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Durable and programmable ultrafast 
nanophotonic matrix of spectral pixels

Tingbiao Guo    1,2,6, Zhi Zhang1,3,6, Zijian Lin1,4, Jiahan Tian1, Yi Jin1, Julian Evans1, 
Yinghe Xu2 & Sailing He    1,2,3,5 

Locally addressable nanophotonic devices are essential for modern 
applications such as light detection, optical imaging, beam steering and 
displays. Despite recent advances, a versatile solution with a high-speed 
tuning rate, long-life durability and programmability across multiple pixels 
remains elusive. Here we introduce a programmable nanophotonic matrix 
consisting of vanadium dioxide (VO2) cavities on pixelated microheaters 
that meets all these requirements. The indirect Joule heating of these VO2 
cavities can result in pronounced spectral modulation with colour changes 
and ensures exceptional endurance even after a million switching cycles. 
Precise control over the thermal dissipation power through a SiO2 layer of an 
optimized thickness on Si facilitates an ultrafast modulation rate exceeding 
70 kHz. We demonstrated a video-rate nanophotonic colour display by 
electrically addressing a matrix of 12 × 12 pixels. Furthermore, inspired by 
the unique pixel-level programmability with multiple intermediate states of 
the spectral pixels, a spatiotemporal modulation concept is introduced for 
spectrum detection.

Nanophotonic pixels are the fundamental building blocks of displays, 
detectors and wavefront manipulation devices. Cavity-based optical 
devices can manipulate light intensity1, phase2, polarization3 and angu-
lar momentum4, making them ideal for imaging5, displays6, spectros-
copy7, sensing8 and thermal management9,10. Even with great progress in 
multiplex engineering, most current devices still exhibit static features 
limited by the geometric structure or material selection after fabrica-
tion, which greatly limits their opportunities for emerging applications 
such as light detection and ranging11,12 and virtual/augmented reality13. 
An ideal tunable photonic platform should simultaneously provide a 
large modulation capability, a solid state, fast switching, a long life 
cycle, high scalability and pixel-level programmability. Liquid crystal 
tunable devices are one of the most promising platforms for versatile 
functionalities with continuous phase and intensity modulation14–16. 
However, the modulation rate can rarely exceed 1 kHz and is usually 

polarization dependent. Tunable devices based on the electro-optic 
effect17–20 or carrier injection21–23 can work at ultra-high speeds, but 
they typically have a small modulation depth. Electrochromic or 
other redox reactions24–27 can dynamically control optical transmit-
tance with large intensity contrast. However, the response time of the 
electrochromic-based modulator is generally slow and the lifetime 
is always a concern. A comparison among different approaches for 
electrically programmable photonic devices is listed in Supplemen-
tary Section 1.

Electrically driven phase change materials (PCMs) have stimu-
lated many breakthroughs in the field of tunable nanophotonics28–35. 
Among them, chalcogenide PCMs can provide a large modulation 
depth in the visible and infrared regimes. As a groundbreaking work, 
Hosseini et al. used conductive atomic force microscopy to tune the 
phase change of Ge2Sb2Te5 and achieved the first demonstration of 
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In this paper we introduce and demonstrate a general program-
mable matrix of spectral pixels that possess ultrafast speed, single-pixel 
addressability with multiple states and a long lifetime. It is composed 
of VO2-based cavities triggered by electrically addressed microheaters 
and can achieve large spectral/colour modulation through electro-
thermal heating. By adopting balanced thermal management through 
optimizing the thickness of the SiO2 layer on Si for balanced heating 
and cooling rates, an ultrafast modulation bandwidth beyond 70 kHz is 
achieved, nearly two orders of magnitude faster than that of reported 
devices50. Compared to the conventional approach of direct current 
flow through PCMs, the indirect heating method used here shows better 
stability even after millions of switching cycles. As a proof of concept 
of its multidisciplinary applicability, a video-rate nanophotonic dis-
play is presented, as well as a spatiotemporal modulation scheme for 
spectrum detection. With spatiotemporal modulation, the spectrum 
of the incident light is multiplexed in space across the matrix and in 
time by multiple intermediate states through the tunable spectral 
pixels, tackling the trade-off between the footprint and the detection 
performance in conventional spectrometric devices.

