
Received: 16 January 2024 Revised: 8 July 2024 Accepted: 11 July 2024

DOI: 10.1002/alz.14164

R E S E A RCH ART I C L E

Widespread transposable element dysregulation in human
aging brains with Alzheimer’s disease

Yayan Feng1,2 Xiaoyu Yang1,3 YuanHou1,2 Yadi Zhou1,2 James B. Leverenz4

Charis Eng2,5,6,7 AndrewA. Pieper8,9,10,11,12,13 Alison Goate14,15,16 Yin Shen3,17,18

Feixiong Cheng1,2,5,7

1Cleveland Clinic GenomeCenter, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA

2GenomicMedicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA

3Institute for HumanGenetics, University of California, San Francisco, San Francisco, California, USA

4Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA

5Department ofMolecularMedicine, Cleveland Clinic Lerner College ofMedicine, CaseWestern Reserve University, Cleveland, Ohio, USA

6Department of Genetics and Genome Sciences, CaseWestern Reserve University School ofMedicine, Cleveland, Ohio, USA

7Case Comprehensive Cancer Center, CaseWestern Reserve University School ofMedicine, Cleveland, Ohio, USA

8Department of Psychiatry, CaseWestern Reserve University, Cleveland, Ohio, USA

9Brain HealthMedicines Center, Harrington Discovery Institute, University Hospitals ClevelandMedical Center, Cleveland, Ohio, USA

10Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VAMedical Center, Cleveland, Ohio, USA

11Institute for TransformativeMolecularMedicine, School ofMedicine, CaseWestern Reserve University, Cleveland, Ohio, USA

12Department of Neurosciences, CaseWestern Reserve University, School ofMedicine, Cleveland, Ohio, USA

13Department of Pathology, CaseWestern Reserve University, School ofMedicine, Cleveland, Ohio, USA

14Department of Genetics and Genomic Sciences, Icahn School ofMedicine atMount Sinai, New York, New York, USA

15Nash Department of Neuroscience, Icahn School ofMedicine atMount Sinai, New York, NewYork, USA

16RonaldM. Loeb Center for Alzheimer’s Disease, Icahn School ofMedicine atMount Sinai, New York, New York, USA

17Department of Neurology, University of California, San Francisco, San Francisco, California, USA

18Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA

Correspondence

Feixiong Cheng, Lerner Research Institute,

Cleveland Clinic, Cleveland, OH 44195, USA.

E-mail: chengf@ccf.org

Funding information

National Institute onAging (NIA), Grant/Award

Numbers: R01AG084250, R56AG074001,

U01AG073323, R01AG066707,

R01AG076448, R01AG082118,

RF1AG082211, R21AG083003,

R01AG079291, RF1AG079557,

P30AG072959; National Institute of

Neurological Disorders and Stroke (NINDS),

Grant/Award Number: RF1NS133812;

Abstract

INTRODUCTION: Transposable element (TE) dysregulation is associated with neu-

roinflammation in Alzheimer’s disease (AD) brains. Yet, TE quantitative trait loci

(teQTL) have not beenwell characterized in human aged brains with AD.

METHODS: We leveraged large-scale bulk and single-cell RNA sequencing, whole-

genome sequencing (WGS), and xQTL from three human AD brain biobanks to

characterize TE expression dysregulation and experimentally validate AD-associated

TEs using CRISPR interference (CRISPRi) assays in human induced pluripotent stem

cell (iPSC)–derived neurons.
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RESULTS:We identified 26,188 genome-wide significant TE expressionQTLs (teQTLs)

in human aged brains. Subsequent colocalization analysis of teQTLs with AD genetic

loci identified AD-associated teQTLs and linked locus TEs. Using CRISPRi assays,

we pinpointed a neuron-specific suppressive role of the activated short interspersed

nuclear element (SINE; chr11:47608036–47608220) on expression of C1QTNF4 via

reducing neuroinflammation in human iPSC-derived neurons.

DISCUSSION: We identified widespread TE dysregulation in human AD brains and

teQTLs offer a complementary analytic approach to identify likely AD risk genes.

KEYWORDS

Alzheimer’s disease, CRISPR interference, neuroinflammation, transposable elements, transpos-
able element expression quantitative trait loci

Highlights

∙ Widespread transposable element (TE) dysregulations are observed in human aging

brains with degrees of neuropathology, apolipoprotein E (APOE) genotypes, and

neuroinflammation in Alzheimer’s disease (AD).

∙ A catalog of TE quantitative trait loci (teQTLs) in human aging brains was created

usingmatched RNA sequencing andwhole-genome sequencing data.

∙ CRISPR interference assays reveal that an upregulated intergenic TE from the

MIR family (chr11: 47608036–47608220) suppresses expression of its nearest

anti-inflammatory gene C1QTNF4 in human induced pluripotent stem cell–derived

neurons.

1 BACKGROUND

Transposable elements (TEs), known as “jumping genes” or “viral

elements,” constitute ~45% of the human genome.1 TEs are transcrip-

tionally silenced by epigenetic mechanisms, such as DNA methylation

and histone modifications.2 However, the effectiveness of this silenc-

ing declines with age and in neurodegenerative disorders, including

Alzheimer’s disease (AD).2 In the brains of tau transgenic AD mice,

TEs, especially from the endogenous retrovirus (ERV) class, can be acti-

vated at RNA, DNA, and protein levels in the context of brain aging and

tauopathy.3 By integrating studies ofAD fromhuman postmortembrain

tissues and Drosophila melanogaster models, it has been demonstrated

that tau is sufficient to induce TE activation and that this activa-

tion is associated with active chromatin signatures at multiple ERV

genomic loci.4 Loss of nuclear TARDNA-binding protein 43 (TDP-43) is

associated with chromatin de-condensation around long interspersed

nuclear elements (LINEs) and leads to increased retrotransposition

of LINE-1 in post mortem frontotemporal degeneration–amyotrophic

lateral sclerosis (FTD-ALS).5 TE activation is also highly important dur-

ing neurodevelopment,6 indicating that TE regulation in the brain is a

common feature across the human lifespan.

Elevated ERVs in neurons have been linked to activated microglia

and inflammatory responses during mouse brain development.7 De-

repression of a panel of LINE and long-terminal repeat (LTR) families

causes degenerative phenotypes in human TDP-43Drosophila neurons

andglia,which canbe rescuedbygenetically blocking expressionof this

TE.8 Reactivated ERV can also promote protein aggregate spreading in

a cell line model.9 Thus, therapeutically targeting TEs might help treat

aging-related brain disorders.10 It has also been demonstrated that

genetic stabilization of heterochromatin suppresses aging-associated

TE activation and extends life span in Drosophila.11 Likewise, down-

regulation of Tc1 (a superfamily of interspersed repeats and DNA

transposons) extends lifespan in Caenorhabditis elegans.12 In addi-

tion, nucleoside reverse-transcriptase (RT) inhibitors and antiretrovi-

ral human immunodeficiency drugs rescue inflammation and cellular

senescence triggered by TE activation, which extends lifespan.13 Thus,

understanding the mechanistic basis of TE dysregulation in the aging

human brain could help identify therapeutic strategies for preserving

brain health throughout aging.

In this study, we sought to systematically characterize genetic

control of TE expression and identify dysregulated TEs that could

potentially contribute to disease pathogenesis in human aging brains

with AD. First, we used two complementary approaches to investi-

gate TE expression and dysregulation across diverse AD pathologies

(including tau and amyloid beta [Aβ], apolipoprotein E [APOE] geno-

types, and sex) using bulk RNA sequencing (RNA-seq) data from
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources. Transposable elements (TEs),

known as “jumping genes” or “viral elements”, constitute

~45% of the human genome. Although TE dysregulation

has been identified in aged brains, TE-mediated quanti-

tative trait loci (teQTL) has not been well characterized

in Alzheimer’s disease (AD). We posit that the systematic

identification of TE dysregulation and teQTLs in human

aged brains will identify novel insights into non-coding

genetics and genome regulatory architecture and offer

a promising avenue for understanding AD genetics and

identifying novel targets for therapeutic development.

2. Interpretation: We identified widespread TE dysregula-

tion in human aged brains through leveraging large-scale

RNA sequencing (RNA-seq), whole-genome sequenc-

ing (WGS), and various brain-specific QTL data (xQTL)

from three brain biobanks: (a) Mount Sinai Brain Bank

(MSBB), (b) Mayo Clinic (Mayo), and (c) Religious Orders

Study (ROS) or the Rush Memory and Aging Project

(MAP) (ROS/MAP) brain biobanks. Colocalization anal-

ysis of teQTLs with large AD genome-wide association

study loci prioritized multiple AD likely causal genes

(i.e., C1QTNF4 and FDFT1) regulated by teQTLs. Using

CRISPR interference assays, we demonstrated that an

upregulated intergenic TE from the MIR family (chr11:

47608036–47608220) suppresses expressionof its near-

est anti-inflammatory gene C1QTNF4 in human induced

pluripotent stem cell–derived neurons, highlighting the

regulatory roleofAD-associatedTEactivationunderlying

the AD neuroinflammation.

3. Future directions: These findings demonstrate

widespread TE dysregulation in human AD brains and

teQTLs offer a powerful analytic approach to identifying

AD risk genes. Further investigations using long-read

RNA-seq data from ethnically diverse cohorts and exper-

imental models are essential to establish a likely causal

relationship of TE activation and disease etiologies and to

identify TE-targeted biomarkers and therapeutics for AD.

three large-scale human brain biobanks (Figure 1). To identify genetic

control of expressed TEs, we integrated TE transcriptomic profiles

with matched whole-genome sequencing (WGS) data. This identi-

fied 26,188 genome-wide significant TE-mediated quantitative trait

loci (teQTLs) in human brains. We then used colocalization analysis

to prioritize risk loci associated with TE dysregulation by integrat-

ing AD genome-wide association study (GWAS) datasets with xQTLs,

including teQTLs, gene expression QTLs (eQTLs), DNA methylation

QTLs (meQTLs), and H3K27 histone acetylation QTLs (haQTLs). The

regulatory relationship between an upregulated TE and its poten-

tial target gene, such as a short interspersed nuclear element (SINE;

chr11: 47608036–47608220) and C1QTNF4, were experimentally

investigated using human brain cell type-specific enhancer-promoter

interactomemaps andCRISPR interference (CRISPRi) assays in human

induced pluripotent stem cell (iPSC)-derived excitatory neurons.

2 METHODS

2.1 RNA-seq data collection

We obtained fastq files for RNA-seq datasets in similar brain regions

from age- and sex-matched subjects from the three primary Accel-

erating Medicines Partnership Alzheimer’s Disease (AMP-AD) cohort

studies in the Synapse database (Table S1 in supporting information).

