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Introduction
Keratoconus (KC) is a progressive ectatic cornea causing visual 
impairment. Etiology is not well understood, but several risk 
factors have been proposed, including eye rubbing, repeated 
trauma from contact lenses, and atopic disease.1 The prevalence 
of KC in meta‑analysis up to June 2018 was 1.38 per 1000 
population,2 and it was 19.6 per 100,000 in Asians in a 10‑year 
retrospective study.3 Asian populations show higher KC 

incidence than Caucasians.3,4 Early detection means treating 
at earlier stage, so better visual acuity can be preserved.

Previously, slit‑lamp examination and clinical signs were 
used for the diagnosis of KC. Subsequently, computer 
software programs were integrated with imaging devices, 
and topographic indices were included in the diagnostic 
criteria.5 Recently, Scheimflug images from Pentacam 
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(Oculus Inc., Wetzlar, Germany) were introduced to provide 
three-dimensional images of anterior segment of the eye, 
allowing evaluation of both anterior and posterior corneal 
surfaces and pachymetric map.6 Following this, in vivo corneal 
biomechanical imaging systems, capturing deformation 
response to air pulse, were developed to provide dynamic 
corneal response (DCR) parameters representing mechanical 
stability of cornea using Scheimflug imaging analysis (Oculus 
Inc., Wetzlar, Germany).7 The combination of corneal thickness 
profile and deformation parameters is analyzed with logistic 
regression analysis, corneal biomechanical index (CBI). CBI 
can differentiate between KC and normal cornea. However, 
when detecting the fellow normal topographic eye of patients 
with very asymmetric ectasia in the other eye,8 CBI should 
be combined with other clinical data when diagnosing early 
KC. Later, combination of data from Pentacam and Corvis 
ST, tomographic biomechanical index (TBI), was developed 
using random forest with leave‑one‑out cross‑validation. 
Detection of subclinical and clinical ectasia was significantly 
higher than that of either Belin-Ambrósio enhanced ectasia 
total deviation display (BAD‑D) or CBI.8,9

Over 8.5 million people have undergone refractive surgery, 
and over 13 million individuals have undergone laser‑assisted 
in  situ keratomileusis (LASIK) in the United States.10 
Small‑incision lenticule extraction (SMILE) is another option 
for refractive surgery, which alters biomechanical integrity 
of cornea less than LASIK.11,12 However, post‑SMILE 
ectasia cases have been reported with patient having normal 
preoperative topography. This indicates that abnormal corneal 
topography may not be the only risk factor for postoperative 
ectasia.13 Thus, combination of multiple parameters can 
enhance the early detection of KC.8

Artificial intelligence (AI) plays an important role in several 
medical fields.14 In ophthalmology, application is being 
combined with fundus photography, optical coherence 
tomography (OCT), and visual fields to screen and classify 
retinal diseases, including retinopathy of prematurity, 
age‑related macular degeneration, and diabetic retinopathy.15 
AI applications in cornea field are more commonly used for 
KC detection, screening candidates for refractive surgery, 
pterygium detection, and graft detachment detection after 
Descemet membrane endothelial keratoplasty.14 For KC 
detection, data of previous studies were analyzed with various 
supervised AI models as follows: linear discriminant analysis, 
reducing number of features and maximizing separability 
between groups;16‑20 neural network models, processing 
through interconnected nodes to interpret input data into 
output data;16,17,21‑28 decision tree models, classifying data 
based on conditions where leaves represent outcome and 
branches represent decision;29‑31 multilayer perceptron model, 
fully connected neural network that consists of at least three 
layers of nodes;21 support vector machine model, classifying 
data by finding a hyperplane;21,32,33 and random forest models, 
containing multiple decision trees.8,34

In recent years, convolutional neural networks (CNN), which 
classify images or two‑dimensional data, have been successful 
in many fields.35‑37 There are typically two layers. The first is 
convolution layer that performs feature extraction and learns 
the characteristics of images,38,39 unlike other algorithms that 
were developed based on human parameter choices.19,21‑25,30,32,33 
The latter is fully connected layer that connects all the features 
extracted to recognize the pattern of input data.38,39 To date, 
eight studies have used CNN to detect KC; only three of these 
studies have evaluated subclinical KC. Different imaging 
technologies, such as Pentacam,39,40 Orbscan,41 and OCT38,42 
were used for the data collection. Remarkably, inclusion of 
corneal biomechanics in CNN framework has not been reported 
in the previous literature.

