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Abstract

INTRODUCTION: The microglial receptor triggering receptor expressed on myeloid

cells 2 (TREM2) is a major risk factor for Alzheimer’s disease (AD). Experimentally,

Trem2 deficiency affects parenchymal amyloid beta (Aβ) deposition. However, the
role of TREM2 in cerebrovascular amyloidosis, especially cerebral amyloid angiopathy

(CAA), remains unexplored.

METHODS:Tg-SwDI (SwDI)mice, aCAA-pronemodel ofAD, andTrem2 knockoutmice

were crossed to generate SwDI/TWT, SwDI/THet, and SwDI/TKO mice, followed by

pathological and biochemical analyses at 16months of age.

RESULTS: Loss of Trem2 led to a dramatic decrease in CAA and microglial association,

despite amarked increase in overall brainAβ load. Single nucleusRNAsequencing anal-

ysis revealed that in the absence of Trem2, microglia were activated but trapped in

transition to the fully reactive state, with distinct responses of vascular cells.

DISCUSSION: Our study provides the first evidence that TREM2 differentially mod-

ulates parenchymal and vascular Aβ pathologies, offering significant implications for

both TREM2- and Aβ-targeting therapies for AD.

KEYWORDS
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Highlights

∙ Triggering receptor expressed on myeloid cells 2 (TREM2) differentially modulates

brain parenchymal and vascular amyloidosis.

∙ Loss of Trem2 markedly reduces cerebral amyloid angiopathy despite an overall

increase of amyloid beta load in Tg-SwDImice.

∙ Microglia are trapped in transition to the fully reactive state without Trem2.

∙ Perivascular macrophages and other vascular cells have distinct responses to Trem2

deficiency.

∙ Balanced TREM2-targeting therapies may be required for optimal outcomes.
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1 BACKGROUND

Triggering receptor expressed onmyeloid cells 2 (TREM2) is expressed

predominantly on microglia in the brain. Recent genome-wide asso-

ciation studies have identified TREM2 as a major genetic risk factor

for Alzheimer’s disease (AD).1,2 TREM2 is a key regulator of microglial

functions in normal aging and AD.3 In transgenic mouse models,

Trem2 deficiency affects cerebral amyloid beta (Aβ) deposition, a neu-
ropathological hallmark of AD, although the direction of the impact

is sometimes inconsistent, depending on the stages of the devel-

opment of Aβ pathology.4–7 Nevertheless, it has been consistently

observed that Aβ plaque-associated microgliosis is reduced regardless

of the stages of Aβ pathology in the absence of Trem2, and transcrip-

tomic studies have unveiled that Trem2-null microglia fail to switch

to a disease-associated, reactive phenotype, leading to diffused amy-

loid plaques in the parenchyma.4–10 However, the role of TREM2 in

cerebrovascular amyloidosis, particularly cerebral amyloid angiopathy

(CAA), remains unexplored.

CAA, characterized by Aβ deposition in the cerebrovascular base-

ment membrane, is a common pathological feature of brains with

AD.11 It triggers cerebrovascular inflammation, hemorrhages, microin-

farcts, and cognitive impairment.12 AD subjects with CAA show a

more rapid cognitive decline than those without CAA.13 Moreover,

CAA-related adverse effects hamper the development of Aβ-targeting
immunotherapies, currently the most successful class of disease-

modifying therapies for AD.14 Compelling evidence indicates that CAA

constitutes the underlying cause of amyloid-related imaging abnormal-

ities (ARIAs), one of the main adverse events associated with anti-Aβ
immunotherapies.15 Thus, a better understanding of cerebrovascular

amyloidosis not only elucidates the pathogenesis of CAA per se but

also facilitates the development of safe and efficacious therapies

for AD.

Aβ is produced by the sequential cleavage of amyloid precursor pro-

tein (APP) by β-secretase (BACE1) followedby γ-secretase.16 Aβ40and
Aβ42 are the two most abundant products of the cleavage, constitut-

ing the main species in amyloid pathology in AD brains. Various point

mutations in APP have been identified to cause familial AD, including

the Swedish mutation (K670N/M671L),17 while several other muta-

tions cause familial CAA, including Dutch E22Q and Iowa D23N.18,19

Although Aβ40 and Aβ42 are the primary constituents of both CAA

and parenchymal plaques, Aβ40 is more vasculotropic than Aβ42
and accumulates largely along blood vessels to form fibrillar CAA,

whereas Aβ42 mainly forms dense fibrillar cores of the parenchyma

plaques.20,21 Growing evidence suggests that cerebral vascular dys-

function precedes the buildup of amyloid plaques and tau tangles that

eventually lead to cognitive deficits and AD.22,23 An early presence of

CAA at the basement membrane of the vessel wall caused by insuffi-

cient clearance of excess Aβ via the perivascular pathway is thought to
impair the blood–brain barrier (BBB) function.24,25 However, how vas-

cular Aβ interacts with the neurovascular unit and other adjacent cell

types remains elusive.While recent studies highlight the importance of

microglia in the pathogenesis of CAA,26–28 the specific role of TREM2

in CAA has not been explored.

RESEARCH INCONTEXT

1. Systematic review: The authors searched published lit-

erature for both experimental and clinical evidence on

the connectionbetween triggering receptor expressedon

myeloid cells 2 (TREM2) andAlzheimer’s disease (AD) and

cerebral amyloid angiopathy (CAA). While TREM2 is an

established genetic risk factor for AD and several studies

have used Trem2 knockout models to investigate the role

of TREM2 in AD pathogenesis, none has studied whether

TREM2 specifically affects CAA, amajor pathology of AD.

2. Interpretation: Trem2 deficiency dramatically decreases

CAA despite an overall increase of brain amyloid beta

(Aβ) load,with unique responses ofmicroglia and vascular

cells, in a CAA-prone mouse model of AD. These findings

provide the first evidence that TREM2differentiallymod-

ulates parenchymal and vascular Aβ pathologies, offer-

ing significant implications for TREM2- and Aβ-targeting
therapies against AD.

3. Future directions: Future studies are warranted to inves-

tigate the impact of TREM2 on vascular amyloido-

sis in other models, and determine whether modulat-

ing TREM2 expression/activities mitigates CAA-related

adverse effects associatedwith immunotherapies for AD.

Therefore, the current study aimed to determine the impact of

Trem2 deficiency on CAA and the neurovascular components in addi-

tion to parenchymal Aβ deposition in the brain. We used a well-

characterized transgenicmousemodel ofCAA/AD, Tg-SwDI or SwDI,29

carrying both the familial Swedish and Dutch/Iowa mutations that

drive the CAA formation. SwDI mice develop age-dependent diffused

parenchymal Aβ plaques and CAA in various brain regions.29 We gen-

erated the SwDI/Trem2 mouse line by breeding SwDI with Trem2–/–

mice 30 and studied themice at 16months of age.We found that loss of

Trem2 led to a drastic diminishment of CAA, along with reduced CAA-

associatedmicrogliosis, despite amarked exacerbation of parenchymal

Aβ deposition. Single nucleus transcriptomic analyses revealed that

interactions of microglia, perivascular macrophages, and other vascu-

lar cells contributed to the shift from CAA to parenchymal plaques in

Trem2-deficient mice. These findings demonstrate a previously unrec-

ognized differential role of TREM2 in modulating parenchymal and

vascular amyloid pathology.