The first dataset consists of RNA-seq data generated as part of the

Mount Sinai Brain Bank (MSBB) study (synapse ID: syn3159438). For

this study, RNA was collected from 272 AD patients and 145 healthy

controls (HCs) of European ancestry across four brain Brodmann areas

(BM), including BM10 (n = 126), BM22 (n = 90), BM36 (n = 83), and

BM44 (n = 118). The second dataset consists of RNA-seq data gen-

erated as part of the Mayo RNA-seq study (Mayo) study (synapse ID:

syn5550404). For this study, RNA was collected from the cerebellum

and temporal cortex (TCX) of 156 AD patients and 175 HCs of Euro-

pean ancestry. The third dataset consists of RNA-seq data generated

as part of the Religious Orders Study Rush Memory and Aging Project

(ROS/MAP; synapse ID: syn3219045). For this study, RNA was col-

lected from the posterior cingulate cortex and dorsolateral prefrontal

cortex (DLPFC) of 98 AD patients and 41 HCs of European ancestry.

We first used Plink14 to confirm the ancestry information of subjects

from the three brain biobanks based on reference samples of HapMap

III (Figure S1A in supporting information). Clinical and pathological

variables for the subjects, including RNA integrity number (RIN), sex,

race, age at death, post mortem interval (PMI), disease status, APOE

genotype, Braak staging, plaque density, and sequencing batch were

also retrieved from the Synapse database (syn21241740).

2.2 Analysis of TE expression using bulk RNA-seq
data

We first used the SQuIRE software package for analyzing TE expres-

sion at both the subfamily and locus level.15 The SQuIRE pipeline

includes four tools: Fetch, Map, Count, and Call. By default, SQuIRE

automatically downloads hg38 annotation files for genes and TEs from

RefSeq and the University of California Santa Cruz (UCSC) Genome

Browser RepeatMasker track with the fetch tool. The reference panel

of the RepeatMasker database includes locus-based TEs for each

subfamily’s members within the retrotransposon (SINE, LINE, LTR)

and DNA transposon (DNA) families (Table S2 in supporting infor-

mation). The Map tool uses parameters tailored to the alignment of

TEs. By default, the reads were mapped to both the hg38 genome
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F IGURE 1 A diagram illustrating systematic characterization of TE dysregulation in human brains with AD. Bulk RNA-seq data sets from three
brain biobanks (MSBB,Mayo, and ROS/MAP) were downloaded from the AD knowledge portal. RNA-seq data from theMSBB cohort was derived
from four brain BM, including BM10, BM22, BM36, and BM44. RNA-seq data from theMayo cohort consisted of 156 AD patients and 175
cognitive HCs from cerebellum and TCX tissues. RNA-seq data from the ROS/MAP cohort were collected from 98 AD and 41 cognitive HCs in two
cortex regions. Results obtained from bulk RNA-seq data were validated using three brain cell-type RNA-seq datasets: (1) the first FACS-purified
RNA-seq data from four major brain cell populations fromAD and control frozen cortex tissues, (2) the second snRNA-seq datasets consisting of
482,472 nuclei from non-demented control brains and AD brains with both Aβ and tau pathology, and (3) the third RNA-seq data from human
iPSC-derived population APOE brainmicroglia cells. Family- and locus-based TE expression levels were calculated using three tools (seeMethods).
We profiled Atlas of Human Brain teQTLs by integrating locus-based expressed TEs with correspondingWGS data from theMayo brain biobank.
We then leveraged colocalization analysis of xQTLs with three ADGWAS summary statistics data to identify AD likely causal genes regulated by
brain teQTLs. The underlyingmechanisms between TE and AD causal genes were dissected using brain cell type–specific enhancer–promoter
interactomemaps. Finally, we used CRISPRi to confirm the regulatory relationship between locus TE and its target gene. Aβ, amyloid beta; AD,
Alzheimer’s disease; APOE, apolipoprotein E; BM, Brodmann areas; CRISPRi, CRISPR interference; DLPFC, dorsolateral prefrontal cortex; FACS,
fluorescence-activated cell sorting; GWAS, genome-wide association study; HC, healthy controls; iPSC, induced pluripotent stem cell; Mayo,Mayo
Clinic; MSBB,Mount Sinai brain bank; PCC, posterior cingulate cortex; RNA-seq, RNA sequencing; ROS/MAP, Religious Orders Study/Rush
Memory and Aging Project; TCX, temporal cortex; TE, transposable element; teQTLs, transposable element quantitative trait loci;WGS,
whole-genome sequencing.
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and the RepeatMasker annotation using STAR16 with the parameters -

outFilterScoreMinOverLread 0.4 -outFilterMatchNminOverLread 0.4

-chimSegmentMin 100 to allow for multi-mapping and discordant

alignments. The output BAM file was further processed by the Count

tool using StringTie with default settings, which incorporates both

unique- and multi-mapped reads to calculate read counts and frag-

ments per kilobase of transcript per million mapped reads (FPKM) for

each TE locus. Briefly, Count first identifies reads that map to TEs;

reads that only align to unique locations in the genome are termed

unique-mapped reads and reads that map to multiple genomic loci are

termed multi-mapped reads. Then Count assigns fractions of a read to

each TE and further calculates the probability that the TE contributes

to that read. The uniquelymapped reads have 100%probability to give

rise to that read. TEs without uniquely mapped reads (n) receive frac-

tions inversely proportional to the number of loci (N). Thus, TEs with

unique reads obtain the remainder fraction (1 − n

N
). Then Count nor-

malizes each unique count (CU) to the number of individual unique

read start positions, or each TE’s uniquely aligned length (LU). TEs with

unique mapped reads (s ∈ T) are compared to each other. The fraction

of a read is calculated as the ratio of normalized unique count (
CU
LU
) to

the combined normalized unique count of all TEs (
∑

s∈T
Cs
Ls
), as shown in

the following Equation (1):

f
(

r

TE

)
=

CU
LU∑

s∈T
Cs
Ls

×
(
1 − n

N

)
(1)

Count further refines this initial assignment using an expectation

maximization (EM). Count normalizes a TE’s total read count ( CTE =
unique read counts + multi-aligned fractions from the previous step)

by the effective transcript length (lTE):
CTE
lTE

. Then the relative normal-

ized total count is compared to the combined normalized total count

of all of the TEs being compared (
∑

s∈T
Ts
ls
), as shown in the following

Equation (2):

f
(

r

TE

)
=

CTE
lTE∑
s∈T

Ts
ls

(2)

The output read count file was further processed for differen-

tial expression analysis among different biological comparison groups

using awell-established RNA-seq harmonization approach released by

the AMP-AD consortium (syn21241740).

To test the replication rate of SQuIRE, we first used TEtranscripts17

to assess the accuracy of family-based TE expression. TEtranscripts

first assigns unique-mapped and multi-mapped reads to each TE

according to sequence similarity. Then, TEtranscripts combines those

inserted locus TE RNA abundances into subfamilies according to

definitions and nomenclature fromRepeatMasker.18 We then used the

multi mode to assign weight to the contribution of the ambiguously

mapped reads at each mapped locus. The EM algorithm was further

used to determine the maximum likelihood of multi-mapped reads to

all TE transcripts. We then used Telescope19 to confirm the accuracy

of locus-based TE expression. After the alignment stage, Telescope

re-assigns one or more possible alignments for each fragment, along

with the respective alignment scores. Telescope then calculates penal-

ties for each position in the alignment. Finally, Telescope iteratively

optimizes the estimated penalties and reassigns fragments using a

Bayesian statistical model.19 Compared to other tools, Telescope

has greater resolution and is sensitive to differences in sequencing

platforms.

2.3 Differential expression analysis

For each brain biobank, we selected covariable factors from the

RNA-seq harmonization study released by the AMP-AD consortium

(syn21241740), including clinical variables (diagnosis, APOE genotype,

sex, age at death, race, brain region, individual ID, and PMI) and

sequencing variables (RIN, sequencing batch, and sequencing statis-

tic results). To account for potential non-linear dependence for RIN,

squared terms (RIN2) were included. We first used the software

variancePartition (version 1.21.6)20 package to calculate percent vari-

ation in TE expression explained by each variable. It is apparent that

variation of individuals is the strongest biological driver of variation

followed by differences across sex and age at death (Figure S1B).

The following model was fitted for each brain biobank: TE expres-

sion ∼ diagnosis + apoe4_allele + sex + age_death + brain region

+ sequencingBatch + pmi + RIN + RIN2 + race + ethnicity + indi-

vidualID + alignment Summary Metrics_PCT_PF_READS_ALIGNED

+ RnaSeqMetrics_PCT_INTRONIC_BASES + RnaSeq Metrics_PCT_

INTERGENIC_BASES + RnaSeq Metrics_PCT_CODING_BASES. We

then merged the RNA-seq data from different brain regions for each

brain biobank. We further applied a well-established data harmoniza-

tion approach released by the AMP-AD consortium (syn21241740) to

identify both subfamily- and locus-based differentially expressed TEs

based on the above resultant TE count tables. Briefly, we removed

poorly expressed TEs from the voom-normalized TE expressionmatrix.

TE expression was further filtered by comparing transcriptomic

changes between TEs and the nearest gene. We retained TEs har-

boring oppositive log2FC value between the TE and its nearest gene.

Then we used fixed/mixed effects modeling to adjust for the possi-

ble factors mentioned above on the trimmed mean of M–normalized

count matrix table from the edgeR and voom package.21 The filter-

ByExpr function in the edgeR package provides an automatic way to

filter expression of TEs, while keeping more highly expressed TEs for

downstream analysis. P values were adjusted for multiple testing using

the Benjamini–Hochberg method, with TEs considered differentially

expressed at |log2FC| ≥ 1.0 and q < 0.05. Locus-based differentially

expressed TEs that overlapped with gene exons were filtered using

bedtools.22 The differentially expressed geneswere retrieved from the

RNA-seq harmonization study (syn21241740). We applied this har-

monization approach across different biological comparison groups,

including AD versus HC, APOE ε4 AD versus HC, female AD versus

female HC, andmale AD versus male HC for each brain biobank.
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2.4 Genotype data preprocessing

TheWGS datasets from 349 subjects in variant call format (VCF) were

downloaded fromtheMayostudy (synapse ID: syn11707308). Samples

that overlapped with the RNA-seq harmonization study (syn9702085)

were selected for teQTL analysis. In total, 152 subjects were diag-

nosed with AD or were HCs and had matchedWGS and RNA-seq data

in the TCX region of the Mayo study. Ancestry information was esti-

mated based on reference samples of known ethnicities fromHapMap

III (Figure S1A). We use the following steps to improve genotype data

quality, based on published protocols widely used for GWAS23 and

eQTL studies.24 First, variants with a genotypemissing rate≥ 5%were

excluded. In total, 2,020,217 variants were excluded in this step. We

then checked the genotype missing rate at subject level. Subjects with

genotype missing rate < 5% were left for further analysis. No sub-

jects with excessive missing values were excluded from this step. We

further filtered variants with the Hardy–Weinberg equilibrium (HWE)

test using P value < 10−6. From the 199 subjects, 715,854 variants

were removed in this step. We then used the Mishap test incorpo-

rated in PLINK14 to predict the genotypemissingness status of a single

nucleotide polymorphism (SNP) by neighbor SNPs. Using 10−9 as the

P value threshold in theMishap test, we obtained 16,944,001 variants

passing the filters. Due to limited sample size, 7,027,116 variants with

minor allele frequency (MAF) ≤ 0.01 were excluded for subsequent

analysis.25 To improve sequencing data quality, we used independent

SNPs to calculate heterozygosity rates. No samples with heterozy-

gosity rates ± 4 standard deviations from the mean were excluded.26

In total, 152 TCX brain region samples consisting of 8,575,054 SNPs

passed the quality control in the preprocessing of genotype data.