Design and characterization
Figure 1 shows the schematic of the proposed spectral pixel matrix. For 
each unit, a lossy cavity consisting of a metal reflective layer and a lossy 
VO2 layer is adopted for spectral manipulation1. A microheater made 
of indium tin oxide (ITO) is laid beneath each cavity for indirect elec-
trothermal heating. The current will not pass through the VO2 directly, 
and the heat generated by the ITO microheater is transferred through 

a dynamic structural colour display based on PCMs28. The authors 
further developed this technology into arrays of resistive heaters 
for pixelated switching30,36. Later, a reversible structural colour pixel 
by electrical switching was also developed based on other PCMs37. 
However, high operating temperatures and a large volume expan-
sion during phase changes imposed rigorous requirements for the 
driving strategy and structure design, greatly limiting the stabil-
ity and lifetime. Due to this stringent quenching requirement, the 
realization of large-scale, high-speed, programmable PCM devices 
is still difficult. Vanadium dioxide (VO2) is another PCM with an 
insulator-to-metal transition at a temperature of ~68 °C (ref. 38). 
It has been widely explored for optical limiters39,40, reconfigurable 
phase plates41, dynamic colour filters42,43, absorbers44 and adaptive 
thermal45,46 regulators. Zhao et al. proposed a dynamic colour display 
based on VO2 that was triggered by a hotplate via a thermal approach 
with no pixel addressability43. This means the patterns were fixed with 
limited single-purpose functionality once fabricated47. Though micro-
heaters have been employed for phase switching recently, especially 
in integrated photonics (for example, in two studies32,48), a thorough 
exploration for all the properties of pixel-level programmability, 
multiple stable intermediate states, reversibility and durability is 
still missing (Supplementary Table 2). Moreover, the response times 
of reported devices are mainly below the kilohertz range49. Pixel 
addressability across multiple states is the key challenge for a fully 
functional and versatile platform for display, optical computing and 
biomedical sensing/imaging, while response time and endurance are 
the core concerns for practical applications.
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Fig. 1 | The schematic diagram for the nanophotonic pixel matrix, 
controlled with an FPGA and computer. Each matrix pixel has a cavity 
consisting of a metal reflective layer and a VO2 layer laid on top of the 
microheaters made of ITO. The top-left inset shows an enlarged view of a single 
VO2 pixel, with side lengths of l1 and l2, VO2 thickness of tVO2, ITO thickness of 
tITO, Ag thickness of tAg and SiO2 thickness of tSiO2. For colour generation of the 
nanophotonic matrix (i), the electrically programmable matrix is controlled 
through the row–column scheme, and the entire device works in the refresh 

mode for display. For spectrum detection of the nanophotonic matrix (ii), each 
unit spectral pixel consists of 2 × 2 VO2 cavities integrated onto a single heater, 
which is controlled individually. Every pixel can be regulated to any 
intermediate state at any time. The black solid boxes in the figure show the 
optical microscope images of the pixels, and the red dashed boxes show 
illustrations for display and spectrum detection. Ins., the insulating state;  
Met., the metallic state. Scale bars, 100 µm in (i) and (ii).
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the SiO2 layer and then activates the phase transition of VO2 in a more 
uniform way. For a nanophotonic display, the electrically program-
mable matrix consists of 12 × 12 pixels, where each pixel is controlled 
through the row–column scheme with a field programmable gate array 
(FPGA), and the entire device works in refresh mode. For spatiotemporal 
spectrum modulation, 2 × 2 VO2 cavities are integrated onto a single 
heater, and each heater as a unit spectral pixel is controlled individually 
by a pair of electrodes. Every pixel could be regulated to any intermedi-
ate state at any time. The optical microscope images of the pixels are 
shown in Fig. 1.

The as-prepared VO2 material was first characterized; Fig. 2a and 
Supplementary Section 2 show the results. The VO2 shows a typical 
hysteresis effect with a low operating temperature in our device. Vari-
ous lossy cavities with different thicknesses of the VO2 layer were then 
fabricated. Figure 2b shows the captured colours and reflection spectra 
for different cavities. As expected, distinct colour differences can be 
achieved for these structures between metallic and insulating phases. 
Here, the colour difference (ΔE) for each structure before and after the 
phase transition is calculated to evaluate the quality of colour modu-
lation. The ΔE value can be larger than 45 in CIELAB colour space for 
cavities with a thickness around 40 nm (Supplementary Section 3). The 
simulated colours and spectra as shown in Fig. 2b agree well with the 
experimental results. The colour change for more samples is labelled 
in the International Commission on Illumination (CIE) 1931 colour dia-
gram as shown in Fig. 2c. By varying the thickness of the VO2 layer, a full 
gamut accounting for 40% of standard red–green–blue (sRGB) colour 
space could be obtained. The calculation and appearance change for 
different configurations can be found in Supplementary Section 4. 
Figure 2d shows the heatmap of the reflection spectra when applying 
various voltages on a single spectral pixel with a VO2 thickness of 50 nm. 
The spectra of all intermediate states have been measured multiple 