2 METHODS

2.1 Animals

Tg-SwDI (SwDI) mice (C57BL/6-Tg[Thy1-APPSwDutIowa]BWevn/

Mmjax) have been described previously,29 and Trem2-knockout (TKO)



ZHONG ET AL. 7597

mice 30 were generously provided by Dr. Marco Colonna at theWash-

ington University in St. Louis. The SwDI/Trem2 line was generated by

the two-step breeding of SwDI mice with TKO mice, producing six

genotypes: SwDI;Trem2–/– (SwDI/TKO), SwDI;Trem2+/- (SwDI/THet),
SwDI;Trem2+/+ (SwDI/TWT), Trem2–/– (TKO), Trem2 +/- (THet),

and wild type (WT). Mice carrying the SwDI transgene were used

in the present study. Littermates were used whenever possible, and

both males and females were included. All animal experiments were

reviewed and approved by the Institutional Animal Care and Use

Committee of the University of Minnesota (protocols # 1908-37310A

and 2207-40221A).

2.2 Immunohistochemical, immunofluorescent,
and histochemical staining

Immunohistochemistry experiments were conducted as previously

described.31 Briefly, the posterior half of the mouse brains were

collected and post-fixed with 4% paraformaldehyde for 48 hours.

Fifty-micrometer coronal sections were obtained using a vibratome

(Leica Microsystems Inc.). For the immunohistochemical staining, the

VECTASTAIN ABC kit (Vector Laboratories, PK-4002) was used fol-

lowing the manufacturer’s protocol. For immunofluorescent staining,

sections were washed with phosphate-buffered saline (PBS) before

blocking (5% normal donkey serum and 0.5% Triton X-100 in PBS)

for 1 hour at room temperature followed by overnight incubation

with primary antibodies. Sections were then washed and incubated

with secondary antibodies for 3 hours at room temperature. After

PBS washes, sections were mounted onto glass slides and sealed in

the Vectashield HardSet antifade mounting medium (Vector Labora-

tory).Methoxy-X04 (Tocris 4920) stainingwas conducted as previously

described,32 after the incubation of secondary antibodies. The primary

antibodies used include anti-Aβ 6E10 (BioLegend 803002), anti-glial

fibrillary acidic protein (GFAP; Dako Z0334), anti-ionized calcium-

binding adapter molecule 1 (IBA1; Wako 019-19741), and anti-cluster

of differentiation 31 (CD31; R&D AF3628). The secondary antibodies

for immunofluorescence includedonkeyanti-mouse immunoglobulinG

(IgG) Alexa Fluor 568, anti-rabbit IgG Alexa Fluor 488 and 647, anti-

rat IgG Alexa Fluor 488 and 647, and anti-goat IgG Alexa Fluor 488

(Invitrogen).

2.3 Optical and fluorescent imaging and
quantification

Four consecutive sections that were 350 μm apart and two that were

300 μmapart were selected for immunohistochemical and immunoflu-

orescent quantifications, respectively, as described previously with

some modifications.31,33 Briefly, for optical imaging, the images were

acquired with a 4x objective lens and subsequently stitched with

ImageJ/FIJI. The immunoreactivity ofAβ, IBA1, andGFAP in the cortex,
hippocampus, and thalamus of the mouse brains was quantified with

individual 4x images acquired with Image-Pro Plus (MediaCybernet-

ics). These images were converted to 16-bit grayscale on Image J/FIJI

and subsequently quantified with the same threshold. A minimum size

of 30 μm2 was applied to filter out small non-specific staining. For flu-

orescent imaging, sections were imaged using the Keyence all-in-one

fluorescent microscope (Keyence, BZ-X810). The entire section was

scanned under a 10x objective lens and a stitched imagewas produced

in the Keyence Analysis software. Similar approaches were applied for

the quantifications and representative images of CAA and associated

microglia. For quantifications, images were taken under a 20x objec-

tive with a field of view (FOV) of 720 μm x 540 μm. For representative

images, a z-stack of images (8 μm ± 0.12 μm) with a z-step size of 0.2

um was taken under a 100x oil objective lens using the multi-stack

module. At least six 20x images per animal from the same region in

the thalamuswere used for quantifications, and the staining was quan-

tified per FOV with regions of interest (ROIs) to exclude non-target

staining using ImageJ/FIJI. For the CAA-associated microglia quantifi-

cation, the microglial association was defined as within 5 μm of CAA

immunostaining, and ROIs were selected around CAA and expanded

5 μm in ImageJ/FIJI. For X04+ plaque density quantifications, fluores-

cent images were converted to 16-bit on grayscale, and gray values

were quantified as a readout for fluorescent intensity representing

plaque density. The same threshold was applied within each channel

per experiment, and the rolling ball method was used to reduce back-

ground staining. Results were averaged across the sections for each

animal.

2.4 Whole mouse brain processing/clearing,
immunostaining, and 3D imaging

Wholemouse brains were processed following the SHIELD protocol.34

Sampleswere cleared for 1 day at 42◦Cwith SmartBatch+ (LifeCanvas

Technologies), a device using stochastic electrotransport.35 Cleared

samples were then actively immunolabeled using SmartBatch+
(LifeCanvas Technologies) based on eFLASH technology integrating

stochastic electrotransport 35 and SWITCH.36 Each brain sample

was stained with primary antibodies, 5 μg of mouse anti-Aβ antibody
(Encor, #MCA-AB9), 5 μg of rabbit anti-IBA1 monoclonal antibody

(Cell Signaling Technologies, #17198S), and 10 μg of goat anti-CD31

(R&D Systems, #AF3628) followed by fluorescently conjugated sec-

ondary antibodies in 1:2 (primary:secondary) molar ratios (Jackson

ImmunoResearch). After active labeling, samples were incubated in

EasyIndex (LifeCanvas Technologies) for refractive index matching

(RI = 1.52) and imaged at either 3.6X or 15X with a SmartSPIM

axially-swept light sheet microscope (LifeCanvas Technologies).

2.5 Immunoblotting

The experimental procedures for protein assay and immunoblotting

have been previously described.31,33 Briefly, protein concentrations

from total brain tissue homogenates were determined by the Brad-

ford assay (Thermo Fisher 23246). Proteins were then separated by
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12% sodium dodecyl-sulfate polyacrylamide gel electrophoresis and

transferred to polyvinylidene fluoride membranes. After blocking, the

membranes were incubated in primary antibodies overnight. The pri-

mary antibodies used include beta-secretase 1 (BACE1; Invitrogen

PA1-757), GFAP (Aves labs), IBA1 (Wako 016-20001), glyceraldehyde

3-phosphate dehydrogenase (InvitrogenAM4300), and tubulin (Sigma-

Aldrich T5198). Subsequently, the membranes were incubated with

horseradish peroxidase-conjugated secondary antibodies, followed by

incubation in the Clarity Western enhanced chemiluminescent sub-

strate (Bio-Rad) for signal detection using the iBright Western Blot

Imaging System (Thermo Fisher). Densitometric analysis was per-

formed using the ImageJ software.