This study aimed to develop an AI model that categorizes 
patients into normal, subclinical KC, and KC using 
tomographic maps and corneal biomechanics. CNN was used 
as architecture base. AI models could benefit clinicians by 
providing more accurate diagnosis and help in decision‑making 
of noncorneal ophthalmologists.

Methods
All the procedures were performed in accordance with the 
guidelines of the Declaration of Helsinki, the Belmont Report, 
and CIOMS International Conference on Harmonization in 
Good Clinical Practice. The research protocol was approved by 
relevant institutional review boards and that informed consent 
for data collection was obtained.

We reviewed Chula Refractive Surgery Center database of 
all patients who visited the King Chulalongkorn Memorial 
Hospital, Bangkok, Thailand, between 2014 and 2020. 
All patients aged  >12  years who had tomographic map by 
Pentacam, regardless of corneal biomechanics evaluation by 
Corvis ST, and not using rigid and soft contact lenses at least 
3 weeks and 7 days before examination, respectively, were 
included in the study. Patients with other corneal diseases, 
such as pellucid marginal degeneration; eyes with a history 
of trauma or corneal surgery, such as corneal crosslinking, 
intracorneal ring segment implantation, keratoplasty, or laser 
vision correction; and poor‑quality images were excluded 
from the study. Demographic data, tomographic maps from 
Pentacam, and corneal biomechanics from Corvis ST were 
collected. If patients had visited more than once and duration 
of visit was at least 6 months apart, images were collected.

A total of 1,668 corneal tomographic and 611 corneal 
biomechanical images from 769 and 307  patients were 
obtained, respectively. Three corneal specialists independently 
classified eye examinations primarily based on clinical 
judgment, with additional consideration given to the following 
criteria, resulting in three categories: normal, subclinical KC, 
and KC. A normal cornea was defined as a bilateral normal 
topography, no slit‑lamp findings suggestive of corneal 
ectasia, and no family history of KC. Forty‑eight subclinical 
KC were defined as follows:  (1) normal‑appearing cornea 
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on slit‑lamp biomicroscopy, keratometry, retinoscopy, and 
ophthalmoscopy and at least one of following  (2 or 3); 
(2) central corneal power >47.20 diopter (D) and/or inferior–
superior asymmetry >1.40 D (inferior minus superior power 
at 3 mm diameter) and/or skewed radial axis >21° on corneal 
topography;43  (3) BAD‑D value of  <2.6 or  ≥1.6 standard 
deviation.44 KC was defined according to the following criteria 
established by the Global Consensus on KC and Ectatic 
Disease in 2015: abnormal posterior elevation, abnormal 
corneal thickness distribution, and corneal thinning.45 If 
there were disagreements among corneal specialists, group 
discussion was conducted and final decision was made.

The sample size was divided into two groups: Pentacam 
and combined Pentacam‑Corvis. Pentacam group had 
1,668 eyes, including 945, 98, and 625 eyes with normal 
corneas, subclinical KC, and KC, respectively. Combined 
Pentacam‑Corvis group had 611 eyes, including 320, 48, 
and 243 eyes with normal corneas, subclinical KC, and KC, 
respectively. To prepare our datasets for the analysis, we 
utilized FastAI library’s capabilities for efficient data handling 
and augmentation. In each group, all the images were randomly 
split into training, validation, and test sets. To ensure integrity 
and prevent possible data leakage, images derived from the 
same patient were stored in the same sets.

Training data set was analyzed three times to create three 
AI models. AI model 1 used four maps refractive display 
from Pentacam only  [Figure 1]. We used EfficientNet‑B746 
pretrained on ImageNet47 as our base architecture allowed 
us to leverage advanced image recognition capabilities. 
Initial training focused on classifier head for one epoch to 
adapt pre‑trained network to our specific classification task. 
Subsequent training for fine‑tuning involved all network layers 
for five epochs, utilizing a 1‑cycle learning rate schedule with 

cosine annealing48 and a peak learning rate of 2e–4. Model 
optimized for cross‑entropy loss with label smoothing49 and 
AdamW50 was used as optimizer. To alleviate class imbalance, 
we oversampled subclinical images and added five duplicated 
images of each subclinical image into training set.41,42 During 
training, we performed image augmentation with rotation, 
zooming, warping, and lighting transforms to enhance model 
exposure to underrepresented classes.51 After training, where 
all weights were allowed to change,51 we saved weights as 
model checkpoints at the end of each epoch. Selection of model 
checkpoints based on the lowest validation loss ensured that 
only the most performant configurations were advanced for 
final evaluation on test set.