2.5 TE expression data preprocessing

We selected TEs with > 1 FPKM in at least 50% samples for teQTL

analysis.15 We used the bedtools22 intersect function to identify the

nearest genes for each locus TE. Locus-based differentially expressed

TEs that overlapped with gene exons were filtered out. We retained

TEs that showed oppositive log2FC compared to the nearest genes,

basedondifferential expressionanalysis andRNAharmonization study

(syn21241740). We further used three approaches to exclude sam-

ple outliers with problematic expression profiles, including relative

log expression (RLE) analysis, pair-wise correlation-based hierarchi-

cal clustering, and D-statistics analysis.26 Samples with problematic

expression profiles separated from normal samples were labeled as

outliers. In total, we obtained 152 samples with 43,254 expressed TE

loci for subsequent teQTLmapping analysis.

2.6 teQTL mapping

We used Matrix eQTL27 to perform teQTL mapping using all the pre-

processed genomic autosomal variants and TE expression data in the

Mayo cohort. For cis-teQTL mapping, we restricted our search to vari-

ants within 1 Mb upstream and downstream of each expressed TE.28

This software used linear regression and analysis of variancemodels to

test associations between gene expression levels and genotypes. We

included covariates, including sex, age at death, APOE genotype, post

mortem interval, Braak staging scores, and Thal amyloid stages when

performing association testing. Multiple testing of Matrix eQTL was

addressed by calculating the false discovery rate (FDR) for the TE–SNP

pairs that passed auser-defined significance threshold. This calculation

was followed by the Bonferroni and Hochberg procedure, which is to

let P(1) < P(2) < . . . < P(K) be the P values that passed the user-defined

significance threshold and N be the total number of tests performed.

We used the FDR value of 0.05 as the threshold for cis-teQTL.

We used RNA-seq data andmatchedWGS data from the ROS/MAP

cohort to replicate our teQTL findings (n = 45). We applied the same

approachmentioned above to test local TE–SNP pairs. Replication rate

of teQTL findings between the two cohorts was further assessed using

the 𝜋1 statistic; a detailed description of this estimation is described

in section 2.7. All the TEs shown in this study have been annotated

with assembly GRCh38. We converted genomic coordinates between

different genome assemblies using CrossMap (version 0.6.4).29

2.7 Estimation of teQTL SNP sharing with
different molecular QTLs

We first obtained full summary statistic QTL data from three

databases: (1) the eQTL dataset from the Mayo brain biobank30

derived from cerebellum and TCX of European ancestry; (2) x-QTL

datasets from DLPFC from the ROS/MAP brain biobank (synapse ID:

syn17015233),31 including eQTL, cis DNA meQTL, and cis haQTL, all

derived from European ancestry; (3) theMetabrain eQTL dataset from

cortex of European ancestry.32 Detailed information for QTL datasets

used in this study are provided in Table S3 in supporting information.

We then used a pairwise 𝜋1 statistic33 to test sharing and replication

rate of teQTL with the three types of xQTL datasets using the qvalue

R (version 4.2.0) package. Using sharing between teQTL and eQTL as

an example, this𝜋1 analysis could performFDRestimationwith a given

set of P values from the tested TE expression–SNP associations (test

phenotype) that overlapped with meQTL SNPs (discovery phenotype).

Thus, if themost SNPs could affect the twomolecular phenotypes, then

the corresponding 𝜋1 would be high.

2.8 summary statistics in AD

Wedownloaded three ADGWAS summary statistics datasets: (1) late-

onset AD from GWAS catalog with accession number GCST00751134

(63,926 participants of European ancestry); (2) late-onset AD by

Wightman et al. with accession number GCST9004469935 (1,126,563

subjects of European ancestry); and (3) GWAS of AD from GWAS

catalog with accession number GCST9002715836 (788,989 partici-

pants). We extracted the MAF value from 1000 Genomes Phase 1 and

selected SNPs with MAF > 1% for subsequent analysis. We defined
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genome-wide significant loci with a threshold of GWAS P< 5.0 × 10−8.

Loci with suggestive association were defined at a relaxed threshold

of GWAS P < 1.0 × 10−5. Detailed information for the three GWAS

datasets can be found in Table S4 in supporting information.

2.9 Colocalization analysis

To assess whether two molecular phenotypes were consistent with

a shared causal variant, we performed Bayesian colocalization analy-

sis using the coloc37 package in R (version 4.2.0) for AD GWAS loci

with different molecular phenotypes, including teQTL, eQTL, meQTL,

and haQTL. We selected any SNPs passing genome-wide significance

(P< 5.0× 10−8) in the threeADGWASdatasets. For xQTL datasets, we

selected a relaxed thresholdof xQTLP<1.0×10−5 basedonaprevious

study.25 SNPs with MAF > 1% were selected for subsequent analy-

sis. This method takes the two sets of summary statistics as input (for

traits 1 and traits 2, whichwe refer to as “configuration”). Each possible

colocalization pair can be assigned to one of five hypotheses:

1. H0: No association with either trait

2. H1: Association with trait 1, not with trait 2

3. H2: Association with trait 2, not with trait 1

4. H3: Association with trait 1 and trait 2, two independent SNPs

5. H4: Association with trait 1 and trait 2, one shared SNP

The colocalization framework can group the configurations into five

sets: S0, S1, S2, S3, and S4. It can compute the posterior probabilities

for each of the five hypotheses according to the following Equation (5):

P (Hh|D) ∝ ∑
S∈Sh

P (D|S)P (S) (5)

where P(S) is the posterior probability of a configuration, P(D|S) is

the observed posterior probability data D for a given configuration S,

and the sum is over all configurations S which are consistent with a

given hypothesis Hh, where h = (1,2,3,4). Then it can reformulate the

posterior probability as a ratio for each hypothesis. Using posterior

probability under hypothesis 4 (PP4) as an example:

PP4 =

P(H4|D)
P(H0|D)

1 + P(H1|D)
P(H0|D) +

P(H2|D)
P(H0|D) +

P(H3|D)
P(H0|D) +

P(H4|D)
P(H0|D)

(6)

where the P(Hi|D) represents the posterior probability under each

hypothesis, where i = (0,1,2,3,4). The ratio in the numerator and

denominator of the above equation is:

P(Hh|D)
P(H0|D) =

∑
S∈Sh

P(D|S)
P(D|S0) ×

P (S)
P (S0)

(7)

The coloc package can assess the posterior probabilities in hypothe-

sis H4. For each genome-wide significant and subthreshold GWAS loci,

we first used PLINK14 to select the top lead SNP and then extracted

all SNPs within 500 Kb upstream or downstream of the top lead SNP

(1 Mb sliding window size). In each QTL dataset, we extracted SNP–

gene pairs within that range and then tested posterior probabilities

of colocalization between those GWAS SNPs and genes using approx-

imate Bayes factor computations.37 For the TEs regulated by teQTL,

CpGs regulated by meQTL, and peaks regulated by haQTL, we used

bedtools22 to assign the nearest genes according to the genomic region

where the TEs, CpGs, and peaks are located. We assumed the two

traits might be regulated by a single causal variant when the posterior

probability of a colocalized signal (PP4) was> 0.5.

2.10 TE transcriptome-wide association analysis

We leveraged FUSION38 to perform transcriptome-wide association

analysis (TWAS) to identify significant TE expression–trait associa-

tions for the 64 control brains with available genotype and expression

data from human TCX from the Mayo brain biobank (synapse ID:

syn11707308). FUSION is an R package that implements the TWAS

scheme. For genotype data, we first used PLINK14 to convert the

VCF files to a standard binary PLINK format. For TE expression data,

TEs with expression levels < 1 in at least 50% of the samples were

filtered for further analysis. We first estimated cis-SNP heritabil-

ity for those expressed TEs for SNPs in the 1 Mb flanking regions

of the TE. Only TEs that were significant for heritability estimates

at a Bonferroni-corrected P < 0.05 were retained for subsequent

analysis.We then constructed the reference panel by computing SNP–

expression weights between genotype SNPs and TE expression for

64 samples using several regularized linear models, including best lin-

ear unbiased prediction (BLUP), least absolute shrinkage and selection

operator, Elastic Net, and an additional Bayesian linear mixed model

(BSLMM). The prediction accuracy of each model was measured by

5-fold cross-validation by a random sampling of 1000 highly herita-

ble TEs. The computed Z score was used to assess the association

strength between implicated TEs and disease. To account for multi-

ple hypotheses, we applied a q < 0.05 for the TE expression reference

panel. We further used FUSION’s conditional analyses to validate the

TWAS findings.

2.11 Genomic annotations of teQTL

We leveraged two approaches to annotate the teQTLs with default

settings.We first leveraged genomic locations for each teQTL to differ-

ent functional genomic elements according to the annotation database

from the UCSC Genome Browser. Then, we applied the Genomic

Regulatory Elements and GWAS Overlap algoRithm (GREGOR)39 to

estimate global enrichment patterns of teQTLs in epigenomic features

using a permutation-based approach. We downloaded 15 chromatin

states from five chromatin marks in eight brain cell types from

the Roadmap Epigenomics projects,40 including brain angular gyrus

(E067), brain anterior caudate (E068), brain cingulate gyrus (E069),

brain germinal matrix (E070), brain hippocampus middle (E071), brain

inferior temporal lobe (E072), brain DLPFC (E073), and brain substan-

tia nigra (E074).
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2.12 Brain cell type–specific analysis

Weused four brain cell type RNA-seq datasets to validate our findings.

First, we used RNA-seq data from four sorted brain cell popula-

tions, including microglia, astrocytes, endothelial cells, and neurons

from frozen cerebral cortical tissues from AD and control brains41

to identify cell type–specific TE activation in human aging brains.

Briefly, FASTQ files were downloaded from the National Center for

Biotechnology Information Gene ExpressionOmnibus (GEO) database

under accession number GSE125050.41 Clinical variables, including

PMI, sex, and APOE genotype, were also downloaded from the origi-

nal publication.41 Next, differentially expressed TEs at the locus level

between different disease status within the same cell types, such as

between AD and HC, between heterozygous APOE ε4 and heterozy-

gous APOE ε3, and between females and males, were identified by

linearmodel analysis using the data harmonization approach described

above. TEs with Benjamini–Hochberg corrected P < 0.05 after multi-

ple testing were identified as locus-based differential expressed TEs.

The second brain cell type RNA-seq dataset that was used was from

human iPSC-derived population APOE brain microglia cells, which

could be downloaded from the GEO/Sequence Read Archive reposi-

tory GSE190187.42 This dataset was used to identify APOE ε4–driven
lipid metabolic dysregulation in astrocytes and microglia. Those cell

lines were selected from 43 Europeans, controlling for sex and dis-

ease status, and confirming APOE ε4/ε4 as the main AD contributor.

Then, we used the same RNA harmonization approach mentioned

above to identify locus-based differentially expressed TEs solely con-

tributed by APOE ε4/ε4 by comparing APOE ε4/ε4 to APOE ε3/ε3. The
third brain cell type RNA-seq dataset we used was that of 482,472

nuclei (GSE148822) from human non-demented control brains and

AD brains.43 For each donor, two brain regions were included: the

occipital cortex (OC) with Aβ pathology and the occipitotemporal cor-

tex (OTC) with both Aβ and tau pathology. We further used scTE44

to profile subfamily-based differentially expressed TEs between AD

brains (n = 10) and HCs (n = 8; Figure S2 in supporting information).

The fourth brain cell type RNA-seq dataset we used was human brain

cell type–specific enhancer–promoter interactomemaps formicroglia,

astrocytes, neurons, and oligodendrocytes.45 Those cell types were

subjected to the assay for transposase-accessible chromatin sequenc-

ing (ATAC-seq), H3K27ac and H3K4me3 chromatin immunoprecipita-

tion sequencing (ChIP-seq), and proximity ligation-assisted ChIP-seq

(PLAC-seq).

2.13 GWAS enrichment analysis

We used GWAS Analysis of Regulatory or Functional Information

Enrichment with linkage disequilibrium (LD) correction (GARFIELD)46

to test for enrichment of the three AD GWAS SNPs among teQTLs.

GARFIELD performs greedy pruning of GWAS SNPs based on LD

information (r2 > 0.1) and then annotates them based on functional

information overlap. It quantifies enrichment using odds ratio (OR) at

GWAS P < 1.0 × 10−5 and P < 5.0 × 10−8 significant cut-offs and

assesses significance by using generalized linear model testing, while

accounting for MAF, distance to nearest transcription start site, and

number of LD proxies (r2 > 0.8). Within this framework, GARFIELD

accounts for major sources of confounding that current methods do

not offer. In this case, we used the three GWAS summary statistics

data as the annotation files, and thenassessed theenrichmentof teQTL

signals in the three features extracted from the three GWAS studies

(Table S4). We further used LD score regression analysis (LDSC)47 to

validate GARFIELD findings.

2.14 Functional enrichment analysis

AD-related molecular signatures were obtained from the Molecular

SignaturesDatabase (MSigDB).We searched several terms inMSigDB,

including “AD,” “amyloid,” “astrocyte,” “immune,” “microglia,” “mito-

chondria,” “myelin,” “neurofibrillary_tangle,” “neurogenesis,” “neuroin-

flammation,” “organic_acid,” “oxidation,” “protein_metab,” “synapses,”

and “tau.” In total, we obtained 4904 AD-related gene sets for

enrichment analysis. Functional enrichment analysis of locus-based

differentially expressed TEs was performed using the enricher func-

tion in the clusterProfiler48 package in R (version 4.2.0). Terms with

Benjamini–Hochberg corrected P < 0.05 were defined as significantly

enriched terms and pathways. For the SNPs located around locus-

based differentially expressed TEs, we leveraged FUMA49 to perform

functional mapping and annotation functional mapping of those SNPs.

The SNP2GENE function in FUMA first classifies those SNPs as input

and then provides extensive functional annotation for all SNPs in

genomic areas identified by the lead SNP. Then, the GENE2FUNC func-

tion in FUMA takes a list of gene IDs as identified by the SNP2GENE

function and annotates those genes in biological context. Significant

enrichment at Bonferroni-corrected P≤ 0.05were selected.

2.15 Functional validation of TEs by CRISPRi

i3N-WTC11 neurons were differentiated with a two-step protocol as

previously described.50 dCas9-KRAB driven by CAG promoters was

knocked-in to a safe harbor locus in the intronic region of CLYBL to

enable robust transgene expression through differentiation. sgRNAs

targeting locus TEs and promoters of target genes were designed by

CHOP-CHOP with high efficiency.51 To minimize the chance of off-

target effects, we can identify off-target sites with 1 bp mismatch

(MM1), 2 bp mismatches (MM2), or 3 bp mismatches (MM3). We

selected sgRNAs with 0 MM1 and MM2, and < 5 MM3, to con-

firm the specificity of each sgRNA used in our study. Candidate TEs

which have sgRNAs passing the above specificity criteria or have GC-

content between 40% and 70% were selected for CRISPRi validation.

Two independent sgRNAs were used for each locus TE and listed

in Table S5 in supporting information. sgRNA oligos were inserted

into lentiGuide-puro vector (Addgene 52963) and the plasmids were

co-transfected with lentivirus packaging plasmids, including pMD2.G

(Addgene, 12259), and psPAX (Addgene, 12260), into 293T cells by
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F IGURE 2 Locus-based differential expression of TEs across two brain biobanks and ADwith varying degree of neuropathology. A, D, Volcano
plots of locus-based differentially expressed TEs between AD subjects and cognitively HC across ROS/MAP (A) andMayo (D) cohorts. TEs are
colored bywhether differentially expressed (q< 0.05; gray), differentially expressed but withmodest effects (|log2FC|< 1.0; orange and light blue),
or with stronger effects ((|log2FC|> 1.0; red and dark blue). Numbers of genes in each category are above the plot. TEs highlighted here represent
the identified commonly differentially expressed TEs across the two brain biobanks. Genes in parentheses represent the nearest genes of
differentially expressed TEs under consideration. B, Upset plot showing enriched AD-relatedmolecular signatures among the nearest genes of
locus-based differentially expressed TEs in ROS/MAP brain biobank. Dots with connecting lines indicate signature combinations. C, F, PCA based
on the locus-based differentially expressed TEs of the ROS/MAP (C) andMayo (F) brain biobanks. Circles represent that AD and cognitive HC
subjects could be separated at a confidence interval of 95%. E, Network depicting the nearest gene sets of locus-based differentially expressed TEs
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PolyJet (SignaGen Laboratories SL100688). Virus-containing media

was collected for 48 hours, filtered through 0.45 μm filters (Milli-

pore SLHV033RS), and concentrated with Amicon Ultra centrifugal

filters (Millipore UFC801024). The virus was titrated in iPSCs by

antibiotic selection. For CRISPRi experiments, iPSCs were first dif-

ferentiated into 2-week excitatory neurons. The neurons were then

treated with lentivirus expressing sgRNAs (multiplicity of infection ≈

3) and subjected to puromycin selection (0.5 ug/mL) for 4 days. Cells

were collected for mRNA extraction 7 days post-transfection. Gene

expression was determined using both RNA-seq and real-time poly-

merase chain reaction (RT-qPCR). DNase treated samples were sent

to the genomics core of the Lerner Research Institute, Cleveland Clinic

for RNA-seq. Pair-end 75 bp RNA-seq libraries were constructed fol-

lowing Illumina’s protocols. RNA-seq analysis was conducted with two

biologically independent replicates. Genes with Benjamini–Hochberg

corrected P value < 0.1 were identified as differentially expressed.

RT-PCR was performed according to previously published protocol.52

The relative expression values from two biological replicates were

compared using Student t test.

2.16 Statistical analysis

Principal component analysis (PCA) was conducted using the ggbiplot

package in R (version 4.2.0) based on the locus-based differentially

expressed TEs of the two RNA-seq brain biobanks. We used the

bedtools22 intersect function to identify the nearest genes for each

locus TE. Spearman correlation analysis between locus TE and its near-

est gene was performed using the cor.test function in R. All plots

created in this study were generated using the ggplot253 package in R.

3 RESULTS

3.1 TE expression atlas in human AD brains

We first quantified TE expression at the family level across the three

brain biobanks using SQuIRE (adjusted P-value [q]< 0.1, seeMethods).

We then performed differential expression analysis of subfamily TEs

between AD subjects and cognitive HCs in each brain biobank, con-

trolling for harmonized covariable factors from the AMP-AD RNA-seq

Harmonization Study (syn9702085, seeMethods).

Using SQuIRE (see Methods), we found 8, 2, and 9 upregulated

TE subfamilies in the MSBB, Mayo clinic (Mayo), and the ROS/MAP

cohorts, respectively (Figure S3A and Table S6 in supporting infor-

mation). These differentially expressed subfamily TEs were further

detected using TE transcripts (Figure S3B,C and Table S6).17 As

transcription factors (TFs) mediate sequence-specific recognition and

activation of TEs,54 we investigated TF–TE regulatory relationships

using enrichment analysis of known binding motifs for the top two

upregulated subfamily TEs (Figure S3D). For example, we pinpointed

that upregulated FOXO4 (log2FC = 0.31, q = 1.16 × 10−8) was signifi-

cantly enrichedwithin the upregulated ERV1 elements (log2FC= 0.46,

q = 4.46 × 10−5) in AD brains from the ROS/MAP cohort (Figure S3D),

suggesting potential regulatory roles between activated subfamily TE

and FOXO4 expression in AD.

We next investigated locus-based TE expression using SQuIRE.15

After adjusting the harmonized covariable factors (see Methods), we

identified locus-based differentially expressed TEs between AD and

HC brains for each brain biobank. In total, 10, 882, and 3895 TEs

showed significant transcriptomic changes across MSBB, Mayo, and

ROS/MAP brain biobanks, respectively (|log2FC| ≥ 1.0, q < 0.05,

Figure 2A,D, and Table S7 in supporting information). The limited num-

ber of locus-based differentially expressed TEs in the MSBB cohort

could reflect low coverage and short single-end sequencing reads

(n = 100 bp).55 We further analyzed differentially expressed TEs from

theMayo and ROS/MAP cohorts. Among the dysregulated TEs in both

Mayo and ROS/MAP brain biobanks, we found that the class with the

most significantly elevated TE expressionwas LINE (Figure S4A in sup-

porting information), with LINE-1 found to be the predominant type of

elevated LINE in the two AD brain biobanks (Figure S4B). We further

used Telescope19 to evaluate robustness of locus-based differentially

expressed TEs identified by SQuIRE.15 We found that the replica-

tion rate of Telescope ranged from 49.9% to 72.9% in the ROS/MAP

biobank (Figure S5A and Table S7 in supporting information) and from

62.6% to 73.7% in the Mayo brain biobank (Figure S5B and Table

S7). Cross-biobank analysis of locus-based differentially expressed TEs

subsequently revealed a significant overlap across different biolog-

ical comparison groups, including AD versus HC (Fisher exact test

P< 2.2× 10−16), heterozygous APOE ε4AD versus HC (P= 1.9× 10−6),

female AD versus female HC (P < 2.2 × 10−16), and male AD versus

male HC (P< 2.2 × 10−16; Figure S6A–D in supporting information).

We then examined genome regulatory sequences of TEs bymapping

dysregulated TEs with human brain–specific regulatory sequences,

including open chromatin regions,56 TF binding sites,57 and ROS/MAP

enhancer and promoter sequences.31 Here, we found that differen-

tially expressed TEs were more enriched in open chromatin regions

and promoter sequences in both Mayo and ROS/MAP brain biobanks

in ROS/MAP brain biobank. Diamonds represent five neurodegenerative traits and circles represent the nearest genes of locus-based
differentially expressed TEs. The color represents log2FC of differentially expressed genes from the RNA-seq Harmonization Study
(syn21241740). G, H, TE–gene regulatory networks depicting cell type–specific differentially expressed TEs across tau and Aβ neuropathology (G)
and heterozygous APOE ε4 genotyping (H). Circles in the inner layer represent TE families. Genes on the outer layer surface refer to the nearest
genes of the locus-based TEs. Colors on the outer layer panel refer to log2FC of differentially expressed genes from the RNA-seq Harmonization
Study (syn21241740). Genes differentially expressed inmicroglia are shown as V, neuron as diamond, and astrocytes as triangle. Aβ, amyloid beta;
AD, Alzheimer’s disease; APOE, apolipoprotein E; HC, healthy controls; Mayo,Mayo clinic; PCA, principal component analysis; RNA-seq, RNA
sequencing; ROS/MAP, Religious Orders Study/RushMemory and Aging Project; TEs, transposable elements.
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(P = 0.0095, Figure S7 in supporting information), suggesting crucial

gene regulatory roles of TEs. Next, we performed Spearman corre-

lation tests of expression levels between dysregulated TEs and their

nearest genes. The Spearman correlation coefficients (R) were 0.32

(P < 2.2 × 10−16) and 0.37 (P < 2.2 × 10−16) in the Mayo and

ROS/MAP brain biobanks, respectively, indicating the expression of

TEs is independent from the expression of nearby local genes. We

then investigated pathway enrichment of nearest genes from the

significantly dysregulated TEs. Of note, the ROS/MAP cohort was

significantly enriched by AD-related gene signatures, such as genes

associated with tau (q = 4.36 × 10−10), Aβ (q = 0.016), and neuroin-

flammation (q = 0.028; Figure 2B). For the Mayo cohort, we identified

significantly enriched gene signatures related to neurodegenerative

disorders (Figure 2E), such as upregulated gene AGAP3 (log2FC= 0.24,

q= 1.07× 10−4) andMAP3K10 (log2FC= 0.26, q= 1.55× 10−4). These

significantly enriched AD-related pathways revealed that TE dysregu-

lationmight be associatedwith potential ADpathobiological pathways.

We then performed PCA for AD cases and cognitively HCs based on

expression of locus-based differentially expressed TEs and found that

TE expression accurately predicted AD cases and cognitively HCs in

both Mayo and ROS/MAP brain biobanks (Figure 2C,F). This indicates

thatmonitoringdifferentially expressedTEsmight aid clinical diagnosis

of AD.

3.2 Cell type–specific TE dysfunction across
degrees of AD neuropathology

We further analyzed RNA-seq data from fluorescence-activated cell

sorting (FACS) cell types from frozen brains to investigate cell type–

specific locus-based TE dysregulation across different AD pathologies,

including tauandAβneuropathology,APOEgenotypes, and sex. In total,
wepinpointed significantly upregulatedTEs inADpatients’ frontal cor-

tex compared to HCs across neurons (n = 3748), microglia (n = 6814),

astrocytes (n = 6133), and endothelial cells (n = 1196; Table S8 in

supporting information). Using gene set enrichment analysis (GSEA),

we found that nearest genes of cell type–specific upregulated TEs

were enriched in AD-related pathways in cell type–specific manners:

(1) nearest genes of upregulated TEs from astrocytes were enriched

in pathways related to neurofibrillary tangles (q = 2.42 × 10−4), (2)

nearest genes of upregulatedTEs frommicrogliawere enriched in amy-

loid fiber formation (q = 4.26 × 10−4) and immune system process

(q = 1.51 × 10−5), and (3) nearest genes of upregulated TEs from neu-

rons (q=1.03×10−4) and endothelial cells (q=0.018)were enriched in

neuroinflammation and glutamatergic signaling (Table S9 in supporting

information).We then testedwhether upregulated TEs identified from

the two brain biobanks exhibited cell type–specific patterns. As exem-

plified by the upregulated TEs from theROS/MAP cohort, we observed

30, 14, and 10 elevated locus TEs in AD patients’ frontal cortex with

a high score of tau- and Aβ neuropathology across neurons, microglia,

and astrocytes, respectively (Table S8). Approximately 73.2% of those

cell type–specific upregulated TEs were derived from the LINE-1 fam-

ily (Figure 2G). We also found a tau- and Aβ-specific overexpressed TE

fromaLINE-1element (chr2: 206494817–206499652) in neurons; the

nearest gene isADAM23 (log2FC=−0.23, q=0.0023), which promotes

neuronal differentiation of human neural progenitor cells.58 We addi-

tionally pinpointed a microglial-specific upregulated TE from a LINE-2

element (chr14: 75441408–75441632) that was affected by both tau

andAβneuropathology (Table S8); the nearest genehere is JDP2, which
regulates oxidative stress in human brains.59

We next inspected APOE ε4 genotype–specific TE dysregulation.

After adjusting for various confounding factors, we identified 706

and 1326 upregulated TEs in AD individuals with heterozygous

APOE ε4 (log2FC ≥ 0.5, q < 0.05) compared to heterozygous APOE

ε3 brains in the Mayo and ROS/MAP brain biobanks, respectively

(Table S7). For the ROS/MAP cohort, we found that the closest genes

to upregulated TEs were significantly enriched in gene signatures

upregulated in early-stage AD (q = 0.034). We further evaluated cell

type–specific TE dysregulation of heterozygous APOE ε4 by leveraging
the same brain cell-type RNA-seq datasets (see Methods, Table S8).

This identified 16, 6, and 2 upregulated TEs inmicroglia, neuronal cells,

and astrocytes, respectively, for AD individuals with heterozygous

APOE ε4 (Table S8). We also constructed a TE–gene regulatory net-

work by linking cell type–specific differentially expressed TEs to the

nearest gene in the ROS/MAP cohort (Figure 2H). This pinpointed a

SINE element (chr5: 109799806-109800106) that was significantly

overexpressed in microglia from heterozygous APOE ε4 AD patients’

frontal cortex, withMAN2A1 the nearest gene that correlates with AD

progression.60

It is well known that women are disproportionately affected by

AD in terms of both disease prevalence and severity.61 Thus, we fur-

ther inspected TE dysregulation between females and males after

adjusting for confounding factors. Compared to male subjects, we

found 817 locus-based differentially expressed TEs in female AD

brains compared to male AD brains from the ROS/MAP brain biobank

(log2FC ≥ 0.5, q < 0.05, Table S7). The nearest genes for female-

biased TEs were significantly enriched in gene signatures related to

tau pathology (q = 0.012) and protein–protein interactions (PPI) at

synapses (q = 0.001). The most female-biased TE was from a SINE ele-

ment (chr16: 24875912–24876225; log2FC = 2.55, q = 0.023), with

SLC5A11 the nearest gene. We next examined female-specific upreg-

ulated TEs using human brain cell type–specific RNA-seq data (Table

S8). Specifically, we identified 82, 6, and 3 female upregulated TEs from

the ROS/MAP brain biobank for endothelial cells, microglia, and astro-

cytes, respectively (Table S8 andFigure S8A in supporting information).

Of note, a LINE-1 element (chr6: 35681337–35681679) was specifi-

cally overexpressed in female neurons and its nearest gene is FKBP5,

which has been implicated in sex-specific cognitive and emotional

behavior.62 We also highlighted 45 male-biased upregulated TEs from

the ROS/MAP brain biobank for endothelial cells (Table S8 and Figure

S8B) and found that a SINE element (chr17: 44909153–44909360)

was significantly upregulated in male endothelial cells (log2FC = 1.12,

q = 1.04 × 10−5). The nearest gene GFAP was also upregulated in

male AD brains in the ROS/MAP biobank (log2FC = 0.54, q = 0.0087).

Interestingly, sex differences in GFAP expression have been studied

in the brainstem of rats with neuropathic pain.63 Taken together, our
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F IGURE 3 teQTL analysis in human brains and their enrichment with genetic loci of AD. A,Manhattan plot showing the -log10(P value)
distribution of teQTLs identified in theMayo brain biobank, of which 152 samples have both RNA-seq and thematchedWGS data. Different color
denotes 22 human chromosomes. Genes (in the parentheses) highlighted represent AD-related genes, including tau (square color coded in gray),
A𝛽 (circle color coded in gray), and neuroinflammation (triangle color coded in gray). teQTLs regulating known AD-related genes are plotted in the
first row. Subfamily TEs associated with those teQTLs are highlighted in the second row. All the TEs shown in this study are annotated with
assembly GRCh38. B, teQTLs are enriched in AD-associated variants across three ADGWAS studies. C, Upset plot showing AD risk genes
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observations reveal distinct TE regulation underlying differences inAD

pathobiology betweenmale and female brains.

3.3 teQTLs in human aging brains

We next inspected associations between TE expression and common

genetic variants (MAF > 1%) using matched RNA-seq and WGS data

for 152 human TCX brains in the Mayo cohort. We selected TEs

with > 1 FPKM in at least 50% of brains and showing transcriptomic

changes in the opposite direction with its nearest gene (see Methods).

In total, we obtained 12,481 TE loci for our teQTL mapping analysis.

We defined teQTL signals as variants located within 1 Mb upstream

or downstream of the expressed TEs28 and found that 1452 brain-

expressed TEs were significantly associated with 26,188 SNPs (teQTL

P < 5 × 10−8; Figure 3A). Specifically, 36.11% of teQTLs were mapped

to intergenic regions and 45.72% were mapped to intronic regions

(Figure S9A in supporting information). We further found that the

genes regulated by human brain teQTLs were significantly enriched in

metabolic pathways of Aβ (Fisher exact test P= 0.036), tau (P= 0.019),

and neuroinflammation (P= 2.1× 10−4). For instance, teQTL rs754593

(P = 2.0 × 10−10) regulates expression of a LINE-1 element (chr17:

46238321-46238612) in theMayobrain biobank,withMAPT the near-

est gene. We found that LRP1 was also regulated by brain teQTL

rs144992738 (P= 1.91× 10−8). LRP1 is amajor neuronal receptor that

mediates brain homeostasis and controls Aβ metabolism.64 We also

found significant enrichment in 119 neuroinflammation-related genes

regulated by brain teQTLs (Fisher exact test P = 2.1 × 10−4). The most

significant gene was SART1 (teQTL rs72925013, P = 1.22 × 10−32), for

which upregulation leads to developmental defects in zebrafish central

nervous system.65 We nextmapped teQTLs to the 15 chromatin states

from eight human brain cell lines from the Roadmap Epigenomic Con-

sortium project40 and found teQTLs primarily enriched in the 5’ and 3’

transcribed regions, as well as in flanking bivalent transcription start

sites/enhancers, indicating genome regulatory roles encoded by those

human brain teQTLs (Figure S9B).

We next used both SNP-based and gene-based approaches to test

common or unique regulatory roles between teQTL and eQTL. We

first examined the enrichment between teQTLs with well-documented

human brain eQTLs, including: (1) eQTLs fromMayo cerebellum (May-

ocer),Mayo temporal cortex (Mayotcx), andMayometa-analysis (May-

ometa); and (2) eQTLs from DLPFC from the ROS/MAP cohort (Table

S3). This showed that only 47.3% (39.1%–58.4%) of teQTLs were iden-

tified as an eQTL across two eQTL datasets (Figure S9C,D), revealing

the unique gene regulatory roles of brain teQTLs.We further assessed

the replication rate of brain teQTLs with eQTLs from the two brain

biobanks using the 𝜋1 statistic approach, which estimates the propor-

tionof eQTLs that are also significant inbrain teQTLs.Using theoverlap

between teQTL and eQTL as an example, this𝜋1 analysis could perform

FDR estimation with teQTL P values from the tested TE expression-

SNP associations (test phenotype) that overlapped with meQTL SNPs

(discovery phenotype). We estimated that 𝜋1 between teQTLs and

eQTLs was 0.434 from the Mayo cerebellum, 0.416 from the May-

otcx, 0.485 from the Mayo metadata, and 0.445 from ROS/MAP.

We then evaluated a gene-based comparison between teQTLs and

eQTLs in the Mayo cohort and identified 703 nearby genes at 26,188

unique genome-wide significant teQTLs (P < 5 × 10−8). Among the

370 (52.6%) overlapping genes regulated by both teQTL and eQTL

fromMayo meta-analysis, 256 (69.2%) genes possessed teQTL signals

distinct from the eQTL signals, as evidenced by the low LD value of

the two SNPs (r2 < 0.1; Figure S10A in supporting information). Alto-

gether, these observations reveal that teQTLs regulate distinct genes

from traditional eQTLs, suggesting crucial roles of teQTLs in genome

regulation.

TE expression can also be regulated by epigenetic mechanisms

in brain health disorders.66 Thus, we further investigated the co-

occurrence of teQTLs with variants affecting epigenetic marks, such

as DNA methylation (meQTL) and histone H3 acetylation on lysine 9

(H3K9ac, haQTL) from the ROS/MAP cohort DLPFC, a region of the

brain related to higher functioning. For the 26,188 genome-wide sig-

nificant teQTLs, 43.0% were meQTLs and 32.1% were haQTLs. Via 𝜋1

statistical analysis, we found overlap between teQTLs and meQTLs

(𝜋1 = 0.440) and haQTLs (𝜋1 = 0.425, Figure S10B). Thus, epigenomic

regulation may play a crucial role in regulating TE expression in AD,

consistent with previous studies in other human tissues.67

3.4 teQTLs tune likely causal genes in AD brains

We next investigated whether SNPs associated with teQTLs influ-

ence AD susceptibilities. Using three AD GWAS summary statistics

data (Table S4, seeMethods), we found significant enrichment of brain

teQTLs across three AD GWAS datasets (Figures 3B and S10C). Func-

tional enrichment analysis using the clusterProfiler48 package (see

identified across five types of xQTLs, including teQTL from theMayo cohort, eQTLs from theMayo cerebrum, eQTLs from theMayotcx, eQTLs
from theMayometa-analysis, and eQTLs from the ROS/MAPDLPFC. The three genes highlighted are uniquely identified by teQTL findings. D,
Expression correlation analysis between a SINE element (chr8: 27613104-27613415) and its nearest gene CLU uniquely regulated by brain teQTL.
E, Expression correlation analysis between a SINE element (chr2: 127051802-127052004) and its nearest gene BIN1 uniquely regulated by brain
teQTL. The x axis represents expression level of the TE and the y axis represents the expression level of its nearest gene. P values were calculated
using the Spearman correlation test. R2 values showing the strength of expression correlation by Spearman correlation test. F, Box plot shows
relative expression of BIN1 between control (green) and a SINE element (chr2: 127051802-127052004) sgRNA (yellow) targeted iPSC-derived
neurons. Aβ, amyloid beta; AD, Alzheimer’s disease; DLPFC, dorsolateral prefrontal cortex; eQTL, expressionQTL; iPSC, induced pluripotent stem
cell; Mayotcx, Mayo temporal cortex; RNA-seq, RNA sequencing; ROS/MAP, Religious Orders Study/RushMemory and Aging Project; SINE, short
interspersed nuclear element; TE, transposable element; teQTL, transposable element quantitative trait loci;WGS, whole-genome sequencing.
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Methods) revealed that genes regulated by human brain teQTLs were

significantly enriched in multiple AD-related pathways, such as path-

ways involved in microglia pathology (q = 1.39 × 10−15), delayed

and abnormal myelination (q = 1.7 × 10−4), fatty acid beta oxidation

(q = 0.043), and tau protein binding (q = 0.013; Figure S11 in support-

ing information). These findings suggest thepotential roles of teQTLs in

deciphering functional consequences of non-coding GWAS loci in AD.

As eQTLs directly explain variation in mRNA expression, we exam-

ined whether teQTLs and eQTLs (Mayo cerebrum, Mayotcx, Mayo

meta-analysis, and ROS/MAP DLPFC) regulate consensus AD risk

genes derived from GWAS studies. We thus focused our subse-

quent analysis on xQTLs with a genome-wide significance threshold of

P < 5.0 × 10−8. Of the 29 well-defined AD risk genes identified in a

previous study (Table S10 in supporting information),68 ADAM10 was

commonly regulated by three SNPs located in low LD regions (r2 <0.1),

including a teQTL (rs149055375) and two eQTLs (rs12437552 and

rs12592302; Figure 3C). ADAM10 is involved in the generation of Aβ
and tau pathology in AD.69 In addition, three AD-risk genes (BIN1,CLU,

and APOE) were uniquely identified by teQTL analysis (Figure 3C). We

found significant expression correlationbetweenaSINEelement (chr8:

27613104–27613415; teQTL rs143378944, P = 2.85 × 10−8) and its

nearest gene CLU (R = 0.48, P < 2.2 × 10−16; Figure 3D). We found

that expression of a SINE element (chr2: 127051802–127052004)

exhibited significant negative correlation with BIN1mRNA abundance

(R = −0.79, Spearman correlation P < 2.2 × 10−16; Figure 3E). The

corresponding teQTL was rs116476950 (P = 6.31 × 10−10). We also

found an intronic SINE element (chr2: 127051802–127052004) har-

boring hallmarks of enhancer elements (including open chromatin

status [from ATAC-seq data], enrichment of H3K27ac, and chromatin

looping) and promoters ofBIN1 (Figure S12 in supporting information),

suggesting functional roles of the SINE element in BIN1 expression.

In support of a likely regulatory relationship between the SINE

element (chr2: 127051802–127052004) andBIN1 expression, we per-

formed CRISPRi experimental assays in human iPSC-derived neurons

(see Methods). Here, we designed two single guide RNAs (sgRNAs)

targeting the SINE element (chr2: 127051802–127052004) and BIN1

promoters (Table S5). The iPSC-derived neurons were transducedwith

lentivirus expressing the two sgRNAsornon-targeting sgRNAcontrols.

After selecting the cells using puromycin, we usedRT-qPCR to quantify

BIN1 gene expression. We found that BIN1 was significantly upregu-

lated in human iPSC-derived neurons upon CRISPRi in both sgRNA

(P = 0.024, Figure 3F). Altogether, these observations revealed that

teQTLs provide a complementary method to identify AD-associated

genes from non-coding loci, in addition to traditional QTL approaches.

3.5 AD GWAS loci colocalize with human brain
teQTLs

To identify AD-associated variants and genes associated with TE

dysregulation, we performed genome-wide colocalization analysis

through leveraging three AD GWAS summary statistics datasets

(Table S4, see Methods) with genome-wide significant teQTL findings

(Figure 3A). We used three AD GWAS datasets: (1) a small but unique

AD GWAS cohort with clinically diagnosed AD cases,34 (2) the sec-

ond AD GWAS cohort with late-onset AD cases,35 and (3) an AD

GWAS cohort with the largest number of AD cases.36 In total, we

identified four genome-wide significant AD GWAS loci with statisti-

cally significant colocalization by human brain teQTLs (PP4 > 0.5, see

Methods, Table S11 in supporting information), including rs2906657

(P = 7.99 × 10−16), rs11605348 (P = 1.92 × 10−11), rs1065712

(P = 5.46 × 10−9), and rs55910656 (P = 1.01 × 10−8; Figure 4A). The

nearest genes regulated by four genome-wide significant teQTLs were

ZCWPW1, C1QTNF4, FDFT1, and RABEP1.

We next extended colocalization analysis around flanking regions

of locus-based differentially expressed TEs. Here, we leveraged AD

GWAS loci located in 500 Kb flanking regions of locus-based dif-

ferentially expressed TEs harboring brain teQTLs from Mayo; brain

meQTLs from ROS/MAP; brain haQTLs from the ROS/MAP; and brain

eQTLs from the ROS/MAP, Mayo, and MetaBrain datasets (Table S3).

Using FUMA,49 we identified that AD GWAS loci close to differ-

entially expressed TEs were significantly enriched in multiple AD-

associated pathways (Figure S13 in supporting information), including

cerebrospinal fluid phosphorylated tau levels (q = 3.1 × 10−17), hip-

pocampal volume in AD dementia (q = 2.8 × 10−13), low-density

lipoprotein cholesterol levels (q = 7.4 × 10−5), and lipid metabolism

phenotypes (q = 0.009). We further pinpointed 27 genome-wide

significant loci (GWAS P < 5.0 × 10−8) harboring significant xQTL

colocalization with several well-known AD risk genes around 500 Kb

flanking regions of locus-based differentially expressed TEs in the

ROS/MAP cohort, including APOE, APOC1, CR1, PICALM, and ADAM10

(Figure 4B and Table S12 in supporting information). In total, 18 out

of the 27 (66.7%) GWAS SNPs were replicated in the Mayo brain

biobank (Figure S14 in supporting information). We found that two

GWAS SNPs, including rs1065712 (P = 5.46 × 10−9) and rs11605348

(GWAS P = 1.92 × 10−11), were also indicative of colocalization

with teQTLs and haQTLs. The locus TE regulated by rs1065712 (AD

GWAS) was from a SINE element (chr8: 11840915–11841089) with

its nearest gene being FDFT1, which is involved in cholesterol syn-

thesis in cerebellar granule cells and pre-cerebellar nuclei of mouse

models.70 We also pinpointed two locus-based TEs regulated by teQTL

rs11605348, including a SINE element (chr11: 47608036–47608220)

and a LINE element (chr11: 47605296–47605575). The nearby genes

are C1QTNF4 and NDUFS3, respectively. The anti-inflammatory role

of C1QTNF4 has been reported in inflammatory mouse models71 and

NDUFS3 is a central modulator of mitochondrial metabolism in aging

brains.72 In summary, teQTL colocalization analysis of AD genetic

loci enabled prioritization of new AD-associated genes that warrant

further functional testing.

3.6 APOE ε4-associated TE activation in microglia

Repeat polymorphisms in LD blocks with trait-associated SNPs have

genome regulatory roles.73 We found that the TE from a SINE ele-

ment (chr8: 11840915–11841089) was within the LD block region of
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F IGURE 4 Colocalization analysis between teQTL and AD risk loci. A, LocusCompare plots for four high-probability genome-wide colocalized
signals between teQTLs and ADGWAS loci. The colocalized SNPs are labeled with variant identifiers and annotated as squares. Plots are colored
based on LD bins relative to the lead SNPs (red,≥ 0.8; orange, 0.6–0.8; green, 0.4–0.6; light blue, 0.2–0.4; and dark blue,< 0.2). The SNP pairwise
LD data were calculated based on the 1000Genomes Phase 3 (ALL) reference panel. B, Colocalization analysis around 500 Kb flanking regions of
locus-based differentially expressed TEs between ADGWAS SNPs and xQTLs (annotated by y axis), including teQTL fromMayo; meQTL from
ROS/MAP, haQTL fromROS/MAP; and eQTL fromROS/MAP,Mayo, andMetaBrain datasets.We showed SNPswith genome-wide significant AD
GWAS P< 5.0 × 10−8. Loci are named for their nearest protein-coding genes or the regulated eGene. All genes and loci shown here with PP4≥ 0.5
in at least one xQTL dataset. Circles size and color refer to PP4 value. Diamonds refer to locus-based differentially expressed TEs from different
biological comparison groups. Diamonds size and color refer to log2FC of locus-based differentially expressed TEs under consideration. Triangles
refer to the three ADGWAS datasets. AD, Alzheimer’s disease; eQTL, expressionQTLs; haQTL, histone acetylationQTLs; GWAS, genome-wide
association study; LD, linkage disequilibrium; meQTL, methylationQTLs; PP4, posterior probability of colocalization hypothesis 4; SNP, single
nucleotide polymorphism; teQTL, transposable element quantitative trait loci; TEs, transposable elements.
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F IGURE 5 APOE ε4-associatedmicroglia-specific TE activation and chromatin looping in AD. A, UCSCGenome Browser visualization of
chromatin interactions between Alu family TE-locatedmicroglia-specific enhancer and promoter of FDFT1. B, C, Expression comparison between a
SINE element (chr8: 11840915–11841089) (B) and FDFT1 (C) in APOE ε4/ε4 driven humanmicroglia compared to APOE ε3/ε3. D, E, Expression
correlation between the SINE element (chr8: 11840915–11841089) and its nearest gene FDFT1 in APOE ε4/ε4microglia from human
iPSC-derived population APOE brain cell models (D) and in APOE ε4/ε4 and APOE ε3/ε4 SFGmicroglia fromAD patients (E). P values are calculated
using the Spearman correlation test. R2 values showing the strength of expression correlation by Spearman correlation test. F, Molecular networks
containing 26 genes interacted with FDFT1. Edge color is proportional to corresponding log2FC between AD andHC inMayo brain biobank. AD,
Alzheimer’s disease; APOE, apolipoprotein E; HC, healthy controls; iPSC, induced pluripotent stem cell; OLs, oligodendrocytes; SFG, superior
frontal gyrus; SINE, short interspersed nuclear element; TE, transposable element; UCSC, University of California Santa Cruz.

the lead GWAS SNP rs1065712 (r2 > 0.30; Figure S15 in supporting

information), and then identified elevated expression of both the TE

from the SINE element (chr8: 11840915–11841089) and its nearest

gene FDFT1 in APOE ε4 AD brains from Mayo and ROS/MAP brain

biobanks (Figure S16A,B in supporting information). Furthermore, this

SINEelement (chr8: 11840915–11841089;R=0.288,P=4.41×10−4)

expression and FDFT1 (R = 0.256, P = 7.90 × 10−4) upregulation were

positively correlated with the presence of the minor (risk) allele for

rs1065712 (GWAS P = 5.46 × 10−9; Figure S16C,D) and with Braak

staging score (Figure S16E,F). TE expression is regulated by complex

patterns of epigenetic marks,74 and we found that this SINE ele-

ment (chr8: 11840915–11841089) resided within a microglia-specific

enhancer region defined by enrichment of H3K27ac and ATAC-seq

peaks from interactomemaps in humanmicroglia andpublicly available

datasets (Figure S17 in supporting information). The FDFT1microglia-

specific enhancer frequently participated in long-range chromatin

interactionswithmultiple FDFT1 promoters, suggesting the regulatory

roles of the SINE element (chr8: 11840915–11841089; Figure 5A).

FDFT1, a membrane-associated enzyme involved in cholesterol

biosynthesis,75 is altered inmicroglia byAPOE ε4genotypes.42 Notably,
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F IGURE 6 CRISPR interference reveals neuron-specific suppressive role of upregulatedMIR family TE on anti-inflammatory response. A,
Regional SNP association plots with TE from a SINE element (chr11: 47608036-47608220) shown in LD blocks of rs3740688 in AD. Plots are
colored based on LD bins relative to the lead SNPs rs3740688 (red,≥ 0.8; orange, 0.6–0.8; green, 0.4–0.6; light blue, 0.2–0.4; and dark blue,< 0.2).
The SNP pairwise LD data were calculated based on 1000Genomes Phase 3 (ALL) reference panel. Gene annotations: the National Center for
Biotechnology Information RefSeq Select database. Assembly GRCh37, scale inMb. B, E, Expression level of the TE from a SINE element (chr11:
47608036-47608220) (B) and C1QTNF4 (E) showed significant correlationwith the presence of risk allele rs11605348. D, UCSCGenomeBrowser
visualization of chromatin interactions between the SINE and LINE element TE-located neuron-specific enhancer and promoter regions of
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we observed elevated expression of FDFT1 in AD patients’ brains

with heterozygous APOE ε4 compared to heterozygous APOE ε3
(log2FC= 0.25, q= 0.032) from theMayo brain biobank (Figure S16G).

Using RNA-seq data from human iPSC-derived APOE ε4/ε4 microglia

cell models, we found that the SINE element (chr8: 11840915–

11841089, log2FC = 0.60, q = 0.0051, Figure 5B) and FDFT1

(log2FC = 0.44, q = 0.0198, Figure 5C) expression were elevated in

APOE ε4/ε4 versus APOE ε3/ε3 microglia. Moreover, the SINE element

(chr8: 11840915–11841089) was significantly co-expressed with its

nearest gene FDFT1 (R = 0.72, P = 0.0058, Figure 5D). This co-

expression was also observed in a second cell type–specific RNA-seq

profile of superior frontal gyrus (SFG) microglia from AD patient

brains41 with heterozygous APOE ε4 genotypes (R = 0.56, P = 0.045,

Figure 5E). We next reconstructed human PPI networks for FDFT1

using our GPSnet algorithm76 (Figure 5F andMethods) and found that

proteins interacted with FDFT1 involved in cholesterol-related path-

ways (Figure 5F). Notably, reduced expression of SYP (log2FC = −0.30,
q = 3.95 × 10−4) is associated with progressive cognitive decline and

neurodegenerative illnesses.77 Our results suggest that the activated

SINE element (chr8: 11840915–11841089) is associated with dysreg-

ulation of FDFT1 involved in cholesterol-related pathways in human

aging AD brains.

3.7 CRISPRi assay identifies neuron-specific
suppressive role of activated MIR family TE via
anti-inflammatory responses

We pinpointed that a GWAS SNP rs11605348 (GWAS

P = 1.92 × 10−11) showed a strong posterior probability for colo-

calization with both teQTL (PP4 = 0.84) and haQTL (PP4 = 0.97;

Figure 4B). The two TEs regulated by rs11605348, including a SINE

element (chr11: 47608036–47608220; log2FC=2.22,q=7.27×10−5)

and a LINE element (chr11: 47605296–47605575; log2FC = 1.07,

q = 0.048), showed consistent upregulation identified by SQuIRE15

and Telescope19 in human AD brains from the ROS/MAP biobank

(Table S7). The SINE element (chr11: 47608036–47608220) also

showed female-specific upregulation in AD brains (log2FC = 5.1,

q = 1.71 × 10−5). We found that the SINE element was within the lead

AD GWAS SNP rs3740688 LD block region (r2 > 0.30; Figure 6A). The

SINE element expression was negatively correlated with the presence

of the minor (risk) allele for rs11605348 (Spearman correlation

R = −0.656, P < 2.2 × 10−16, Figure 6B) and positively correlated

with the Braak staging score (R = 0.233, P = 0.0058, Figure 6C) in

the ROS/MAP brain biobanks, supporting potential roles of teQTL

rs11605348with AD-risk SNPs.

Using enhancer–promoter interactome maps across four major

brain cell types, including neurons, microglia, oligodendrocytes, and

astrocytes, we found that the SINE element (chr11: 47608036–

47608220) may serve as a cis-regulatory element by enrichment of

open chromatin and H3K27ac signals (Figure 6D). We further con-

firmed this cis-regulatory relationship using multi-omics data from the

UCSC Genome Brower database (Figure S17), suggesting that this

SINE element may act as an alternative enhancer.78 We detected

frequent chromatin interactions from this SINE element to the pro-

moter for C1QTNF4 in neurons, resulting in enrichment of H3K27ac

and H3K4me3 signals in the promoter region of C1QTNF4 in neurons

(Figure 6D). The prioritization of C1QTNF4 as an AD-associated gene

was also confirmed through TE transcriptome-wide association analy-

sis using the FUSION38 package in theMayo brain biobank (Figure S18

in supporting information). Functional significance of this chromatin

loopingwas confirmed using human brain transcriptomic changes from

the AMP-AD RNA-seq harmonization study (syn21241740), in which

significant downregulation of C1QTNF4 in female AD brains was found

in both Mayo (log2FC = −0.51, q = 8.97 × 10−5) and ROS/MAP

(log2FC = −0.17, q = 0.041) brain biobanks. We further observed sig-

nificant correlation between C1QTNF4 expression with the presence

of the minor (risk) allele for SNP rs11605348 (Spearman correlation

R = 0.247, P = 0.0018, Figure 6E) and with the Braak staging score

(R=−0.291, P= 0.041, Figure 6F) in AD patient brains.

As we also detected frequent chromatin interactions between

a LINE element (chr11: 47605296–47605575) and promoters of

NDUFS3 (Figures 6D and S17), we next tested the regulatory roles of

the SINE element and a LINE element via CRISPRi assays. We found

significant downregulation of NDUFS3 at the LINE-targeted element

(Figure S19 in supporting information) and significant upregulation

of C1QTNF4 at the SINE-targeted element (Figure 6G). We further

performed RNA-seq to test transcriptomic changes of SINE-targeted

iPSC-derived neurons.We identified 78 differentially expressed genes

upon CRISPRi (Figure 6H and Table S13). In addition to Aβ-associated
SUMO1 (log2FC = 0.77, q = 0.035) and AD GWAS gene ADAM10

(log2FC=−0.37, q= 0.094), we also found that three upregulated anti-

C1QTNF4 andNDUFS3, respectively. C, F, Expression of the TE from a SINE element (chr11: 47608036-47608220) (C) and C1QTNF4 (F) showed
significant correlation with the clinical Braak staging score. P values are calculated using the Spearman correlation test. R values showing the
strength of expression correlation by Spearman correlation test. G, Box plot shows relative expression of C1QTNF4 between control (green) or
SINE element (chr11: 47608036-47608220) sgRNA (yellow) targeted iPSC-derived neurons. H, Network depicting the significantly dysregulated
genes fromRNA-seq analysis upon a SINE element (chr11: 47608036-47608220) perturbation in iPSC-derived neurons. Circles in the inner layer
represent TE families. Genes on the outer layer surface refer to the dysregulated genes. Diamonds represent ADGWAS genes, triangles represent
genes associated with Aβ, V represents neuroinflammation associated genes, and circles represent other differentially expressed genes. Colors
and size on the outer layer panel refer to log2FC of differentially expressed genes from the RNA-seq analysis. Genes related with Aβ,
neuroinflammation, and GWAS traits are shown in bold fonts. Aβ, amyloid beta; AD, Alzheimer’s disease; GWAS, genome-wide association study;
iPSC, induced pluripotent stem cell; LD, linkage disequilibrium; LINE, long interspersed nuclear element; OLs, oligodendrocytes; RNA-seq,
RNA-sequencing; SINE, short interspersed nuclear element; SNP, single nucleotide polymorphism; TE, transposable element; UCSC, University of
California Santa Cruz.
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inflammatory genes upon CRISPRi, including C1QTNF4 (log2FC= 1.16,

q= 0.023), THY1 (log2FC= 1.39, q= 0.037), and ERAP1 (log2FC= 0.51,

q = 0.070), suggests a repressive role for activated SINE element on

inflammatory responses.

4 DISCUSSION

In this study, we comprehensively investigated TE dysregulation in

human brains and dissected the genome regulatory effects of TEs in

AD. We showed that TE dysregulation in AD was associated with

tau pathology, amyloid neuropathology, and APOE ε4 genotypes, and

acted in sex-specific and cell type–specific manners. We further stud-

ied the relationship of DNA variants genome wide, particularly in

AD-associated loci, with TE expression. Through colocalization anal-

ysis between teQTLs with AD GWAS loci, brain cell type–specific 3D

chromatin structure, and CRISPRi, we observed that upregulated TEs

were associated with AD-related gene expression changes in human

iPSC-derived neurons, including C1QTNF4. These findings show that

teQTLs offer a powerful QTL analytic approach to identify TE-related

risk genes in AD and suggest that this could be broadly applied to

investigate other neurodegenerative diseases as well.

We first applied the AMP-AD RNA-seq harmonization approach

to account for clinical heterogeneity across samples, studies, exper-

imental batch effects, and unwanted RNA-seq technical variations

and identified highly reproducible locus-based (Figure S6) and region-

specific (Figure S20 in supporting information) differentially expressed

TEsbetweenbothMayoandROS/MAPbrainbiobanks.We foundERV1

(a major TE family) was significantly dysregulated in both ROS/MAP

and MSBB brain biobanks. Compared to human AD brains and tau

transgenic Drosophila, we found an overexpression of LINE-1 and ERVs

among the classes of activated TE in the context of brain aging.4 Ele-

vated transcript levels of LINE-1 and ERVs are also present in human

neurodegenerative disorders including but not limited to ALS and

ataxia.79–81 The predominant type of activated LINE class was LINE-1

inbothMayoandROS/MAPbrainbiobanks. By analyzing chronological

ordering of LINE-1 subfamily TEs, we found that evolutionary younger

elements, such as L1HS, L1PA ,and L1PB, aremore vulnerable in human

aging brains with AD, compared to ancient-inserted subfamily L1ME

TEs (Figure S21 in supporting information). This result is consistent

with prior work that a panel of evolutionary young LINE-1 possessed

retrotransposition activity in the developing and adult human brain.82

We further found that TEs are also decreased in human aging AD

brains, consistent with previous studies in tau transgenic Drosophila

brains83 as well as in post mortem human brains with AD and pro-

gressive supranuclear palsy.84 Impaired activation of TEs has been

associatedwithweak interferon response in SARS-CoV-2 human cellu-

larmodels,85 suggesting that decreasedTEexpression could also affect

host immune response. We also found that the number of locus-based

differentially expressed TEs was proportional to the sequencing read

length (MSBB: single-end100bp;Mayo: paired-end101bp;ROS/MAP:

paired-end 151 bp). Although ROS/MAP has the smallest sample size

across the three brain biobanks, we found the sequence length of

locus-based differentially expressed TEs specifically identified in the

ROS/MAP brain biobank (n = 3738) was more than that of the Mayo

brain biobank (n = 725). These results indicate that longer sequenc-

ing reads, such as PacBio HiFi reads and Oxford nanopore sequencing

reads, may retrievemore TE transcripts.86

Dynamic patterns of TE expression contribute to cell

heterogeneity,44 and by analyzing RNA-seq data from FACS-sorted

cell types from frozen brains we pinpointed an APOE ε4-specific TE

activation from a SINE element (chr5: 109799806–109800106) in

microglia. The nearest gene is a key TF MAN2A1, whose expression

has been reported to correlate with AD progression.60 We also

profiled female-specific TE dysregulation and found that the most

perturbed cell type was endothelial cells. By incorporating sex-specific

locus-based differentially expressed TEs with expression changes of

nearby genes, we found that ≈ 33.8% of locus-based differentially

expressed TE can be explained by sex-specific expression of nearby

genes, suggesting that those TEs may play roles in sex-specific gene

regulatory networks. These results support the functional roles of TE

dysregulation in AD pathogenesis by APOE-, cell type-, and sex-specific

manners.

Via analysis of WGS and matched RNA-seq data from the Mayo

brain biobank, we also illustrated the first catalog of teQTLs for human

AD brains (Figure 3A), which demonstrated a 35.4% replication rate of

teQTL findings between Mayo and ROS/MAP brain biobanks (Figure

S22 in supporting information). We found that those teQTLs were

significantly enriched across three AD GWAS datasets (Figure 3B),

indicating potential roles of teQTLs for interpreting the results of

GWAS. The other two GWAS datasets were derived from family

history of AD (Proxy-AD).68,87 The overall low quality of AD pheno-

types in those two Proxy-AD datasets may be the potential reason

for lack of significant enrichment. We also found significant enrich-

ment of AD-related genes regulated by brain teQTLs (Figure 3A).

Specifically, we found that blocking activity ofMIR family TE was asso-

ciated with elevated expression of BIN1 using CRISPRi experiments

in human iPSC-derived neurons (Figure 3F), indicating a potential

AD-associated gene regulatory mechanism by a SINE element (chr2:

127051802–127052004).

We also identified potential AD risk genes and drug targets

impacted by teQTLs via colocalization analysis. For example, a key

teQTL rs1065712 (GWAS P = 5.46 × 10−9) is related with upreg-

ulated FDFT1, which encodes a key enzyme involved in cholesterol

biosynthesis.88 We found that FDFT1 and a nearby SINEelement (chr8:

11840915–11841089) exhibited significantly elevated expression in

APOE ε4/ε4 patient iPSC-derived microglia (Figure 6B,C). Currently,

several FDFT1 inhibitors, such as lapaquistat acetate,89 are under

investigation as an anti-cholesterol agent. Notably, anti-lipid and

anti-cholesterol agents have been identified as potential treatments

for AD.90 Thus, FDFT1 identified from teQTL analysis offers a poten-

tial risk gene and drug target for AD. More functional evaluation is

warranted to test the causal relationship of teQTL on gene regulation

underlying AD etiologies in the future.

We also identified another candidate teQTL, rs11605348 (GWAS

P = 1.92 × 10−11), which is related to an upregulated SINE element
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(chr11: 47608036–47608220). We prioritized C1QTNF4 as an AD

risk gene across three AD GWAS cohorts through additional TE

transcriptome-wide association analysis in the Mayo brain biobank

(Figure S23 in supporting information). We additionally identified two

additional teQTLs from TE transcriptome-wide association analysis,

including rs10838698 (AD GWAS P = 1.59 × 10−11) and rs896817

(ADGWAS P= 8.45× 10−11), whichwas further supported by FUSION

conditional analysis (Figure S18). We found that three AD GWAS

loci were in the same high LD block region (LD r2 > 0.2, Figure S24

in supporting information), especially between rs10838698 and

rs11605348 (r2 = 0.75), suggesting the co-regulation of the three

AD GWAS loci on C1QTNF4 expression. Furthermore, we found

that upregulated MIR family TE was associated with repression of

anti-inflammatory genes uponCRISPRi, includingC1QTNF4, THY1, and

ERAP1. As inflammation is a central mechanism in AD and C1QTNF4

can exert an anti-inflammatory activity,71 these observations suggest

novel anti-inflammation associated AD risk genes associated with TE

activation in AD and human aging brains. Thus, our results suggest

that TE can not only serve as a potent source of diverse cis-regulatory

sequences in mammalian sequences, but it can be linked to gene

expression changes associated with diseases.91 While changes in

chromatin marks may contribute to both transcriptomic changes and

co-regulation between TEs and nearby genes, we cannot conclude any

causality of TEs onADpathogenesis in the current study.We speculate

that the activated TE might derive dsRNA and sRNAs, including short-

interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), which

may affect expression of nearby genes involved in the inflammatory

response.92 The biological mechanisms across chromatin changes, TE

activation, and target gene dysregulation require further functional

evaluation in the future.

Weacknowledge several potential limitations of our study. First, our

teQTL findingsmight be influencedby the sample size ofmatchedWGS

and RNA-seq data. Integration of large-scale WGS and RNA-seq data

could identifymore genome-wide significant teQTLs in the future. Sec-

ond, most donors for our WGS and RNA-seq data were derived from

European ancestry. In future studies, we will leverage more diverse

ancestries (including African American) from the Alzheimer’s Disease

Sequencing Project.93 Third, although we used multiple complemen-

tary bioinformatic tools to quantify TE expression, including SQuIRE,15

Telescope,19 and TEtranscripts,17 those tools could not fully filter out

co-transcribed TEs within genes or remove the effects of pervasive

transcription. Applying machine learning models may identify more

accurate TE transcripts in the future. Finally, we only investigated cell

type–specific locus-based TE expression using bulk cell RNA-seq data

andone scRNA-seqdataset. Incorporating large-scale long-read single-

cell/nucleus RNA-seq data in the future may identify cell type–specific

novel TE-mediated risk genes in AD and other diseases if broadly

applied.
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