2.6 Aβ species-specific enzyme-linked
immunosorbent assay

The anterior half of the cortical hemisphere was homogenized for

immunoblot analysis (see above) and Aβ enzyme-linked immunosor-

bent assay (ELISA). For the ELISA fraction, homogenized samples

were further sequentially separated into the carbonate-soluble and

guanidine-soluble fractions as previously described.31,33 The levels

of Aβ40 and Aβ42 were measured using Aβ40- and Aβ42-specific
ELISA kits (Invitrogen KHB3481 and KHB3441) according to the

manufacturer’s protocol.

2.7 Nuclei isolation from flash-frozen mouse
brain tissue

Nuclei from six female mouse brain cortical tissues (three for each

genotype) were isolated following the 10x Genomics Demonstrated

Protocol (CG000375; Nuclei Isolation fromComplex Tissues for Single

Cell Multiome ATAC + Gene Expression Sequencing), with the follow-

ing modifications: the NP40 Lysis Buffer was used at a 20X dilution,

tissue dissociation was performed on the gentleMACS Octo Dissocia-

tor with Heaters (Miltenyi Biotec, Bergisch Gladbach) using amodified

version of the 4C_nuclei_1 program, and no nuclei permeabilization

was performed. Nuclei were not sorted before capture.

2.8 Single nucleus RNA sequencing library
construction using the 10x Genomics Chromium
platform

Single nucleus RNA sequencing (snRNA-seq) libraries were prepared

per the Single Cell 3′ v3.1 Reagent Kits User Guide (10x Genomics)

using the10xGenomicsChromiumController, X, orConnect. Barcoded

sequencing libraries were quantified by quantitative polymerase chain

reaction using the Collibri Library Quantification Kit (Thermo Fisher

Scientific). Libraries were sequenced on a NovaSeq 6000 (Illumina) as

per the Single Cell 3′ v3.1 Reagent Kits User Guide, with a sequenc-

ing depth of ≈ 40,000 reads/nucleus. The estimated number of nuclei

sequenced from individual samples ranged from 5700 to 8100.

2.9 Initial data analysis

The demultiplexed raw reads were aligned to the transcriptome using

STAR (version 2.5.1) 37 with default parameters, using mouse mm10

transcriptome reference from Ensembl version 84 annotation, con-

taining all protein-coding and long non-coding RNA genes. Expression

counts for each gene in all samples were collapsed and normalized to

unique molecular identifier (UMI) counts using Cell Ranger software

version 4.0.0 (10X Genomics). The result is a large digital expression

matrix with cell barcodes as rows and gene identities as columns.

2.10 Count matrix generation and preprocessing

Sequencing read alignment was performed using cellranger

(v6.1.2) count pipeline, where FASTQ files generated from cell-

ranger mkfastq were mapped to a murine reference transcriptome

(https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-

2020-A.tar.gz). cellranger count output containing filtered count

matrix was adopted into R by Seurat (v4.0.1)38 Read10X function.

Cellswith<200 total feature reads or possessing>25%mitochondrial

mRNA content were removed as potential empty or apoptotic cells.

Prior to snRNA-seq dataset integration, the DoubletFinder package39

was used to further refine doublet detection. Filtered snRNA-seq

objects were then merged and followed by normalization and scaling

using Seurat NormalizeData and ScaleData functions with default

parameters. Calculation of the top 3000 features that exhibit signif-

icant cell-to-cell variations was done by the FindVariableFeatures

function. Overall, 23,483 genes and 36,000 nuclei remained after

filtering.

2.11 Integration, clustering, and cell type
annotation

First, linear dimensional reduction and principal component analysis

(PCA) were performed on the merged dataset that passed previous

preprocessing filters. The principal components (PCs) were ranked

based on explained variance of each PC to determine the most mean-

ingful number of PCs (nPCs), which was reflected by the turning point

in an elbow diagram by Elbowplot. Collectively, the top 20 PCs were

able to cover the most meaningful PCs. Then, batch effects were

corrected using the Harmony package40 RunHarmony function and

projected dataset in UMAP and tSNE embeddings. This integration

pipeline was adopted from Seurat and Harmony vignettes. To avoid

manual annotation of a clustered dataset thatmay involve biased opin-

ions, a computational approach using the map_sampling function of

scrattch.hicat package41 was implemented. Cells in our dataset were

bootstrap-mapped with a mouse cortex RNA-seq dataset reported by

Tasic et al.42 The final cell type predictions were evaluated by the

authors using reportedmarker genes. Initial clustering of all nuclei was

performed using a resolution of 0.6. Further rec-lustering of vascu-

lar cells, microglia, and macrophages used resolutions of 0.6, 0.3, and

https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz
https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz
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0.4, respectively. Over-clustered populationswere refined andmerged

according to the signature gene expressions.

2.12 Differential gene expression and pathway
analysis

Differential expression (DE) analysis was performed using Seurat Find-

Markers and FindAllMarkers functions. Log fold change threshold was

set to 0 to avoid gene filtering by the DE function. The fgsea function

of the fgsea packagewas used to profile pathway analysis. TheMolecu-

lar Signature Database (MSigDB) containing all known annotated gene

sets was imported to be used with fgsea. Then, log fold change val-

ues generated from DE algorithms were added to their corresponding

gene symbols. Next, the named array was rank-ordered in fgsea, and

MSigDB gene sets were subsequently mapped onto the ranked array.

Statistical significance of the pathways was determined as adjusted p

value < 0.1. The classification of significant pathways (Table S1 in sup-

porting information) was based on keywords identified by the authors

for each respective class, and was manually examined for errors. The

raw snRNA-seq datasets are available in theGeneExpressionOmnibus

repository (GEO Series accession number GSE244286).

2.13 Statistical analysis

Statistical tests, including one-way analysis of variancewith Tukey post

hoc test and Student’s t-test, were carried out with GraphPad Prism

9, and data are presented in boxplots. The box extends from the 25th

to 75th percentiles and the whiskers from the minimum and to the

maximum value. A p value< 0.05was considered significant.

3 RESULTS

3.1 Trem2 deletion exacerbates overall amyloid
deposition and production

The impact of Trem2 deficiency on amyloid pathology was evaluated

in a cohort of 16-month-old SwDI/Trem2 mice matched by sex and

genotype. Immunohistochemical (IHC) analyses showed that amyloid

deposition measured by 6E10 immunoreactivity was significantly

exacerbated in SwDI/TKO compared to SwDI/TWT mice in the cortex

(Figure 1A-B), hippocampus (Figure 1A,C), and thalamus (Figure 1D-E).

Quantifications of 6E10 immunoreactive area showed an ≈ 2-fold

increase in the amyloid load in SwDI/TKO compared to SwDI/TWT in

all three quantified regions (Figure 1F-H). Subanalysis of the plaque

size distribution showed the same differences when plaques were

divided into small (< 20 μm), medium (20–40 μm), and large (> 40 μm)

in cortical images (Figure S1A-C). Notably, there was no significant

difference between SwDI/TWT and SwDI/THet mice, indicating

that one copy of Trem2 is sufficient to keep the amyloid pathology

at bay.

To investigate the underlying reasons for the increase in amyloid

deposition, Aβ40- and Aβ42-specific quantitative ELISA were per-

formed. In SwDImice, Aβ40 accumulates more aggressively than Aβ42
in the brain parenchyma and cerebral vasculatures driven by theDutch

and the Iowa familial ADmutations.29 Therefore, Aβ40andAβ42 levels
were evaluated in the carbonate soluble and insoluble (guanidine-

soluble) fractions. As expected, Aβ40, Aβ42, and the Aβ40/Aβ42 ratio

all significantly increased in SwDI/TKO mice compared to SwDI/TWT

in both carbonate soluble and insoluble fractions (Figure 2A-D). In

addition, consistent with the immunostaining results (Figure 1), there

was no significant difference between SwDI/TWT and SwDI/THet

mice (Figure 2A-D). Thus, subsequent analyses focused on the com-

parisons between SwDI/TWT and SwDI/TKO groups. Immunoblot

analysis showed a significant increase in BACE1 level in the SwDI/TKO

groupcompared toSwDI/TWT (Figure2E-F), suggesting that enhanced

amyloidogenic processing of APP contributes to the elevated levels of

Aβ40 and Aβ42 in SwDI/TKOmice.

3.2 Trem2 deletion diminishes CAA despite an
increase in total fibrillar Aβ

The elevated Aβ40/Aβ42 ratio in the absence of TREM2 (Figure 2D)

suggested a potential increase in CAA. To quantify CAA, methoxy-

X04 (X04) was used to stain fibrillary Aβ co-stained with CD31 to

label the vascular endothelium to aid the visualization of CAA. The

results showed that in the cortical area, the X04-stained amyloid fib-

rils/compact plaques were minimal in SwDI/TWT mice (Figure 3A-B)

despite the abundance of 6E10+ immunostaining (Figure 1), confirm-

ing earlier reports that the parenchymal amyloid deposits are diffuse

in nature resulting from the high level of vasculotropic Aβ40 in SwDI

mice.29,43 The same studies also reported CAA largely present in the

thalamus and subiculum, althoughwithminimal X04+ plaque load as in

SwDI/TWTmice (Figure 3A-B, F). In contrast, total X04+ amyloid fibrils

were markedly increased in the cortex, hippocampus, and thalamus of

SwDI/TKOmice (Figure3A-E, Figure S2A-B in supporting information),

corresponding to the increase in total amyloid deposition by 6E10-

immunostaining (Figure 1). However, intriguingly, there was a marked

decrease of CAA in Trem2-deficient mice in the thalamus (Figure 3F-G)

where CAAwas most abundant, indicating that despite the increase in

Aβ40/Aβ42 or the overall increase of total Aβ (Figure 2), loss of Trem2
led to diminished CAA in SwDI mice. To confirm this unexpected find-

ing, whole brain hemispheres of SwDI/TKOand SwDI/TWT littermates

were subjected to brain clearing for 3D imaging. The brains were pro-

cessed via SHIELD, SmartClear, immunostaining procedures to labelAβ
plaques, microglia (IBA1), and blood vessels (CD31) and imaged using

a SmartSPIM axially swept light sheet microscope. The results clearly

showed a dramatic decrease of CAA in the SwDI/TKO brain com-

pared to the SWDI/TWT brain, despite significantly increased overall

Aβ load in SwDI/TKO (Figure 3H). To further understand if the com-

pactness of fibrillar amyloid changes after a shift from CAA to diffused

plaques when Trem2 is deleted, the fluorescent intensity of each indi-

vidual X04+ amyloid staining in the thalamuswas analyzed. The results
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F IGURE 1 Trem2 deletion exacerbates total amyloid deposition in SwDImice. A, D, Representative images of the immunohistochemical
staining of amyloid by 6E10 in (A) cortex, hippocampus, and (D) thalamus in SwDI/TWT (n= 7), SwDI/THet (n= 7), and SwDI/TKO (n= 6) mice.
Scale bars, 500 μm. B, C, E, Selected zoomed-in areas from the representative images of (B) cortex, (C) hippocampus, and (E) thalamus. Scale bars,
100 μm. F-H, Quantifications of the immunoreactive area of 6E10 in SwDI/TWT, SwDI/THet, and SwDI/TKOmice in (F) cortical, (G) hippocampal,
and (H) thalamic regions, respectively. One-way analysis of variance and Tukey post hoc test. ***p< 0.001, ****p< 0.0001. ns, not significant.

showed a significant decrease in the average maximal intensity and an

increase in the averageminimal intensity in SwDI/TKOmice compared

to SwDI/TWT (Figure S2C-D), indicating thatTrem2deficiency reduced

the core density of amyloid fibrils.

3.3 Trem2 deletion reduces microgliosis in the
thalamus and decreases CAA-associated microglia

TREM2 plays a crucial role in regulating microglial activation and

function, and loss of TREM2 modifies the response of microglia to

Aβ. To assess the impact of Trem2 deletion on microgliosis in SwDI

mice, brain sections were subjected to IBA1 immunostaining. Inter-

estingly, IHC analysis showed no changes in global microgliosis in

SwDI/TKO compared to SwDI/TWT and SwDI/THet mice in the cor-

tex or the hippocampus (Figure 4A, D-E), althoughmicroglial clustering

was clearly reduced in the hippocampal CA1 stratum oriens region

in SwDI/TKO mice (Figure S3A-B in supporting information). Intrigu-

ingly, microgliosis was significantly decreased in the thalamus of

SwDI/TKO mice (Figure 4B-C, F). Immunoblot analysis of the corti-

cal homogenates also confirmed that IBA1 level was not significantly

differentbetweenSwDI/TKOandSwDI/TWTmice (Figure4G-H).Con-

sistent with Aβ-staining results (Figure 1), no significant differences

in IBA1 staining were found between SwDI/TWT and SwDI/THet.

Therefore, SwDI/THet was not included in the following experiments

assessingmicroglial pathology in the thalamus.

As Aβ deposits in the thalamus are predominantly CAA, brain

sections were co-stained with X04 and IBA1 to determine whether

the reduction of microgliosis corresponds to the reduction of CAA in

this region. Indeed, X04 and IBA1 were completely co-localized in the

thalamus of SwDI/TWT mice (Figure 4I), indicating the region-specific

reduction of microgliosis in SwDI/TKO corresponds to the location

of diminished CAA pathology. Consistently, CAA-associated microglia

were significantly reduced in the thalamus of the SwDI/TKO com-

pared to SwDI/TWT (Figure 4I-J), aligning with previous literature

showing reduced plaque-associated microglia in other Trem2-deficient

transgenic AD mouse models.4–9,32,44 Additionally, microglia adopted

a less reactive morphology with smaller soma and longer processes

in SwDI/TKO than SwDI/TWT mice (Figure 4K). Together, these data

suggest that the lack of TREM2 prevents microglia from switching
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F IGURE 2 Trem2 deletion elevates overall Aβ levels in SwDImice and induces APP processing. A-D, ELISA on Aβ40 and Aβ42 in SwDI/TWT
(n= 7), SwDI/THet (n= 7), and SwDI/TKO (n= 6) groups. The levels of (A) Aβ40 and (B) Aβ42, (C) total Aβ40 and Aβ42, and (D) the ratio of
Aβ40/Aβ42 in both carbonate soluble and guanidine soluble fractions were all elevated in the SwDI/TKOmice whereas SwDI/THet mice showed
no difference compared to SwDI/TWT. One-way analysis of variance and Tukey post hoc test. E-F, Immunoblot analysis of BACE1. Representative
images of the BACE1 immunoblot (E) and the quantification of BACE1 normalized by GAPDH (F) showed a significant increase in BACE1 level in
SwDI/TKOmice compared to SwDI/TWTmice. Unpaired Student’s t-test, two-tail. #p< 0.1, **p< 0.01, ***p< 0.001, ****p< 0.0001. ns, not
significant. Aβ, amyloid beta; APP, amyloid precursor protein; BACE1, β-secretase 1; ELISA, enzyme-linked immunosorbent assay; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.

to a reactive state and impairs the ability of microglia to engage

CAA.

3.4 Trem2 deletion aggravates cortical and
hippocampal astrocytosis

Astrocytes, as well as microglia, respond to amyloidosis and regulate

neuroinflammation. To assess the impact of Trem2 deficiency on astro-

cytosis, brain sections of different genotypes ofmicewere subjected to

GFAP immunostaining. The results showed that astrocytosis was sig-

nificantly increased in cortical and hippocampal regions in SwDI/TKO

compared to SwDI/TWT mice, whereas no change was seen in

SwDI/THet mice (Figure 5A-C, E-F), consistent with overall Aβ deposi-
tion in thesemice (Figure1). The significant increaseofGFAP in the cor-

tex of SwDI/TKOmice was confirmed by immunoblot analysis of corti-

cal homogenates from SwDI/TKO and SwDI/TWT mice (Figure 5H-I).

Notably, there was no difference in GFAP immunoreactivity between
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F IGURE 3 Trem2 deletion decreases CAA despite an increase in total amyloid fibrils in SwDImice. A, The representative stitched images of the
fluorescent staining of methoxy-X04 under the 10x objective lens. Scale bars, 500 μm. B, Selected zoomed-in areas of (A). Scale bars: 300 μm. C-E,
Quantifications of the X04+ stained area in SwDI/TWT (n= 7) and SwDI/TKO (n= 6) in (C) cortex, (D) hippocampus, and (E) thalamus, respectively.
F, Representative images of CAA co-stained with capillaries (CD31) and amyloid fibrils (X04) in the thalamus. Scale bars: 20 μm. G, Quantification
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SwDI/TWT and SwDI/TKO in the thalamus (Figure 5D, G), where CAA

and microgliosis were significantly reduced in SwDI/TKO (Figures 3

and 4). These results suggest that astrocyte activation is independent

of TREM2 and responds more to parenchymal Aβ deposition than to

CAA.

3.5 Single nucleus transcriptomic analysis reveals
that microglia are trapped in transition in the
absence of Trem2

To further investigate themolecularmechanismsunderlying thepatho-

logical changes after Trem2 deletion, snRNA-seq was performed using

the frontal cortex tissues of SwDI/TWT and SwDI/TKO mice. After

removing low-quality nuclei, transcriptional data from 36,660 nuclei

were subjected to unsupervised clustering t-distributed stochastic

neighbor embedding (t-SNE) in two dimensions. To avoid manual

annotation of cell types, bootstrapping algorithms were applied to

match cells in our dataset to mouse cortical cell types in a published

dataset42 to predict the cell types, namely oligodendrocyte precur-

sor cells (OPCs), vascular cells, oligodendrocytes (oligo), inhibitory

neurons, excitatory neurons, microglia, astrocytes, and macrophages

(Figure 6A-D). The marker genes generated from these cell types were

compared to reported marker genes45–48 to confirm the cell type pre-

diction (Figure 6B-C). For both genotypes, although there were some

individual variations in relative fractions of cell types, overall there

were no significant differences in representation of different cell types

between SwDI/TWT and SwDI/TKO (Figure 6E-F).

Multiple AD studies have used Trem2-deficient models and demon-

strated distinct reactive transcriptomic profiles in microglia that

are Trem2-dependent, featuring genes present in disease-associated

microglia (DAM). Therefore, the analysis was focused first on the

microglia cluster (Figure 7A) comparing SwDI/TKO to SwDI/TWT,

and 71 differentially expressed genes (DEGs) were identified, of

which 58 were upregulated in SwDI/TKO (Figure 7B; Table S2 in

supporting information). Among the DEGs, known DAM genes, includ-

ing Ctsd, Ctsb, Gnas, and APOE, were upregulated in the SwDI/TKO

group, while homeostatic microglial marker genes such as Cx3cr1

were downregulated.9,49,50 Notably, these DEGs have been reported

to be responsible for the microglial transition from homeostatic

stage to exclusively Stage 1 DAM (also known as the intermediate

stage), which is Trem2-independent.49 Correspondingly, there were no

DEGs involved in the Trem2-dependent transition to Stage 2 DAM

(Table S2). Pathway analysis on microglia unveiled an overwhelm-

ing upregulation of pathways mostly related to a reactive state of

microglia in SwDI/TKO compared to SwDI/TWT, including protein syn-

thesis, cell death, energy production, and mitochondrial regulation,

immune response, autophagy, and lipid biosynthesis and metabolism

(Figure 7C). These findings indicate that microglia lacking Trem2

adopted a stressed state in response to amyloidosis. However, as

microglia were trapped in the intermediate Stage 1 of the DAM tran-

sition in the absence of TREM2, they were not sufficiently reactive

to contain Aβ deposition, leading to an overall increase of amyloid

pathology in SwDI/TKOmice.

Interestingly, further re-clustering of microglia uncovered two sub-

clusters (0 and 1; Figure 7D-E), although the distribution of microglia

between the two clusters was similar in SwDI/TWT and SwDI/TKO

(Figure S4A in supporting information). Pathway analysis showed

that the two subclusters of microglia have distinct functions. In

microglia cluster 0, protein synthesis, mitochondria functions, and

energy metabolism were among the most significantly enriched Gene

Ontology (GO) pathways, while microglia cluster 1 was characterized

mainly by immune functions including immune cell activation, phagocy-

tosis, and cytokine production (Figure S4B). Compared to SwDI/TWT,

Trem2 deficiency enhanced the respective signature functions charac-

terizing the microglial subclusters 0 and 1, demonstrating divergent

contributions frommicroglia clusters 0 and 1 to the stressedmicroglial

state in SwDI/TKO (Figure 7F).

3.6 Perivascular macrophages are differentially
activated in the absence of Trem2

In addition to microglia, TREM2 is also expressed in macrophages.51

To understand the impact of Trem2 deletion on macrophages in the

context of amyloidosis in SwDI mice, further analysis was conducted

for a small population of macrophages identified from cell type pre-

diction (Figure 7G). The macrophages were re-clustered into three

subpopulations (0, 1, and 2; Figure 7H). Cluster 0 covered the largest

proportion of cells, characterized by perivascular macrophage (PVM)

marker CD163 and Mrc1 (CD20652,53; Figure 7I). PVMs are a distinct

population of resident brain macrophages characterized by close asso-

ciation with the cerebral vasculature. In AD, these vessel-associated

macrophages are shown to exacerbate AD pathologies including CAA

and neuroinflammation and contribute to the detrimental effect of Aβ
in affecting cerebral blood flow.54,55 There were two significant DEGs

in SwDI/TKO versus SwDI/TWT: Fkbp5, crucial in AKT pathway reg-

ulation and NF-κB activation,56,57 was upregulated; whereas Malat1,

a non-coding RNA, was downregulated, as observed in microglia

carrying the dysfunctional Trem2-R47H mutation.58 Pathway analysis

of cluster 0 (PVM) revealed that pathways related to protein synthesis

and immune reaction are more enriched in SwDI/TKO (Figure 7J). In

of CAA, showing significant decrease of CAA in SwDI/TKO compared to SwDI/TWT. H, Representative 3D images of whole brain clearing and
immunostaining with anti-Aβ, IBA1, and CD31 antibodies.While endothelial marker CD31 (red) and Aβ (green) co-stained CAAmicrovessels
(yellow) are clearly seen in the thalamus image of SwDI/TWT, almost no CAA is visible in the thalamus image of SwDI/TKO, despite significantly
more Aβ load (green) in SwDI/TKO. Scale bars, 200 μm. Unpaired Student’s t-test, two-tail. **p< 0.01, ***p< 0.001. Aβ, amyloid beta; CAA, cerebral
amyloid angiopathy; CD31, cluster of differentiation 31; IBA1, ionized calcium-binding adapter molecule 1.
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F IGURE 4 Trem2 deletion reducesmicrogliosis and CAA-associatedmicroglia in the thalamus. A-C, Representative images of the
immunohistochemical staining of microglia by IBA1 in (A) cortex and hippocampus, and (B) thalamus in SwDI/TWT (n= 7), SwDI/THet (n= 7), and
SwDI/TKO (n= 6). Scale bars, 500 μm. C, Selected zoomed-in areas from (B). Scale bars, 100 μm. D-F, Quantifications of the immunoreactive area
of IBA1 in SwDI/TWT, SwDI/THet, and SwDI/TKO in (D) cortex, (E) hippocampus, and (F) thalamus, respectively. Only in thalamus was a significant
decrease observed in IBA1 in SwDI/TKOmice. One-way analysis of variance and Tukey post hoc test. G-H, Immunoblot analysis of IBA1.
Representative images of the IBA1 immunoblot (G) and the quantification of IBA1 normalized by GAPDH (H). I-J, CAA-associatedmicroglia in the
thalamus. I, Representative images of CAA andmicroglia stainedwith X04 and IBA1, respectively, and (J) the quantification. K, Representative
images of microglial morphology in thalamus. Microglia adopt a less reactivemorphology with longer process and smaller soma in SwDI/TKO than
those in SwDI/TWTmice. Unpaired Student’s t-test, two-tail. *p< 0.05, ****p< 0.0001. ns, not significant. CAA, cerebral amyloid angiopathy;
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IBA1, ionized calcium-binding adapter molecule 1.
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F IGURE 5 Trem2 deletion aggravates cortical and hippocampal astrocytosis. A, D, Representative images of the immunohistochemical staining
of reactive astrocytes by GFAP in (A) cortex, hippocampus, and (D) thalamus in SwDI/TWT (n= 7), SwDI/THet (n= 7), and SwDI/TKO (n= 6). Scale
bars, 500 μm. B-C, Selected zoomed-in areas from the representative images of (B) cortex and (C) hippocampus. Scale bars, 100 μm. E-G,
Quantifications of the immunoreactive area of GFAP in SwDI/TWT, SwDI/THet, and SwDI/TKO in (E) cortical, (F) hippocampal, and (G) thalamic
regions, respectively. One-way analysis of variance and Tukey post hoc test. H-I, Immunoblot analysis of GFAP. Representative images on the GFAP
immunoblot (H) and the quantification of GFAP normalized by GAPDH (I). Unpaired Student’s t-test, two-tail. **p< 0.01, ***p< 0.001,
****p< 0.0001. ns, not significant. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GFAP, glial fibrillary acidic protein.

addition, several pathways pertaining to cell junction maintenance

were upregulated in the absence of Trem2 (Figure 7J). Cluster 1

macrophages are featured by high expression of classic MHC class

II genes such as Cd74, H2-Eb1, and H2-Ab1 (Figure 7I), indicating an

immune reactive status. Although no significant DEGs or pathways

were found in SwDI/TKO versus SwDI/TWT, there was a trend of

increase in cluster 1 macrophages in SwDI/TKO (Figure S4C-D).

Together, these findings showed that perivascular macrophages were

differentially activated in the absence of TREM2, likely contributing to

pathological changes in SwDI/TKOmice.

3.7 Vascular cell-type analysis uncovers distinct
responses of mural cells and astrocytes to Trem2
deficiency

To investigate the impact of Trem2 deletion on cerebrovascular cells,

the snRNA-seqdatasetwas further analyzed to identifyDEGs in vascu-

lar cell types (Figure 8A). Comparing SwDI/TKO and SwDI/TWT mice,

six upregulated and five downregulated protein-coding DEGs were

identified (Figure 8B; Table S2), and pathway analysis indicated their

crucial roles in cytoskeleton maintenance (Figure 8C). Furthermore,
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F IGURE 6 snRNA-seq analysis distinguishes major brain-cell types in SwDI/Trem2mouse brain cortical samples. A, t-SNE plot showing
distinguished clusters after integrating dataset from individual samples with eight distinct cell-type identities as determined by algorithm
prediction andmanual confirmation (n= 6mice total with n= 3mice for each genotype; 36,660 total nuclei). B, Expression of specific markers in
every predicted cell type. C, t-SNE visualization of all eight major cell populations showing the average expression of the representative cell
type–specific marker genes. Numbers reflect the average number of UMI detected for the representative genes for each cell. D, Pie chart showing
the fraction of each cell type after integrating all six samples for both genotypes. E-F, Bar graph showing the fractions of each cell type in (E)
individual samples and (F) each genotype averaged as a group. snRNA-seq, single nucleus RNA sequencing; t-SNE, t-distributed stochastic
neighbor embedding; UMI, uniquemolecular identifier.

using recently published subtype-specific vascular marker genes,59–61

distinct cell clusters were identified, including smooth muscle cells

(SMCs), vascular leptomeningeal cells, pericytes, endothelial cells,

and astrocytes (Figure 8D-E). Pathway analysis of SwDI/TKO versus

SwDI/TWT unveiled divergent responses of vascular cells to Trem2

deletion. In vascular leptomeningeal and endothelial cells, no signifi-

cant changes were detected. For SMC, pericytes, and astrocytes, their

respective significant pathways were shown in Figure 8F. In both

SMC and pericytes, an overall increased cell activity was observed

in SwDI/TKO, including cytoskeleton, cell survival/development and

proliferation, and immune functionpathways. In addition, in SMC,path-

ways relevant to smooth muscle contraction were upregulated, and

the extracellular matrix pathway was downregulated. As increased

microvascular extracellular matrix has been associated with CAA,62

downregulation of the extracellular matrix was consistent with

reduced CAA in SwDI/TKO. Interestingly, while the majority of sig-

nificant pathways identified in SMC and pericytes were upregulated,

almost all significant pathways in vascular-associated astrocytes were
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F IGURE 7 Trem2 deletion switchesmicroglia and perivascular macrophages to a reactive transcriptomic profile. A, t-SNE plot showing the
microglia populations from Figure 6 based on the cell type prediction algorithm. B, Volcano plots showing all 71 significant DEGs (adjusted p< 0.1)
in microglia of SwDI/TKO versus SwDI/TWT. Stage 1DAMgenes are elevated in SwDI/TKO. C, Bar graph showing different classes of significant
pathways (adjusted p< 0.1) of SwDI/TKO versus SwDI/TWT in all microglia. Upregulated pathways in red and downregulated pathways in blue. D,
t-SNE plot of re-clusteredmicroglia identifying two subclusters, 0 and 1. E, Expression of specific markers in eachmicroglial cluster. F, Bar graphs
showing different classes of significant pathways (adjusted p< 0.1) of SwDI/TKO versus SwDI/TWT inmicroglia clusters 0 and 1. Upregulated
pathways in red and downregulated pathways in blue. G, t-SNE plot showing themacrophage populations from Figure 6 based on the cell type
prediction algorithm. H, t-SNE plot of re-clusteredmacrophage identifying three subclusters, 0, 1, and 2. I, Expression of specific markers in each
macrophage cluster. J, Bar graph showing different classes of significant pathways (adjusted p< 0.1) of SwDI/TKO versus SwDI/TWT in
macrophage cluster 0. Upregulated pathways in red and downregulated pathways in blue. DAM, disease-associatedmicroglia; DEGs, differentially
expressed genes; t-SNE, t-distributed stochastic neighbor embedding.

downregulated in SwDI/TKO mice. These findings indicate that var-

ious types of cerebrovascular cells exhibit differential responses to

Trem2 deletion, likely contributing to the pathological phenotypes in

SwDI/TKOmice.

4 DISCUSSION

The present study aimed to fill the gap in knowledge of the role of

TREM2 in the pathogenesis of CAA. To achieve this goal, we introduced
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F IGURE 8 Vascular cell-type analysis uncovers distinct responses of mural cells and astrocytes to Trem2 deficiency. A, t-SNE plot showing the
vascular cell populations from Figure 6 based on the cell type prediction algorithm. B, Volcano plots showing all 13 significant DEGs (adjusted
p< 0.1) in vascular cells of SwDI/TKO versus SwDI/TWT. C, Bar graph showing top 10 up- and downregulated GeneOntology (GO) significant
pathways (adjusted p< 0.1) of SwDI/TKO versus SwDI/TWT in all vascular cells. Upregulated pathways in red and downregulated pathways in
blue. D, t-SNE plot of re-clustered vascular cells showing five distinct cell typesmanually identified by reportedmarker genes. E, Expression of
specific markers in each vascular subtype. F, Bar graph showing different classes of significant pathways (adjusted p< 0.1) of SwDI/TKO versus
SwDI/TWT in smoothmuscle cells (SMCs), pericytes, and astrocytes. No significant differential pathways were found in vascular leptomeningeal
cells and endothelial cells. DEGs, differentially expressed genes; t-SNE, t-distributed stochastic neighbor embedding.

Trem2 deficiency on the background of SwDI, an established CAA/AD

model,29,43 by breeding SwDI mice with the well-characterized Trem2

knock-out mice.30 We performed a comprehensive characterization

of the pathologies and molecular signatures of the new SwDI/Trem2

line using immunohistochemical, biochemical, and transcriptomic

approaches, andwe identified a previously unknown differential effect

of TREM2 on modulating parenchymal and vascular amyloid pathol-

ogy (plaques andCAA). Prior studies have shown that Trem2 deficiency

affects overall amyloid pathology in a disease stage–dependent man-

ner, generally with an increase in total amyloid in the late stage but a

decrease or no change in the earlier phase.4–9 However, those stud-

ies were conducted in Aβ42-enriched, parenchymal plaques–dominant

mousemodels. In the present study, we used the Aβ40-enriched, CAA-
prone SwDI/Trem2mice at 16months, when both amyloid plaques and

CAA are usually well developed in SwDI mice at this age,43 to assess

the function of TREM2.

Consistent with previous findings from other AD models at a

late disease stage, loss of Trem2 led to a robust increase in overall

amyloid load in the cortex, hippocampus, and thalamus in SwDI mice

(Figure 1). Interestingly, haplodeficiency of Trem2 was not sufficient

to modulate cerebral Aβ deposition in SwDI mice, which is consistent

with the results in APPPS1-21 mice,8 although a dose-dependent

effect of Trem2 has been reported in 5XFAD mice.4 Because of the

fibrillar nature of Aβ in CAA, in addition to Aβ immunostaining,
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methoxy-X04 staining was used to assess the amount of amyloid

fibrils in SwDI/Trem2 mice. The results showed a significant increase

of fibrillar Aβ in the three regions in SwDI/TKO, similar to total

amyloid load assessed by Aβ immunostaining; however, unexpect-

edly, loss of Trem2 led to marked reduction of CAA, in particular in

the thalamus where CAA is predominantly located in SwDI mice

(Figure 3). These intriguing findings, for the first time, reveal the

differential impact of Trem2 deficiency on parenchymal and vascular

amyloidosis.

Subsequent quantification of Aβ species was performed with Aβ40-
and Aβ42-specific ELISA to understand their contributions to the dis-

cordant parenchymal Aβ deposition and CAA. The results showed a

significant increase in both Aβ40 and Aβ42 in either soluble or insol-

uble fractions of the total brain homogenates in SwDI/TKO mice.

Importantly, the Aβ40/Aβ42 ratio was also elevated, indicating that

Aβ40 was increased more than Aβ42. Because the increase of Aβ40
promotes CAA, this would predict exacerbation rather than diminish-

ment of CAA as observed in SwDI/TKO mice. This paradoxical finding

might be the result of Aβ redistribution. As reported in a study with a

bigenic model from crossing SwDI with 5XFAD, an aggressive plaque-

rich model,63 early parenchymal fibrillar amyloid plaques originated

from 5XFAD act as a scaffold to capture CAA composed by vascu-

lotropic Dutch/Iowa mutant Aβ and promote its local assembly and

deposition into parenchymal plaques, hence precluding microvascular

amyloid formation. Based on the finding that loss of or dysfunctional

TREM2 boosts amyloid seeding in the early stages,44,64 the shift from

CAA to parenchymal plaques was likely caused by increased amy-

loid seeding in the brain parenchyma of SwDI/TKO mice. The overall

increase of both total and fibrillar Aβ deposition in various brain

regions observed in SwDI mice supports this notion. Interestingly,

recent studies found that depletion of microglia led to a decrease in

parenchymal plaquesbut an increase inCAA in5XFADmice.26,65 These

findings corroborate the role of microglia in the dynamics of parenchy-

mal and vascular Aβ deposition, and in themeantime demonstrate that

lackofmicroglia is not equivalent to lackofTREM2andothermicroglial

functions are likely responsible for the opposite outcome. In addition,

the intrinsic differences between the mouse models (Aβ40-dominant

SwDI vs. Aβ42-dominant 5XFAD) and the disease stages may also con-

tribute to the discrepancy. How depletion of microglia modulates the

parenchymal and vascular Aβ distribution in SwDI mice awaits further

investigation.

In SwDI/TKOmice, CAA-associated IBA1+microglia were reduced

compared to SwDI/TWT, consistent with previous studies reporting

reduced plaque-associated microglia in other Trem2-deficient AD

mice.4–9,32,44 Notably, in the brain cortex where diffused plaques

were prevalent, there was no change in the extent of microglio-

sis by IBA1 staining (Figure 4D) in the absence of Trem2. This

could be attributed to the fact that the microglial activation in

the cortex of SwDI mice is limited in the first place due to the

scarce Aβ fibrillar pathology.43,66 Although Trem2 deletion led

to an increase in fibrillar Aβ, Trem2-deficient microglia failed to

respond in SwDI/TKO mice, which is supported by snRNA-seq

data.

Of note, brain regional similarities and differences in pathology

were observed after Trem2 deletion. In the SwDI model, Aβ deposits

were first found in the subiculum, hippocampus, and cortex at ≈ 3

months followed by the olfactory bulb and thalamic region at ≈ 6

months.29 Subiculum and thalamus are the two CAA-prone regions

in SwDI and are more susceptible to microgliosis and astrocytosis

than the cortex along the course of pathological development in SwDI

mice from 6 to 12 months.43 In the present study, Trem2 deletion

led to a significant exacerbation of the overall amyloid pathology in

three brain regions including the cortex, hippocampus, and thalamus

in SwDI mice at 16 months (Figures 1 and 3). However, microgliosis

was reduced in the thalamus (Figure 4), associated with a reduction of

CAA where microglia adopted a less reactive and dystrophic morphol-

ogy (Figure 4K), whereas astrocytosis was increased in the cortex and

hippocampuswith no change in the thalamus (Figure 5), indicating that

astrocytes respondedmore toparenchymalAβdeposition than toCAA.
Importantly, the impact of TREM2 on brain region–specific immune

response and plaque microenvironment has also been observed in

human AD. A recent report showed that dystrophic microglia were

most abundant in the subiculum region in human brains across all AD

stages, especially in patients harboring risk variants of TREM2.67 Taken

together, the regional similarities and differences in brain pathology

observed in SwDI/TKO mice most likely resulted from the distri-

bution and nature of the amyloid deposition (plaques vs. CAA) and

corresponding cellular responses.

Transcriptomic analysis showed that microglia displayed a partially

reactive profile, trapped in the intermediate state of DAM Stage 1 in

SwDI/TKO compared to SwDI/TWT, without being fully activated to

theDAMStage2as reported.9,49,50,64 These results are consistentwith

the notion that Stage 1 DAM genes are Trem2 independent whereas

Stage 2 DAM genes are Trem2 dependent.49 Pathway analysis also

revealed a stressed state of microglia in SwDI/TKO, with overwhelm-

ing upregulation of protein synthesis, cell death, energy production,

immune response, and lipid biosynthesis and metabolism pathways.

Interestingly, it has been reported that Trem2 deficiency leads to

induced autophagy but curtails biosynthetic and energetic metabolism

in 5XFADmice.68 Here, we found both autophagy and energy produc-

tion pathways were upregulated in SwDI/TKO mice, indicating both

overlapping and divergent responses in different ADmodels.

Further, we identified a PVM subcluster from the macrophage

population through snRNA-seq analysis. The role of perivascular

macrophages in cerebrovascular function is well recognized. In the

homeostatic state, PVMs in the brain are beneficial, involving in the

clearance of waste products from the cerebral parenchyma and in the

regulation of the cerebrospinal fluid (CSF) flow through extracellular

matrix.69,70 However, under pathological conditions including AD,

PVMs could be a double-edged sword, depending on the disease

stage. On one hand, PVMs facilitate amyloid clearance at the vascular

level.54,71 On the other hand, PVMs exacerbate Aβ-induced neurovas-
cular dysfunction by providing reactive oxygen species.55 In addition,

PVMs contribute to the degradation of extracellularmatrix that in turn

regulates the diameter of the perivascular space and increases CSF

flow.70,72
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Pathway analysis showed that PVMs were differentially activated

in SwDI/TKO mice. In addition to upregulation of protein synthesis

and immune function pathways as in microglia, cell junction pathways

were upregulated in the absence of Trem2 (Figure 7J), indicating a

potential impact on BBB integrity. In addition, snRNA-seq analyses

in vascular cells showed that mural cells (SMCs and pericytes) were

activated, whereas vascular-associated astrocytes were suppressed in

SwDI/TKO mice. Because these cells are involved in the regulation of

neurovascular structure and functions,73–75 transcriptomic changes in

each of the cell types likely contributed to the pathological phenotype

in SwDI/TKOmice. The results also demonstrate that lack of Trem2 not

only affects microglia but also modifies the response of various other

cell types in the brain.

Our findings offer an important perspective on ongoing efforts

developing TREM2 agonists as a potential therapeutic for AD. Recent

results from the clinical trial with the TREM2-activating antibody

AL002 have shown that ARIAs are one of the most prevalent and

severe adverse events, as observed with anti-Aβ immunotherapies.76

This observation is consistent with our finding that TREM2 plays a

crucial role in the formation of CAA. Antibody-induced activation of

TREM2 may lead to the worsening of CAA, thus likely contributing to

the aggravation of ARIAs in clinical trials with TREM2 agonists. These

findings suggest that it may be necessary for TREM2-targeting ther-

apies to balance the activation and inhibition of TREM2 to achieve

optimal outcomes.

Overall, our study provides the first evidence that TREM2 differen-

tially modulates parenchymal and cerebrovascular amyloid pathology

in a CAA-prone mouse model of AD. Despite the overall increase

of amyloid load in the brain, lack of Trem2 diminishes CAA, the

well-recognized culprit for cerebrovascular dysfunction, including the

severe side effect of ARIAs associated with anti-Aβ and TREM2-

activating immunotherapies. Therefore, our findings may have signif-

icant implications for both TREM2- and Aβ-targeting therapies for

AD.
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