AI models 2 and 3 were a combination of two models: one 
to classify four maps refractive display from Pentacam and 
another to classify DCR and Vinciguerra screening report 
from Corvis ST [Figure 1]. Both models employed a strategy 
of averaging and weighting output probabilities across dual 
analyses to refine class predictions. This approach leveraged 
complementary strengths of Pentacam and Corvis technologies. 
Distinction between Models 2 and 3 was incorporation of 
CBI in Model 3, providing an additional layer. Validation set 
played a crucial role in preliminary performance assessment, 
enabling iterative refinements to optimize accuracy for KC 
and subclinical KC detection. A test set was used to evaluate 
final model performance.

Statistical analysis
We calculated two‑tailed 95% confidence intervals using 
DeLong interval for receiver operating characteristic/area 
under the curve (ROCAUC) and Wilson score interval for 
accuracy, sensitivity, specificity, and positive predictive value 
in each class. Overall, AI model performance was assessed 
using both macro and weighted averages: macro averaging 

Figure 1: Example of data preparation for four maps refractive display from Pentacam (left) and dynamic corneal response (top right) and Vinciguerra 
screening report (bottom right) from Corvis ST
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equally considers all classes, while weighted averaging adjusts 
for class prevalence, addressing class imbalance. Results were 
compared with BAD‑D, CBI, and TBI.

Results
A total of 1,668 corneal tomographic images from 769 patients 
(with 132  patients who had more than one visit) and 611 
corneal biomechanical images from 307  patients  (with 
46 patients who had more than one visit) in Pentacam group 
and combined Pentacam‑Corvis group, respectively, were 
included from Chula Refractive Surgery Center database of all 
patients visiting the King Chulalongkorn Memorial Hospital, 
Bangkok, Thailand, between 2014 and 2020.

A total of 769 patients (391 men and 378 women) had a mean 
age 27.87 ± 6.83 (12–58) years calculated from the patient’s 
first visit. Topographical characteristics of Pentacam and 
combined Pentacam‑Corvis groups are shown in Table  1. 

Mean keratometry, maximum keratometry, astigmatism, and 
inferior–superior values were the highest in KC group. All 
parameters of subclinical KC group ranged between those of 
normal and KC groups. Corneal thickness was the greatest in 
normal group.

In Pentacam group, 13 eyes had mean keratometry >47.2 D 
and 27 eyes had inferior–superior value >1.4 in normal group. 
Nine eyes had mean keratometry >47.2 D and 20 eyes had 
inferior–superior value >1.4 in subclinical KC group. In KC 
group, 345 eyes had mean keratometry ≤47.2 D and 140 eyes 
had inferior–superior value ≤1.4.

In combined Pentacam‑Corvis group, four eyes had mean 
keratometry >47.2 D and 11 eyes had inferior–superior 
value >1.4 in normal group. Nine eyes had mean keratometry 
>47.2 D and 12 eyes had inferior–superior value >1.4 in 
subclinical KC group. In KC group, 143 eyes had mean 
keratometry ≤47.2 D and 45 eyes had inferior–superior value 

Table 1: Description of the study groups in mean±standard deviation  (range)

Group Classification Kmean (D) Kmax (D) Pachymin (µm) Astig (D) I‑S value
Pentacam Normal 

(n=945)
43.84±1.36 

(40.00–48.40)
45.15±1.58 

(40.60–52.20)
545.66±28.81 

(460–669)
1.50±0.82 

(0.10–7.30)
0.34±0.56 

(−1.46–2.35)
Subclinical 
KC (n=98)

44.68±1.56 
(41.00–48.10)

46.57±1.64 
(43.40–51.60)

524.18±29.95 
(453–601)

2.11±1.17 
(0.10–5.00)

0.83±0.77 
(−1.57–3.01)

KC (n=625) 47.93±4.50 
(40.00–66.20)

55.23±7.79 
(43.30–81.50)

469.69±39.98 
(322–570)

4.67±2.94 
(0.2–15.1)

3.95±3.31 
(−3.39–18.53)

Combined 
Pentacam‑Corvis

Normal 
(n=320)

43.68±1.28 
(40.00–48.40)

45.04±1.52 
(40.90–52.20)

545.27±27.53 
(478–629)

1.56±0.90 
(0.20–7.30)

0.33±0.59 
(−1.32–2.35)

Subclinical 
KC (n=48)

44.96±1.79 
(42.20–48.10)

46.96±1.88 
(43.40–51.60)

524.18±29.95 
(453–601)

2.15±1.36 
(0.10–5.00)

0.96±0.79 
(−0.38–3.01)

KC (n=243) 47.36±3.88 
(40.00–66.20)

53.88±6.73 
(43.30–78.80)

474.71±37.29 
(356–570)

4.25±2.66 
(0.2–13.8)

3.71±2.84 
(−2.38–13.35)

Classification was based on consensus of experts. Kmean: Mean keratometry, Kmax: Maximum keratometry, Pachymin: Minimum pachymetry, Astig: 
Astigmatism, I‑S value: Inferior‑superior value, n: Number of images, KC: Keratoconus

Table 2: Description of the combined Pentacam‑Corvis subgroups in mean±standard deviation  (range)

Group A1 length 
(mm)

A2 length 
(mm)

PD (mm) A1 velocity 
(m/s)

A2 velocity 
(m/s)

CRHC (mm) DA maximum 
(mm)

Normal 
(n=320)

2.24±0.34 
(1.44–3.08)

2.04±0.37 
(0.72–3.20)

4.88±0.28 
(3.86–5.49)

0.14±0.02 
(0.09–0.19)

0.24±0.03 
(0.14–0.34)

6.92±0.85 
(5.04–10.35)

1.00±0.09 
(0.72–1.25)

Subclinical 
KC (n=48)

2.24±0.40 
(1.38–3.05)

1.94±0.45 
(1.06–3.17)

4.87±0.31 
(4.28–5.57)

0.14±0.02 
(0.10–0.19)

0.25±0.03 
(0.21–0.34)

6.33±0.84 
(4.95–8.42)

1.03±0.11 
(0.87–1.31)

KC (n=243) 2.00±0.34 
(1.38–3.10)

1.71±0.35 
(0.69–2.95)

4.92±0.26 
(3.51–5.61)

0.16±0.02 
(0.10–0.25)

0.26±0.04 
(0.09–0.42)

5.56±0.90 
(2.93–10.22)

1.10±0.13 
(0.64–1.70)

Group IOP (mmHg) bIOP (mmHg) CCT (µm) DA ration 
maximum (mm)

INR ARTh SP‑A1 
(mmHg/mm)

Normal 
(n=320)

15.88±2.50 
(11.00–24.50)

15.45±2.06 
(11.10–22.80)

552.58±28.88 
(484–644)

4.32±0.40 
(3.30–5.60)

8.85±1.03 
(6.10–11.30)

528.40±91.70 
(325.70–813.50)

109.85±17.51 
(57.10–182.40)

Subclinical 
KC (n=48)

15.13±2.37 
(10.00–19.50)

14.83±1.98 
(10.70–18.60)

547.90±32.38 
(463–610)

4.60±0.47 
(3.80–5.70)

9.67±1.20 
(7.60–12.4)

477.95±90.28 
(314.30–753.80)

102.25±18.71 
(59.40–134.60)

KC (n=243) 13.29±2.78 
(5.00–34.00)

14.47±2.60 
(7.40–35.90)

492.99±34.32 
(392–582)

5.34±0.92 
(3.40–11.50)

11.95±2.32 
(4.60–23.70)

277.39±103.39 
(62.70–621.00)

73.53±18.85 
(15.30–123.70)

Classification was based on consensus of experts. A1 length: First applanation length, A2 length: Second applanation length, PD: Peak distance, A1 
velocity: First applanation velocity, A2 velocity: Second applanation velocity, CRHC: Curvature radius highest concavity, DA max: Max deformation 
amplitude, IOP: Intraocular pressure, bIOP: Biomechanical corrected intraocular pressure, CCT: Central corneal thickness, DA ratio max: Deformation 
amplitude, INR: Integrated radius, ARTh: Ambrosio’s relational thickness to the horizontal profile, SP‑A1: Stiffness parameter at A1, n: Number of images, 
KC: Keratoconus
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≤1.4. Corneal biomechanical characteristics of combined 
Pentacam‑Corvis group are shown in Table 2.

