMahan, U. J. (1985). Aggregates of Acetylcholinesterase induced by acetylcholine-receptor aggregating factor.Nature315574–577. [DOI] [PubMed] [Google Scholar]
  47. Weeks, D. L., and Melton, D. A. (1987). A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta.Cell51861–867. [DOI] [PubMed] [Google Scholar]
  48. Wischnitzer, S. (1966). InAdvances in Morphogenesis (M. Abercrombie and J. Brachet, Eds.), Academic Press, New York, pp. 131–179. [Google Scholar]
  49. Zakut, H., Matzkel, A., Schejter, E., Avni, A., and Soreq, H. (1985). Polymorphism of acetylcholinesterase in discrete regions of the developing human fetal brain.J. Neurochem.45382–389. [DOI] [PubMed] [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES