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Abstract

Background

Parkinson’s disease (PD) is a neurodegenerative disorder, primarily characterized by motor

impairments. Vitamin D has several regulatory functions in nerve cell survival and gene

expression via its receptors. Although research has shown that vitamin D deficiency is prev-

alent among PD patients, the causal link to PD risk remains unclear. This study aims to

investigate the causal relationship between vitamin D and PD using a bidirectional two-sam-

ple Mendelian randomization (MR) analysis method.

Methods

This study applied a bidirectional two-sample MR analysis to explore the causal link

between vitamin D and PD. We selected statistically significant single nucleotide polymor-

phisms (SNPs) related to 25-hydroxyvitamin D (25(OH)D) as instrumental variables (IVs),

ensuring no association with known confounders. The analysis used GWAS data from over

1.2 million Europeans across four major published datasets, elucidating the genetic correla-

tion between vitamin D levels and PD.

Results

We identified 148 instrumental SNPs associated with 25(OH)D. After adjustment for con-

founding-related SNPs, 131 SNPs remained in the analysis. Data from three PD cohorts

revealed no significant correlation between 25(OH)D levels and PD risk using the IVW

method (Pcohort1 = 0.365, Pcohort2 = 0.525, Pcohort3 = 0.117). The reverse MR analysis indi-

cated insufficient evidence of PD causing decreased vitamin D levels (P = 0.776).

Conclusion

This is the first study to use bidirectional MR across three PD cohorts to investigate the

causal relationship between vitamin D and PD. The results indicate that vitamin D levels are

not significantly causally related to PD risk at the genetic level. Therefore, future studies

should exercise caution when investigating the relationship between vitamin D levels and

PD risk. While no direct causal link exists between vitamin D levels and PD, this does not

preclude the potential of vitamin D levels as a biomarker for PD diagnosis. Furthermore,
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larger-scale longitudinal studies are necessary to evaluate the diagnostic and predictive

value of vitamin D levels in PD.

1 Introduction

Parkinson’s disease (PD) is a complex neurodegenerative disorder involving both genetic and

environmental factors [1, 2]. The primary symptoms of PD are resting tremor, muscle rigidity,

bradykinesia, and postural instability [3]. PD patients also may experience non-motor symp-

toms including cognitive impairments, emotional issues, and sleep disturbances [4]. Research

shows that low serum levels of vitamin D correlate with psychiatric disorders such as depres-

sion, bipolar disorder, schizophrenia, and neurodegenerative diseases including dementia and

PD [5]. Vitamin D receptors are present in neurons and glial cells throughout key brain

regions, such as the substantia nigra, hippocampus, hypothalamus, thalamus, and basal gan-

glia. In these areas, vitamin D influences neuronal differentiation and maturation, regulates

the synthesis of growth factors, and supports the production of neurotransmitters like acetyl-

choline, dopamine, and gamma-aminobutyric acid [6, 7]. Vitamin D, available in D2 and D3

forms, is now considered a hormone involved in multiple regulatory mechanisms essential for

neuronal survival [8]. As a fat-soluble steroid, vitamin D is essential for bone metabolism, reg-

ulates the calcium and phosphate balance, and modulates the expression of many genes via its

receptor [9]. Vitamin D metabolites are able to cross the blood-brain barrier, and 1,25-dihy-

droxyvitamin D3 in cerebrospinal fluid signifies active vitamin D metabolism in the central

nervous system [10]. Under UVB radiation, vitamin D3 is synthesized in the skin from 7-dehy-

drocholesterol and is subsequently converted to 25-hydroxyvitamin D (25(OH)D) in the liver,

and finally to 1,25-dihydroxyvitamin D in the kidneys [11]. Serum levels of 25(OH)D are rou-

tinely measured to assess vitamin D status.

Studies reveal that vitamin D deficiency is significantly more severe among PD patients

compared to the general population [12]. Considering the neuroprotective role of vitamin D,

it may function by promoting neural growth or inhibiting cytotoxicity [13]. Mehanna and col-

leagues observed that serum levels of 25(OH)D and total 25(OH)D are lower in PD patients

than in control groups [14]. However, findings on the relationship between vitamin D and

non-motor symptoms in PD remain inconsistent. Shrestha and colleagues found no significant

association between serum 25(OH)D levels and the risk of PD in a prospective study [15].

Data from vitamin D intake studies suggest that prolonged vitamin D deficiency does not

impair the integrity of the dopamine system, although these findings are not entirely consistent

with other research [16].

Mendelian randomization (MR) is a novel genetic epidemiological method that uses genetic

variants closely associated with specific exposures as IVs, effectively reducing confounders and

enhancing the accuracy of causal inference [17]. Currently, no studies have explored the causal

relationship between vitamin D genetic variants and PD risk, nor have any evaluated the

impact of PD on vitamin D levels. Our study aims to explore the causal connection between

vitamin D and PD risk using a bidirectional two-sample MR analysis.