Total corneal tomographic and corneal biomechanical images 
were 1,678 and 611, respectively, and were divided into three 
different sets. Ratio of training, validation, and test sets were 
1334:167:167 in Pentacam group and 488:61:62 in combined 
Pentacam‑Corvis group. The details of number of images in 
each group are listed in Table 3.

Confusion matrices for the classification of AI models 1–3 are 
presented in Table 4. For AI model 1, four KC, four subclinical 
KC, and eight normal eyes were misclassified. For AI model 
2‑3, one KC and three subclinical KC were misclassified. We 
observed that AI model 1 tended to classify normal eyes as 
subclinical, while AI model 2–3 tended to classify subclinical 
KC eyes as KC.

We developed three AI models to classify normal, subclinical 
KC, and KC eyes. AI model 3 reached the overall highest 

AUC of 0.991 and accuracy of 0.956 with 93.0% sensitivity 
and 94.3% specificity. Performance of each AI model for 
each classification is shown in Table  5. The comparisons 
between AI models and BAD‑D, CBI, and TBI are presented 
in Table 6.

Discussion
Cornea has a viscoelastic property that allows it to absorb and 
dissipate energy.52 Changes in biochemicals and cells result 
in loss of corneal stroma in KC.53,54 Breakdown of collagen 
network causes weakened cornea to protrude.55 Refractive 
surgery alters corneal biomechanics.11,12 Accordingly, screening 
patients for subclinical KC before refractive surgery is 
essential to decrease the risk of iatrogenic ectasia. Moreover, 
early detection means early intervention and slow disease 
progression.56 Using multiple parameters from topography and 
corneal biomechanics can better detect early forms of KC.8

In this study, we developed three different AI models. First, AI 
model 1, which received information from Pentacam images, 
achieved the highest sensitivity of 73.3% in subclinical group. 
Therefore, AI model 1 would be suitable for screening. Next, 
AI model 2 obtained information from Pentacam and Corvis 
images. To our knowledge, this is the first study to combine 
two CNN models, Pentacam and Corvis ST. Adding Corvis 
images enhanced most of results. In AI model 3, we added 
CBI score to AI model 2, and performance was slightly higher 
than that of AI model 2. AI model 3 had the highest AUC and 
accuracy, suggesting it is best for diagnostic applications. 
Interestingly, even though AI models 2 and 3 produced same 
confusion matrices, they exhibited different ROCAUC. This 
observation can be explained by difference in prediction 
probabilities, influenced by model’s architecture and data 
features. However, training images in AI models 2–3 were 
much smaller than those in AI model 1 because of restricted 
number of Corvis images. Thus, difference in outcomes was 
minor. To enhance overall results, additional Corvis images 
of all classifications should be gathered.

Eight previous studies used CNN for KC screening. Dos Santos 
et al. used 20,160 ultra‑high‑resolution OCT images from 142 
eyes and achieved an accuracy of 99.56%,42 while Lavric and 
Valentin used Pentacam topographic maps from 3000 eyes 
for classifying normal and KC eyes and achieved an accuracy 
of 99.33%.39 Kamiya et al. used deep learning of arithmetic 
mean output data of six color‑coded maps from anterior 
segment OCT of 543 eyes and demonstrated that accuracy 
for classifying normal cornea was 99.1% (sensitivity, 100%; 
specificity, 98.4%), while total accuracy for grading severity of 
KC was 87.4%.38 Xie et al. built an AI model called Pentacam 
InceptionResNetV2 Screening System  (PIRSS) from 6,465 
four maps from Pentacam: axial curvature, front elevation, back 
elevation, and pachymetry maps. PIRSS achieved an accuracy of 
95.0% (88.8%–97.8%) in discriminating candidates categorized 
into five groups: normal, suspected irregular, early‑stage KC, 
KC, and myopic postoperative cornea. Nevertheless, if suspected 

Table 3: Number of images in each group in artificial 
intelligence models 1–3

Number of images Normal Subclinical KC KC Total
AI model 1

Training set 760 75 499 1334
Validation set 101 8 58 167
Test set 84 15 68 167
Total 945 98 625 1668

AI model 2–3
Training set 251 42 195 488
Validation set 36 2 23 61
Test set 33 4 25 62
Total 320 48 243 611

KC: Keratoconus, AI: Artificial intelligence

Table 4: Confusion matrices  (actual versus predicted 
class) of the artificial intelligence model 1–3 on test set

Predicted class Actual class

Normal Subclinical KC KC
AI model 1

Normal 76 2 1
Subclinical KC 8 11 3
KC 0 2 64
Total (n=167) 84 15 68

AI model 2
Normal 33 0 1
Subclinical KC 0 1 0
KC 0 3 24
Total (n=62) 33 4 25

AI model 3
Normal 33 0 1
Subclinical KC 0 1 0
KC 0 3 24
Total (n=62) 33 4 25

KC: Keratoconus, n: Number of images, AI: Artificial intelligence



Quanchareonsap, et al.: Artificial intelligence detecting keratoconus

Journal of Current Ophthalmology | Volume 36 | Issue 1 | January-March 2024	 51

irregular cornea group was excluded, accuracy reached 98.8%.40 
Zéboulon et al. used raw numeric data of 3,000 images of 
four‑maps of Orbscan and achieved an accuracy of 99.3%.41 Kuo 
et al. trained 326 topographic maps from a computer‑assisted 
videokeratoscope to classify normal corneas and KC, which 
achieved a total accuracy of 95.8%.57 Abdelmotaal et  al. 
included 3218 refractive maps from Pentacam to build an AI 
model. Accuracies of classifying normal corneas and KC were 
99% and 98%, respectively.58 Subramanian and Ramesh used 
indices from 1500 SyntEye KTC model to generate topography 
images (500 images of each class: normal, mild KC, and KC). 
Accuracies of classifying normal corneas and KC were 95.4% 

and 97.4%, respectively.59 If the sole diagnoses of normal and 
KC are considered, our outcomes are comparable. For normal 
cornea identification, AI model 1 had accuracy of 93.4% and 
AI model 2 and 3 had the same accuracy of 98.4%. For KC 
diagnosis, AI model 1 had an accuracy of 96.4% and AI models 
2 and 3 had the same accuracy of 93.5%.

The diagnosis of subclinical KC remains challenging because 
there is no clear definition. Of eight studies, three previous CNN 
studies included subclinical KC. Xie et al. trained 799 Pentacam 
images of suspected irregular cornea defined as suspicious for 
corneal morphologic abnormalities with CNN and achieved 
76.5% (68.0%–83.3%) sensitivity and 98.2% (97.3%–98.8%) 

Table 5: Performance of artificial intelligence models 1–3 on the test set

Group Accuracy (95% CI) AUC (95% CI) Sensitivity, % 
(95% CI)

Specificity, % 
(95% CI)

PPV (95% CI)

AI model 1
Normal (n=84) 0.934 (0.882–0.965) 0.934 (0.897–0.972) 90.5 (84.7–94.3) 96.4 (92.0–98.5) 0.962 (0.917–0.984)
Subclinical KC (n=15) 0.910 (0.854–0.947) 0.831 (0.713–0.948) 73.3 (65.8–79.7) 92.8 (87.4–96.0) 0.500 (0.422–0.578)
KC (n=68) 0.964 (0.920–0.985) 0.961 (0.929–0.992) 94.1 (89.1–97.0) 98.0 (94.1–99.4) 0.970 (0.927–0.989)
Weighted average 
overall (n=167)

0.947 0.938 90.8 96.9 0.924

Macro average overall (n=167) 0.936 0.968 86.0 95.7 0.811
AI model 2

Normal (n=33) 0.984 (0.902–0.999) 1.000 (1.000–1.000) 100.0 (92.7–100.0) 96.6 (87.5–99.4) 0.971 (0.882–0.995)
Subclinical KC (n=4) 0.952 (0.856–0.987) 0.823 (0.815–0.831) 25.0 (15.3–37.9) 100.0 (92.7–100.0) 1.000 (0.927–1.000)
KC (n=25) 0.935 (0.835–0.979) 0.994 (0.993–0.994) 96.0 (86.8–99.1) 91.9 (81.4–97.0) 0.889 (0.777–0.951)
Weighted average overall (n=62) 0.956 0.985 93.0 94.3 0.929
Macro average overall (n=62) 0.957 0.939 73.7 96.1 0.953

