1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Semin Liver Dis. Author manuscript; available in PMC 2024 November 15.

-, HHS Public Access
«

Published in final edited form as:
Semin Liver Dis. 2022 November ; 42(4): 423-433. doi:10.1055/a-1934-5588.

Three-Dimensional Organoids as a Model to Study Nonalcoholic
Fatty Liver Disease

Yujin Park, MD?, Deepthi Thadasina, BAl, Ifeoluwa Bolujo, BAL, Abdulkadir Isidan, MD?1,
Arthur A. Cross-Najafi, BAL, Kevin Lopez, MD1, Ping Li, PhD1, Andrew M. Dahlem, PhD?,
Lindsey Kennedy, PhD3, Keisaku Sato, PhD3, Heather Francis, PhD3, Gianfranco Alpini,
PhD3, Wenjun Zhang, PhDY", Burcin Ekser, MD, PhDL"

1Department of Surgery, Division of Transplant Surgery, Indiana University School of Medicine,
Indianapolis, Indiana

2Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana

SDepartment of Medicine, Division of Gastroenterology and Hepatology, Indiana University School
of Medicine, and Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis,
Indiana

Abstract

Despite the rising prevalence of nonalcoholic fatty liver disease (NAFLD), the underlying disease
pathophysiology remains unclear. There is a great need for an efficient and reliable “human” in
vitro model to study NAFLD and the progression to nonalcoholic steatohepatitis (NASH), which
will soon become the leading indication for liver transplantation. Here, we review the recent
developments in the use of three-dimensional (3D) liver organoids as a model to study NAFLD
and NASH pathophysiology and possible treatments. Various techniques that are currently used
to make liver organoids are discussed, such as the use of induced pluripotent stem cells versus
primary cell lines and human versus murine cells. Moreover, methods for inducing lipid droplet
accumulation and fibrosis to model NAFLD are explored. Finally, the limitations specific to

the 3D organoid model for NAFLD/NASH are reviewed, highlighting the need for further
development of multilineage models to include hepatic nonparenchymal cells and immune cells.
The ultimate goal is to be able to accurately recapitulate the complex liver microenvironment in
which NAFLD develops and progresses to NASH.
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Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver
disease in the Western world with its rising prevalence and lack of available treatments.12
NAFLD encompasses a wide range of disease states, from simple steatosis to nonalcoholic
steatohepatitis (NASH), with the latter defined by the presence of inflammation in addition
to steatosis and necrosis, and potential for progression to cirrhosis with increased risk of
hepatocellular carcinoma.3 NASH is soon expected to become the leading indication for
liver transplantation.?

Although the growing clinical and economic burden of NAFLD has been recognized, the
underlying mechanism by which NASH develops, unfortunately, remains unclear.* The
traditional “two-hit hypothesis” for the development of steatohepatitis postulated that in the
presence of steatosis, a second “hit,” such as oxidative stress or inflammation could result
in fibrosis and development of NASH.58 However, this explanation paints an incomplete
picture without accounting for numerous other potential contributing factors, such as the
direct effect of lipotoxicity on hepatocytes, as well as on other liver cells.” A multihit
hypothesis may be more appropriate to account for genetic and epigenetic factors that
predispose to NAFLD/NASH.”

It is currently believed that NASH develops when the liver’s ability to metabolize
carbohydrates and lipids is overwhelmed, resulting in the accumulation of lipotoxic
metabolites that activate the cellular injury response.8 Other risk factors for NASH include
insulin-resistant diabetes mellitus and/or a high fructose diet. The underlying mechanism
is purported to be the result of increased de novo lipogenesis in the liver, which is a

major contributor to hepatic steatosis, though the exact mechanism is unknown.® Although
Western (high fat and high fructose) diet-induced NAFLD and NASH murine models have
been broadly used to delineate the underlying mechanism for the pathogenesis of NAFLD/
NASH, the discrepancy between human and small rodent metabolisms makes it difficult to
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interpret the data generated in these models. Therefore, there is a great need for an efficient
and reliable “human” in vitro model for NAFLD and NASH, which (i) further elucidates

the pathways involved and identifies therapeutic targets, and (ii) tests potential treatments

to help reduce the progression to an end-stage liver disease requiring transplantation. In

this review, we focus on recent developments in the use of three-dimensional (3D) liver
organoids as a model to study NAFLD and NASH pathophysiology and potential treatments.

The 3D Organoid Model

Brief History

Characterist

Publications describing 3D cell culture date back to the 1960s, but there has been a

steady growth in organoid research over the past 20 years as the importance of 3D
structure on functional differentiation and cell signaling has become broadly accepted.10
Though the term “organoids” has been defined slightly differently in various fields of
study,1 they have commonly been described as in vitro 3D constructs made of cells that
self-organize and demonstrate organ functionality.12 One of the earliest hepatic organoid
models was described by Soto-Gutierrez et al in 2010, in which primary mouse hepatocytes
were co-cultured in a gel matrix with human liver non-parenchymal cell lines (i.e.,

hepatic stellate cells, HSCs, liver endothelial cells, LECs, and cholangiocytes). These
cells were found to self-aggregate into sinusoid-like structures and supported long-term
hepatic function.3 In 2013, Takebe et al were the first to create hepatic organoids

derived from induced pluripotent stem cells (iPSCs). These tri-lineage organoids (iPSC-
hepatic endoderm cells, human umbilical vein endothelial cells [HUVECs], and human
mesenchymal stem cells [MSCs]), were self-organizing and had significantly increased
expressions of hepatic marker genes, such as alpha-fetoprotein (AFA), retinol-binding
protein 4 (RBP4), transthyretin ( 775), and albumin (ALB).14 These early in vitro studies
suggested a close relationship between structure and preservation of function, and that

the interactions between hepatocytes and nonparenchymal cells of the liver may play an
important role in establishing a niche signaling environment to stabilize mature hepatocyte
function in culture.

ics and Key Benefits

In recent years, the key advantages of 3D cell culture over traditional 2D cell culture

have become widely accepted, with particular emphasis on the importance of the cell
microenvironment and cell-to-cell interactions. The liver is a complex organ composed of
not only hepatocytes, which perform its primary functions, but also cholangiocytes, LECs,
Kupffer cells, and HSCs. Furthermore, there are numerous immune cells including the liver
myeloid cell population (dendritic cell population), liver lymphoid immune cell population
(NK cells, NKT cells, B-cells, and T-cells), and immune-regulating liver nonhematopoietic
cell population (Kupffer cells and LECs), which play an important role in maintaining
immunological activity and homeostasis.1® Unfortunately, 2D co-cultures are challenging
to maintain due to (i) difficulty establishing optimal culture conditions,® and (ii) vital
cell-to-cell interactions that depend on spatial structural organization and the in vivo
microenvironment. The latter cannot be overlooked when attempting to determine the
pathophysiology behind disease processes or response to medications.17-18

Semin Liver Dis. Author manuscript; available in PMC 2024 November 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Park et al.

Page 4

Furthermore, freshly isolated primary human hepatocytes have been noted to rapidly lose
their function and ability to differentiate after only a few days in standard 2D monolayer
culture, making it challenging to study long-term effects on liver function.19 In contrast,

it has been well-demonstrated that primary hepatocytes in organoids can maintain their
function for at least 5 weeks, with proteomic analysis revealing that in vivo phenotypes

are maintained in 3D organoids, while the 2D monolayer proteome underwent striking
changes after only 24 hours.2%21 Xiang et al have recently demonstrated that mature
primary human hepatocyte function may be maintained even in monolayer culture for

up to 4 weeks using enhanced media that modulates cyclic adenosine monophosphate,
transforming growth factor beta (TGF-B), notch, bone morphogenic protein, and Wnt
signaling pathways.22 While useful and cost-efficient, it is clear that homogenous hepatocyte
cell culture is limited in its ability to model more complex features such as hepatic zonation,
an important determinant in pathophysiological features of the liver, and the in vivo cellular
microenvironment.19

The significant differences between standard cell culture of primary human hepatocytes

and in vivo physiology are perhaps best demonstrated by the fact that in the past three
decades, 14 drugs have been discontinued in the postmarketing stage after numerous reports
of clinically significant acute liver failure, sometimes even resulting in death.2324 One such
drug was troglitazone, first approved in 1997 for use in diabetes and withdrawn after 3 years
due to liver toxicity that was not flagged in initial in vitro or animal studies.?® In 2020,
Ramli et al used a pluripotent stem cell-derived 3D liver organoid model to demonstrate
cholestatic hepatotoxic changes following troglitazone exposure, further supporting that 3D
culture allows for more reliable drug toxicity testing compared to the standard monolayer.26
These findings (i) support the notion that conventional 2D cell culture is limited in testing
liver disease progression due to a lack of interaction between different relevant cell types,
and (ii) highlight the differences in cell signaling in 3D versus 2D culture, which ultimately
result in inconsistent drug screening outcomes between in vitro and in vivo settings.27:28

Modeling NAFLD/NASH with 3D Organoids

As discussed above, there is a great need for a reliable in vitro model for NAFLD

and NASH that can support long-term hepatocyte function and recapitulate the human

in vivo microenvironment, and 3D organoids have been a very promising approach thus

far. The various methods for creating organoids to date have been summarized in detail
elsewhere, 1911 but, in short, organoids can be derived from tissue-resident progenitors,
commercially available and primary hepatic cell lines, embryonic stem cells (ESCs), and/or
iPSCs, or even tissue fragments (»Fig. 1).

Organoids Derived from Cell Lines or Hepatic Lineage Cells

One clear benefit of using individual cell lines to make organoids is the ability to control the
characteristics of each component and to decide upon an exact ratio of cell types to include
in the organoid. Interactions between hepatocytes and nonparenchymal cells of the liver are
key in the development of fibrosis,2? and inclusion of a variety of cell types is therefore
ideal in organoids modeling NAFLD. Specifically, liver damage results in the activation of
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HSCs and their subsequent differentiation into myofibroblasts with the hallmark expression
of a-smooth muscle actin, as well as an increase in the production of extracellular matrix
proteins, such as type 1 collagen. The resulting change in liver architecture can ultimately
progress to cirrhosis.30

Pingitore et al recently developed a multilineage NAFLD organoid model comprised of
established commercially available immortalized cell lines HepG2 (human hepatocellular
carcinoma hepatocytes) and LX-2 (HSCs).31:32 HepG2 cells were specifically selected
because they are homozygous for the patatin-like phospholipase domain-containing 3
1148M sequence variant, which is one of the strongest genetic determinants of NAFLD

in humans.32 They successfully demonstrated that incubating these organoids with free fatty
acids (FFAs) resulted in fat accumulation and increased collagen secretion and that this
phenotype could be rescued by the administration of antisteatotic and antifibrotic drugs
that are currently in clinical trials.3 Potential limitations to the use of the established
HepG2 cell line are (i) its low metabolic capacity compared to primary hepatocytes,
which may hinder the ability to replicate the complex metabolic interactions that occur

in the NAFLD microenvironment, and (ii) its origin as a hepatocellular carcinoma cell line
with high proliferation rates and resistance to cytotoxicity compared to primary human
hepatocytes.33:34

Organoids can also be developed from hepatic progenitor cells that have been isolated from
donor tissue, as demonstrated by McCarron et al, who developed a bipotent ductal organoid
model using tissue from diseased NASH livers,3° based on a design for bipotent ductal
organoids previously described by the Clevers group.3¢ The bipotent ductal organoids were
further hepatically differentiated by supplementation with a special differentiation medium
for 11 to 14 days (»Table 1). Compared to healthy liver organoids, NASH liver organoids
exhibited reduced regenerative ability and liver function, and a detailed transcriptomic
analysis revealed upregulation of proinflammatory and fibrosis markers, such as aldo-keto
reductase family 1 member B10.35 This study also supports the feasibility of deriving
organoids directly from diseased tissue, which can be expected to more accurately model
the disease and the associated microenvironment, as opposed to starting with organoids from
healthy liver tissue and attempting to recreate a diseased state.3°

In contrast, organoids can also be derived from primary cell lines which are directly isolated
from donor liver tissue.37-38 Prill et al3” were able to develop a NAFLD model using primary
human hepatocytes from different donors, which demonstrated that there was reproducible
inter-donor variability in response to FFA treatment in terms of the degree of resulting
steatosis. In their study, the organoid model was used to explore the underlying mechanisms
for human genetic variants at higher risk for developing NAFLD, such as the transmembrane
6 superfamily member 2 (TM6SF2) E167K mutation. In fact, the hepatic TM6SF2 E167K
organoids were noted to have increased expression of metabolic genes associated with
cholesterol synthesis (FDPS, HMGCS1, FDFT1, DHCR7, and SC5D), de novo lipogenesis
(FASNand ACSS2), and phospholipid dephosphorylation (PLPP3) when compared with
wild type. These findings highlight both the strength and limitation of organoids made from
cell lines isolated from individual donors. Although interdonor variability could potentially
limit the broad generalizability of findings based on a smaller sample size of donors, the
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reproducibility of donor variability in vitro can potentially be harnessed to identify specific
genetic variants associated with a higher risk for the development of NAFLD. Finally,

the organoids in this model used hepatocytes alone, and the lack of other liver cell types
limits the ability to recreate the cell-to-cell interactions that contribute to the NAFLD
microenvironment.3’

One of the ongoing challenges in 3D organoid culture, particularly in models using
primary cells, has been incorporating additional liver cell types besides hepatocytes and
HSCs, such as LECs, cholangiocytes, and Kupffer cells, to more thoroughly model
inflammatory processes associated with NAFLD and more closely approximate the in
vivo microenvironment. In our lab, we have developed a scaffold-free human 3D liver
organoid model which incorporates up to 5 liver cell lineages (hepatocytes, HSC, LEC,
cholangiocytes, Kupffer cells), derived from primary cells that we isolated from donor
liver tissue, characterized, and then reaggregated into 3D organoids in a 96-well ultra-low-
attachment plate.3%40 These organoids maintained mature hepatocyte function (albumin
secretion, urea synthesis, and bile acid synthesis) after being held in culture for 30 days.4°
Organoids using hepatocytes from healthy donors can be further challenged with treatments
to model specific disease processes (such as FFA loading for NAFLD, which will be
discussed in a subsequent section).

Induced Pluripotent Stem Cell and Embryonic Stem Cell-Derived Organoids

The lack of access to fresh donor liver tissue can be a barrier to using primary cell lines
for organoids. Therefore, iPSCs have emerged as a reasonable alternative. It is important
to note that iPSCs must go through multiple differentiation steps over the course of a
couple of weeks before they can become hepatic progenitor cells, which can then be used
to make organoids. Furthermore, the cell types that are derived from iPSCs are typically
not fully differentiated and are therefore termed as “hepatocyte-like,” “HSC-like,” and
“cholangiocyte-like” cells.4

Hepatocyte-like cells (HLCs) can be produced from iPSCs via a stepwise differentiation
protocol developed by several research groups. This process involves the differentiation

of iPSCs to endodermal cells and then further to HLCs.*2 The iPSCs are still able

to successfully differentiate into HLCs after being cryopreserved during the early
differentiation process and retain the genetic background of the donor patient. Interestingly,
Gurevich et al found that HLCs generated from NASH donor iPSCs displayed lipid
accumulation even in the absence of fatty acid supplementation43 (»Table 1). This group
also generated organoids using the HLCs from NASH donors in addition to HSC-like cells
and Kupffer cell-like cells, but these remained intact for only 10 days. Other research groups
such as Akbari et al have been able to generate functional hepatic organoids from healthy
donor iPSCs which were successfully maintained for as long as 16 months without loss of
differentiation. They initially differentiated the iPSCs into epithelial cell adhesion molecule
positive hepatic progenitor cells, from which they subsequently derived their organoids.*!

Furthermore, Ouchi et al developed a multilineage organoid model that included hepatocyte-
like, HSC-like, and Kupffer cell-like cells, all derived from iPSCs or ESCs, which were
treated with fatty acid and demonstrated phenotypes associated with steatohepatitis.“°
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Interestingly, organoids derived from iPSCs of patients with a baseline lysosomal enzyme
deficiency developed more severe features of steatohepatitis, again reflecting the potential
impact that 3D organoids could have on the personalized study of specific disease
mechanisms and the development of treatments. While iPSC-derived organoids were found
to have similar transcriptomic profiling related to lipid metabolism when compared to
primary hepatic cells, their functional activity was undetermined and requires further study
to identify potential differences when compared with primary cell functionality.** Moreover,
iPSC-derived organoid models are limited by the inability to control the exact ratio of other
liver cell types in their composition, as done in primary liver cell-derived organoids.

Inducing and Measuring Steatosis and Fibrosis

The detailed mechanisms for the development of NASH may still require further elucidation,
but in order to model hepatic steatosis, liver organoids are often treated with FFAs, which
results in lipid droplet accumulation within the organoid and upregulation in markers of
fibrosis, such as type 1 collagen (e.g., COL1A1).3! Alternatively, instead of treating healthy
liver organoids with FFAs, NAFLD/NASH organoids can also be created directly from tissue
specimens taken from patients with known diseases.3°-37

Pingitore et al31 measured the accumulation of fat in their multilineage (HepG2 with HSC)
organoids by staining with Qil Red O and further quantified this with an intracellular

lipid droplet bioassay. The organoids were additionally incubated with TGF-B due to their
potency as a fibrogenic cytokine,*® which resulted in increased collagen levels (> Table 2).
This model was the first to demonstrate that incubating liver organoids with fatty acids leads
to lipid droplet accumulation and fibrosis, which was consistent with previous findings in 2D
models.31.46.47

In our lab, we have treated our multilineage (5-cell-hepatocytes, LECs, HSCs,
cholangiocytes, and Kupffer cells) 3D liver organoid models with FFAs and
lipopolysaccharide for several days to induce steatosis, fibrosis, and inflammation in order
to appropriately model NAFLD (»Fig. 2). Different types of staining were used for lipid
accumulation and fibrosis.3?

Organoids for Screening and Development of NAFLD/NASH Treatment

In addition to their utility as a model to further elucidate the NAFLD/NASH disease
mechanism, 3D liver organoids, especially when they represent the complete liver
microenvironment, also have significant potential for application in NAFLD drug
development. Molecular compounds that are currently under FDA (Food and Drug
Administration of the United States) evaluation for NAFLD treatment, such as liraglutide
and elafibranor, have been incorporated into 3D organoid experiments, which demonstrated
that they decreased COL1A1 expression levels and prevented lipid droplet accumulation
in human liver organoids.31 Ouchi et al also demonstrated that the severe steatohepatitis
resulting from FFA loading of their iPSC-derived multilineage (HLC, HSC-like cells)
organoids could be rescued by treatment with the farnesoid x receptor agonist, obeticholic
acid.44
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Murine Organoid Models

Various murine models have been established to model the NASH phenotype, such as
those based on feeding mice a high fat and high fructose diet.%8 A key advantage of

murine models is that genetically engineered mouse cell lines can be used to interrogate the
contribution of specific genetic pathways to disease progression. Different genetic strains
of mice result in overeating, such as the ob/ob strain which results in leptin deficiency in
mice, db/db strain that results in a defect in the leptin receptor, or MC4R (melanocortin 4
receptor) deficient mice that results in late onset of obesity, hyperphagia, hyperinsulinemia,
and hyperglycemia.® C57BL mice are the most commonly used mice strain to mimic
experimental NASH due to being more prone to develop diet-induced necroinflammation
and fibrosis.>0

Elbadawy et al notably designed mouse liver organoids (isolated hepatocytes in Matrigel)
that were derived from methionine- and choline-deficient diet-induced NASH model mice
categorized by disease severity, with findings such as markedly upregulated alpha-smooth
muscle actin and type | Collagen in the organoids derived from mice with more advanced
disease.®® This was consistent with the existing knowledge that activated HSCs deposit
collagen in the setting of advanced liver disease.2?

On the other hand, a clear limitation of murine models is that NASH in humans is likely the
result of a series of genetic and environmental factors that may or may not be reproducible
in mice. Murine models replicate only parts of the disease process, making it hard to
determine the interaction between the different pathologic features of NASH.52 Qverall,
murine models have a less severe NASH pathology than what is found in humans due to
the different metabolic and immune response profile in mice, and the inability to replicate
the complex interactions that occur in the human liver microenvironment.59 Furthermore,
murine liver organoids may have cell markers specific to mice that may be a barrier to
generalizing experimental results to humans.>3 Although these models may be used to
determine treatment strategies for early stages of NASH in humans, they are much less
reliable for studying late-stage disease or developing therapeutic targets.>* This notion is
supported by the fact that approximately 90% of pharmaceutical drugs that are shown to be
safe and effective in small animal models ultimately fail in human clinical trials due to lack
of efficacy and toxicity.%®

Other Types of 3D Liver Models

Liver-on-a-Chip

Other models that are being developed to study NAFLD include a “liver-on-a-chip” model
that are dynamic 3D models that recreate the liver tissue on a microscopic scale. These
models have been created to overcome some of the limitations of animal and in vitro
models.>® The “liver-on-a-chip” model is designed to recapitulate in vivo liver architecture
by allowing the seeded hepatocytes to form a structure that imitates the hepatic lobule and
allows for the active flow of nutrients to and removal of waste from the cells.>”8 A simple
version of the chip contains only hepatocytes and sometimes HSCs to create the hepatic
layer, with the option to add endothelial cells and Kupffer cells on the vascular layer to
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introduce more complexity to the system. These cultures are then embedded into a biochip
which maintains fluid perfusion to allow for nutrient supply.>’ The biochip is exposed to
FFAs to induce NAFLD characteristics and the models are then analyzed for triglyceride
uptake and production of reactive oxygen species as a measure of oxidative stress.> It

has been found that the chip allows for increased cell viability compared to 2D culture

and gradual lipid accumulation thus mimicking the chronic condition of hepatic steatosis.59
Additionally, the “liver-on-a-chip” model has been used to study the interactions of the liver
and other organs such as the colon in the pathogenesis of NAFLD, and one of its benefits is
that it can be used to study the multiorgan involvement in the pathogenesis of liver disease.?’
That said, the “liver-on-a-chip” model is not currently able to support the long-term culture
of primary hepatocytes or maintain an appropriate microenvironment within the device

for multiple liver cell lines concurrently, which therefore limits its applications.38 Once

it has been optimized to appropriately model the in vivo liver microenvironment, the “liver-
on-a-chip” model holds great potential for application in the high-throughput screening of
drugs.61.62

Limitations of 3D liver models

One of the primary limitations in all 3D liver organoids cultured in plates is the reliance

on passive diffusion for oxygen, nutrients, and waste exchange, which can result in central
necrosis, especially when organoids are bigger than 200 pm due to limited oxygen diffusion
capacity. There have been attempts to address this issue via the “liver-on-a-chip” model or
the use of a perfusion bioreactor, but further research is needed.38 Other limitations include
(i) the use of commercial tumoral and immortalized cell lines, which may differ in gene
expression or function compared to primary cell lines; and (ii) single cell-derived organoids
(e.g., hepatocyte-derived or cholangiocyte-derived with trans-differentiation), which are
limited in their ability to recapitulate a complete liver microenvironment.53

Furthermore, some organoid models use an extracellular matrix, such as Matrigel, which

is a reconstituted basement membrane derived from extracts of Engelbreth-Holm-Swarm
mouse chondrosarcoma.>® Since the specific components of Matrigel are not clearly defined
and the safety of Matrigel-based materials is difficult to predict in the human body or in
transcriptomics and genomics studies due to its presence as another biomaterial, it is difficult
to obtain approval from the FDA for its use in clinical trials or any clinically-related tests.5®
However, Matrigel can be used to support liver cells for NAFLD/NASH modeling purposes.

Finally, limitations specific to using the 3D organoid model for NAFLD/NASH include (i)
the need for further optimization of FFA loading conditions (e.g., ideal FFA concentration,
additional agents to stimulate inflammation), (ii) the fact that current models do not
incorporate important immune cells such as B- or T-cells which may play a role in NASH
progression,34 and (iii) the lack of a model that addresses organ-organ interactions (i.e.,
between the gut, adipose tissue, and liver) that may also be an important factor in NASH
pathogenesis.*8:65
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Conclusion

NAFLD/NASH is a disease process with rising prevalence and significant clinical and
economic impact, for which the specific mechanism has yet to be determined and no
definitive treatment exists. It has been demonstrated that 3D organoids can more closely
recapitulate the in vivo microenvironment and allow cells to maintain their mature function
for weeks. This has been particularly useful in modeling NAFLD/NASH because it allows
time for the cells to be stimulated to develop states of steatosis, inflammation, angiogenesis,
and fibrosis, as well as a longterm period to observe changes in gene expression or cellular
function or even responses to potential drug therapies (»Fig. 3). Important next steps
would be to further develop multicell type liver organoids and refine culturing and perfusion
conditions to better model the complexity of the liver microenvironment,®8 which would
ideally include the incorporation of immune cells to mimic inflammation regulation and
hyperactivation thought to be involved in the pathogenesis of NAFLD/NASH (»Fig. 1). The
feasibility of accomplishing this in the liver organoid model in the near future is supported
by recent studies demonstrating successful co-cultures of lymphocytes with intestinal
organoids, in which intraepithelial lymphocytes were not only able to be maintained and
expanded but also demonstrated the ability to migrate in and out of the organoid model.5466
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Fig. 1.

Cegll origins for 3D cell culture models. A depiction of various three-dimensional cell culture
models and the cells which they can be derived from. (i) Donor tissue can be digested, and
isolated hepatic progenitor cells can be seeded directly, or alternatively, (ii) the cell mixture
can be carefully differentiated and sorted into individual cell types to be characterized and
recombined before seeding. (iii) Induced pluripotent stem cells (iPSCs) can be differentiated
into hepatic progenitor cells, which can be directly seeded or further differentiated (e.g.,
hepatocyte-like, hepatic stellate cell-like cells) before seeding. (iv) Finally, carefully selected
commercial cell lines can be aggregated to create organoids. These cell lines and organoids
can be supported by (a) Matrigel or (b) low-attachment plates as a scaffold-free fashion or
(c) on a liver-on-a-chip model. Immune cells, such as monocytes, T cells, and activated or
damaged cells that release damage-associate molecular patterns (DAMPS) or other immune
cells could be added to the organoid culture systems.
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Fig. 2.

Free fatty acid (FFA) loading for nonalcoholic fatty liver disease (NAFLD) organoid model.
(A) Progression of disease at the organ level with contributing factors. (B) Depiction of

how treating liver organoids with FFA with or without costimulation with lipopolysaccharide
(LPS) or TGF-beta can model the NAFLD disease process at the individual cell level

with NAFLD phenotypes in fibrosis, angiogenesis, and inflammation. NASH, nonalcoholic
steatohepatitis.
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Fig. 3.

Applications for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/
NASH) organoids. There are numerous potential applications for the NAFLD/NASH
organoid model, including further elucidating disease mechanisms, testing treatments, high
throughput drug toxicity screening, and even personalized medicine.
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