2 Materials and methods

2.1 Study design and data source

To explore the potential causal link between 25(OH)D levels and PD, we conducted a two-

sample MR analysis. The validity of instrumental variables (IVs) hinges on three critical

PLOS ONE No association between genetically predicted Vitamin D levels and Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0313631 November 15, 2024 2 / 11

ZYYD2022C17). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0313631


assumptions. First, the genetic variants used as IVs should be significantly associated with the

exposure factor (25(OH)D). Second, these genetic variants must not correlate with any con-

founding factors. Third, the genetic variants should influence the outcome (PD) solely through

the exposure, without alternative pathways.

The 25(OH)D GWAS data originate from a genome-wide association study by Manousaki

et al. in the UK Biobank cohort, involving SNP data from 401,460 individuals of European

ancestry. The PD data are sourced from three PD outcome cohorts’ GWAS data (GWAS IDs:

"ieu-b-7", "ieu-a-812", and "finn-b-G6_PARKINSON"). The first PD outcome cohort comes

from the latest genome-wide association study (GWAS) conducted by the International PD

Genomics Consortium (IPDGC), which included three previously reported GWAS studies, 13

new datasets, and proxy case data from the UK Biobank (33,674 cases and 449,056 controls).

The second PD outcome cohort includes 1,713 Caucasian patients and 3,978 healthy controls.

The third PD outcome cohort, we used the GWAS dataset from the FinnGen Consortium for

MR analysis (4,681 cases and 407,500 controls). We selected GWAS data from European

ancestry individuals mainly because of high-quality genetic data available in this population.

These datasets encompass broad genetic variation, enhancing the robustness of MR analysis.

The Finnish GWAS dataset was incorporated to utilize its large sample size and rich genetic

data, which complement other European datasets. Despite Finland’s relatively isolated popula-

tion and unique genetic characteristics, its overall genetic structure closely mirrors that of

broader European populations, minimizing the potential impact of population stratification

on the results.

The data used in this study are publicly accessible and have been officially approved by the

Medical Ethics Committee of the Second Affiliated Hospital of Xinjiang Medical University

(Grant No. 2022K004). The study design and implementation steps are shown in Fig 1.

2.2 Screening genetic IVs

To satisfy the first assumption of MR analysis, that IVs are strongly associated with 25(OH)

D, we selected independent IVs that are statistically significantly associated with 25(OH)D

across the whole genome (P< 5 × 10−8, r2 < 0.001, genetic distance = 10,000 KB, minor

allele frequency > 0.01). We selected single nucleotide polymorphisms (SNPs) with an F-

value greater than 10 to secure the association’s stability and minimize bias from weak IVs.

To avoid potential confounding effects of genetic variations, we consulted the PhenoScan-

ner database to verify the association of selected IVs with any established confounding fac-

tors [18]. Currently known risk factors for PD include C-reactive protein, LDL cholesterol,

and HDL cholesterol. Hence, this study excluded SNPs whose genetic variations are related

to these factors.

2.3 Statistical analysis

We compared the aggregate statistics of the selected IVs with datasets from three PD cohorts

across different GWAS. Five MR analysis were used, among which the inverse-variance

weighted (IVW) method has the highest statistical power and is typically used when all IVs are

valid. Other MR analyses included the weighted median method, MR-Egger method, weighted

mode, and simple mode. The heterogeneity of SNPs estimates was assessed using Cochrane’s

Q test, and MR-PRESSO analysis was used to identify and correct potential pleiotropic outlier

effects. By systematically excluding each SNP, it was determined whether any individual SNP

significantly influenced the estimates. Statistical analyses were performed using the R packages

mendelianrandomization, MRPRESSO, and TwoSampleMR in R version 4.1.2.
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3 Results

3.1 Association of genetically predicted vitamin D levels with PD

To explore the genetic association between vitamin D levels and PD, we first selected indepen-

dent SNPs associated with serum 25(OH)D levels from GWAS datasets. The selection criteria

Fig 1. Workflow for selecting IV and MR analysis.

https://doi.org/10.1371/journal.pone.0313631.g001
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for these SNPs included: p< 5 × 10⁻⁸, r2 < 0.001, a genetic distance of 10,000 KB, and a minor

allele frequency greater than 0.01. Subsequently, we further filtered SNPs with an F-statistic

greater than 10, ultimately identifying 148 SNPs related to 25(OH)D, which were used as IVs.