AI model 3
Normal (n=33) 0.984 (0.902–0.999) 1.000 (1.000–1.000) 100.0 (92.7–100.0) 96.6 (87.5–99.4) 0.971 (0.882–0.995)
Subclinical KC (n=4) 0.952 (0.856–0.987) 0.901 (0.897–0.905) 25.0 (15.3–37.9) 100.0 (92.7–100.0) 1.000 (0.927–1.000)
KC (n=25) 0.935 (0.835–0.979) 0.995 (0.994–0.995) 96.0 (86.8–99.1) 91.9 (81.4–97.0) 0.889 (0.777–0.951)
Weighted average overall (n=62) 0.956 0.991 93.0 94.3 0.929
Macro average overall (n=62) 0.957 0.965 73.7 96.1 0.953

KC: Keratoconus, n: Number of images, AUC: Area under the receiver operating characteristic curve, PPV: Positive predictive value, AI: Artificial 
intelligence, CI: Confidence interval

Table 6: Performance of BAD‑D, corvis biomechanical index, and tomographic biomechanical index

Score Accuracy AUC Sensitivity (%) Specificity (%) PPV
AI model 1 test set (n=167)

BAD‑D
Weighted average 0.912 0.904 85.6 95.3 0.893
Macro average 0.892 0.865 79.9 93.1 0.744

AI model 2–3 test set (n=62)
BAD‑D

Weighted average 0.951 0.988 91.4 98.0 0.938
Macro average 0.935 0.956 86.3 96.2 0.778

CBI
Weighted average 0.798 0.988 80.1 78.5 0.727
Macro average 0.839 0.956 55.6 86.2 0.533

TBI
Weighted average 0.951 0.988 91.4 98.0 0.938
Macro average 0.935 0.956 86.3 96.2 0.778

BAD‑D: Belin-Ambrósio enhanced ectasia total deviation display, CBI: Corvis biomechanical index, TBI: Tomography and biomechanical index, 
n: Number of images, AUC: Area under the receiver operating characteristic curve, PPV: Positive predictive value, AI: Artificial intelligence
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specificity (AUC, 0.98) in suspected irregular cornea group.40 
Abdelmotaal et al., using 1072 refractive maps of subclinical KC, 
achieved an accuracy of 98%.58 Subramanian and Ramesh, using 
500 generated topographic images of subclinical KC, reached 
an accuracy of 95.1% (sensitivity, 94.9%; specificity 95.1%).59 
Although AI model 1, using 75 images, had comparable results 
to PIRSS, with sensitivity of 73.3% and specificity of 92.8% for 
subclinical KC group, challenges persist. Due to low sensitivity, 
these AI models cannot be employed for effective screening, 
highlighting the need for further investigation. We speculate that 
this shortcoming arises from indistinct feature representation 
of subclinical KC, which does not allow model to accurately 
differentiate these cases from normal ones.

For overall accuracy, our AI model 1 showed similar results to 
PIRSS (accuracy 93.7% when considering only three categories: 
normal, suspected irregular cornea, and early KC plus KC).40

We also compared performance of BAD‑D, CBI, and TBI 
on the same test set as in our models [Table 6]. Result of AI 
model 1 was slightly higher than that of BAD‑D. The outcomes 
of AI models 2 and 3 were comparable to those of BAD‑D and 
TBI, while CBI achieved lower accuracy. AI model 3 was not 
compared to CBI because CBI was one of inputs.

Our study aimed to establish the potential of AI models using 
the available data. While we endeavored to create a robust 
model, the scarcity of subclinical KC data was a challenge we 
could not fully overcome within this study’s scope. Further 
studies should collect more data on subclinical KC to improve 
model performance. In addition, we did not evaluate severity 
grading of KC. Finally, the absence of external validation in 
this study emphasizes the need of further research to confirm 
model’s applicability in the real‑world settings.

In conclusion, our new AI model, integrating anterior corneal 
curvature with corneal biomechanics, has high sensitivity and 
specificity for screening KC corneas. Thus, ophthalmologists 
could detect KC more accurately and be helpful for refractive 
surgeons to provide more efficient patient care during refractive 
surgery. However, identifying subclinical KC remains a 
challenge, highlighting the need for ongoing research.
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