The F-statistics related to the genetic instruments for 25(OH)D ranged from 25.33 to 2448.32,

with an average of 106.64. After excluding SNPs associated with C-reactive protein

(rs79598313, rs7528419, rs1229984, rs7314285, rs58542926), LDL cholesterol (rs11127048,

rs964184, rs1883711, rs960596), and HDL cholesterol (rs10864726, rs1047891, rs7828742,

rs532436, rs7910135, rs1800588, rs1800775, rs4121823), 131 SNPs related to 25(OH)D were

included for analyzing the association with PD (S1 Table). In three PD cohorts, the IVW

method showed no significant statistical relationship between 25(OH)D levels and PD (Pcohort1

= 0.365, Pcohort2 = 0.525, Pcohort3 = 0.117). Other methods such as the weighted median, simple

mode, and weighted mode provided similar results (Fig 2). Apart from a significant heteroge-

neity suggested in the causal relationship between 25(OH)D and PD cohort 2 (P<0.05),

Cochran’s Q test, MR-Egger regression, and leave-one-out analysis showed no notable hetero-

geneity or pleiotropy (Table 1 and S1 Fig).

Fig 2. MR analysis of the relationship between 25 (OH) D and the risk of PD. CI, confidence interval; OR, odds ratio; nSNP, number of single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pone.0313631.g002

Table 1. Pleiotropy and heterogeneity tests of forward MR analysis.

Test Method Cohort P
Heterogeneity Q MR Egger 1 0.111

Q IVW 1 0.117

Pleiotropy MR-Egger regression 1 0.468

Heterogeneity Q MR Egger 2 0.019

Q IVW 2 0.021

Pleiotropy MR-Egger regression 2 0.468

Heterogeneity Q MR Egger 3 0.250

Q IVW 3 0.270

Pleiotropy MR-Egger regression 3 0.857

https://doi.org/10.1371/journal.pone.0313631.t001
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3.2 Association of genetically predicted PD with vitamin D levels

Reverse MR analysis was conducted to examine the association between genetically predicted

PD and vitamin D levels. Three PD cohorts shared the same 4 SNPs (rs35603727, rs2583990,

rs117503845, rs2732613). Our findings indicate that PD does not influence 25(OH)D levels.

No statistically significant association between PD and vitamin D levels was observed in any of

the cohorts (P > 0.05). This suggests that while a potential inverse relationship may exist, it is

not strong enough to reach statistical significance within our dataset. Other analytical

approaches, including weighted median, simple mode, and weighted mode, also showed

results analogous to the IVW method, as illustrated in Fig 3. Moreover, tests including

Cochran’s Q, MR-Egger regression, and leave-one-out analysis provided no substantial evi-

dence of heterogeneity or pleiotropy (Table 2 and S2 Fig).

4 Discussion

As the global population grows and life expectancy increases, the incidence of neurological dis-

eases rises as well [19, 20]. PD mechanisms include inflammation [21], oxidative stress [22],

mitochondrial dysfunction [23], lysosomal defects [24], impaired RNA homeostasis [25], and

the misfolding and aggregation of certain proteins (such as α-synuclein, amyloid-beta, and

hyperphosphorylated tau) [26]. Low serum vitamin D levels are associated with various mental

illnesses (such as depression, bipolar disorder, schizophrenia) and neurodegenerative diseases

(such as dementia and PD). Research indicates a significant association between lower serum

vitamin D levels and an increased risk of developing PD. For instance, Knekt and colleagues

[27] conducted a large prospective cohort study, revealing that individuals with lower serum

Fig 3. MR analysis of the relationship between PD and the risk of 25 (OH) D.

https://doi.org/10.1371/journal.pone.0313631.g003

Table 2. Pleiotropy and heterogeneity tests of reverse MR analysis.

Test Method Cohort P
Heterogeneity Q MR Egger 1, 2, 3 0.085

Q IVW 1, 2, 3 0.174

Pleiotropy MR-Egger regression 1, 2, 3 0.932

https://doi.org/10.1371/journal.pone.0313631.t002
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25(OH)D levels had a higher incidence of PD over a 29-year follow-up period. The meta-anal-

ysis results regarding the association between vitamin D receptor (VDR) polymorphisms and

PD risk are inconsistent. Wang et al. [28] indicated that SNP FokI is associated with a reduced

PD risk in Asian populations, but not in Caucasians. Although rs2228570 shows a significant

association with PD risk in some models, particularly in Asian populations, the results for

rs731236, rs7975232, and rs1544410 do not consistently show a significant association with

PD risk. Studies reveal vitamin D receptors on dopaminergic neurons in the human substantia

nigra, suggesting that vitamin D may protect these neurons [29]. Although not yet directly

confirmed in humans, studies in animal models suggest that vitamin D may have a protective

effect on dopaminergic neurons [30]. However, the evidence for vitamin D’s role in PD patho-

genesis is still insufficient. A comprehensive cohort study indicates no direct association

between long-term vitamin D intake and the integrity of the dopamine system, thus suggesting

no link with PD risk [16]. Moreover, Shrestha and colleagues’ prospective study found no sig-

nificant link between serum 25(OH)D levels and PD risk [15], aligning with the findings of

this study’s forward MR analysis. Osteoporosis, particularly prevalent in women with PD [31],

is linked to low bone density and calcium levels, increasing hip fracture risk [32]. Studies indi-

cate significantly lower vitamin D levels in PD patients compared to healthy controls [33–35].

Research attributes reduced vitamin D synthesis in PD patients to decreased mobility and pro-

longed disease progression, which limits sunlight exposure [36]. Marian and colleagues [37]

discovered that patients with early-stage PD commonly exhibit vitamin D deficiency. More-

over, the vitamin D levels remained stable without any decline as the disease progressed.

Thomas’ study did not identify a significant association between vitamin D levels and clinical

parameters, including disease severity scores or cognitive function [38]. This finding suggests

that vitamin D levels may not be a reliable marker for the progression of PD. The potential

benefits of vitamin D supplementation in patients with PD remain unclear, and the study does

not offer conclusive evidence to support or oppose its use. Another study shows a slight but

insignificant difference in serum vitamin D concentrations between PD patients and control

groups [39]. This finding aligns with the outcomes from our reverse MR analysis.

It should be noted that the aforementioned studies are observational. Observational studies

are commonly used to explore relationships between phenotypes and diseases but cannot

establish causality. To overcome this limitation, we utilized MR analysis to investigate the

potential causal relationship between vitamin D levels and PD. Currently, no causal studies

have assessed the impact of PD on vitamin D levels. Bidirectional MR analysis using two sam-

ples revealed no significant association between vitamin D levels and PD. The possible reasons

may attribute to the following. First, the pathological changes in PD are closely related to the

aggregation of misfolded α-synuclein, and changes in vitamin D levels may not accurately

reflect the actual state of the brain. Second, although vitamin D levels are lower in PD patients,

this deficiency does not directly cause PD. Third, reduced activity in PD patients may lead to

insufficient vitamin D intake, suggesting that the decrease in vitamin D levels is a result of PD

rather than a cause. Fourth, vitamin D might impact PD progression through its immune

modulation and anti-inflammatory effects, which may not be fully reflected in our genetic

analysis. Additionally, vitamin D could influence PD via calcium metabolism or neuroprotec-

tive mechanisms. Some studies have failed to adequately control for confounding factors such

as sun exposure, dietary habits, and body mass index, which may have led to inconsistent

results. Therefore, caution should be exercised when exploring the relationship between vita-

min D levels and PD risk in the future. Although there is no direct causal relationship between

vitamin D levels and PD, this does not exclude the potential of vitamin D levels as a biomarker

for PD diagnosis. Additionally, larger-scale longitudinal studies are needed in the future to

assess the diagnostic and predictive value of vitamin D levels in PD.
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Our study boasts multiple advantages. It is the first to evaluate the association between vita-

min D and PD through bidirectional MR analysis, confirmed by three separate PD cohorts for

reliability. MR analysis employs SNPs as IVs to evaluate causal relationships between exposure

factors and outcomes. Secondly, the study integrates data from over 1.2 million Europeans

across four widely-published GWAS datasets, improving our understanding of the genetic

links between vitamin D levels and PD, and minimizing the effects of population stratification.

Thirdly, we excluded known confounders like C-reactive protein [40–42], LDL cholesterol,

and HDL cholesterol [43–45] to ensure clarity in our findings. However, our MR analysis has

limitations that need consideration. Although some studies deem a single 25(OH)D measure-

ment reliable for assessing vitamin D levels, baseline serum 25(OH)D measurements might

not reflect long-term levels [46]. Additionally, as the study sample comprises individuals of

European descent, the findings may not generalize to other ethnicities, underscoring the need

for further research to validate these results. Lastly, although we have adjusted for potential

confounding factors as much as possible, residual or unmeasured confounding factors cannot

be completely excluded.

5 Conclusion

This is the first study to use bidirectional MR across three PD cohorts to investigate the causal

relationship between vitamin D and PD. The results indicate that vitamin D levels are not sig-

nificantly causally related to PD risk at the genetic level. Therefore, future studies should exer-

cise caution when investigating the relationship between vitamin D levels and PD risk. While

no direct causal link exists between vitamin D levels and PD, this does not preclude the poten-

tial of vitamin D levels as a biomarker for PD diagnosis. Furthermore, larger-scale longitudinal

studies are necessary to evaluate the diagnostic and predictive value of vitamin D levels in PD.
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