times, and the device can achieve stable intermediate-state colours 
and spectra under the same temperatures or voltages (Supplementary 
Section 5 and Fig. 2e, from which we see over 60 intermediate-state 
levels at a wavelength where the reflectance variation range is large). 
The device can also work as an intensity or spectrum modulator, and 
the modulation ratios for different structures can be found in Sup-
plementary Section 6.

An ultrafast and durable VO2 pixel
An important aspect of a dynamic device is the modulation bandwidth, 
especially for, for example, free-space communication, endoscopic 
bio-imaging and beam steering applications. In electronic devices, the 
switching speed of VO2 microstructures can reach picoseconds51, which 
is attractive for tunable optical devices. However, in photonic devices, 
hindered by the large volume of the devices, even a tens-of-kilohertz 
rate is hard to reach. To better explore the factors for switching speed, 
we consider both heating and cooling times. As shown in Fig. 3a, 
two simple equations can be adopted to estimate the heating and  
cooling processes:

I2 × R × Δtr = c ×m × (Tth − T0) + V × H + Prout × Δtr (1)

c ×m × (T0 − Tth) − V × H + Pfout × Δtf = 0 (2)

where I is the current in the microheater; R is the resistance of the micro-
heater; Δtr and Δtf are the rising and falling times for the heating and 
cooling periods, respectively; c is the thermal capacity of the device; 
m is the mass; T0 and Tth are the initi al and threshold temperatures, 
respectively; V is the volume of VO2; H is the latent heat of the phase 
transition of VO2; and Prout and Pfout are the effective thermal dissipation 
power for the rising (heating) and falling (cooling) periods, respectively. 
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Fig. 2 | The phase change performance of the VO2 cavities. a, Heating  
and cooling curves of the as-prepared VO2 material. a.u., arbitrary unit.  
b, Experimental (Exp.) and simulated (Sim.) results of the spectra and colour 
performance for cavities with various thicknesses of the VO2 layer, before and 
after the phase transition (tVO2 = 30, 40, 60, 80 and 120 nm from bottom to top). 
The y axis for each box has a separate scale of 0 to 1. For simplicity, we only 
labelled 0 to 1 in the bottom box. c, The colour modulation for VO2 cavities with 

different VO2 thicknesses in the CIE 1931 colour diagram (the thickness ranges 
from 10 to 150 nm). Blue discs are for cavities in the insulating state and red 
squares are for cavities in the metallic state. d, The reflective spectra of a VO2 
cavity (tVO2 = 50 nm) at various intermediate states by applying different input 
signals. e, The measured reflectance for the cavity in d at 500 nm at each 
intermediate-state level over 11 voltage cycles (the error bars indicate the 
standard deviation of the cycles, and the solid discs indicate the average value).
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In our simulation V × H is negligibly small as the volume V is small. Here, 
for simplicity, we assume the effective output power is a constant for 
both the heating and cooling processes. For a general thermal system, 
the switching speed can be determined by the thermal capacity c and 
thermal conductance g as τ = c/g. This implies that the larger the ther-
mal conductance, the faster the response is. However, in our case, the 
thermal source is limited by a voltage supplier. To ensure the device 
can be heated over the temperature required for the phase transition 
of VO2, the thermal conductance needs to be in a reasonable range.

Considering all the aspects listed above, a reasonable effective 
output power is critical for balanced and fast rising and falling times 
(Fig. 3b). By controlling the effective output thermal power within a 
range from ~0.2 W to 0.6 W, the response time of this device can be 
squeezed to less than 20 µs, much faster than previous VO2-based 
reconfigurable devices. Considering that thermal conduction is the 
main heat dissipation channel in our device (Supplementary Section 
7), we manipulate the effective output power by inserting a silicon 
oxide layer between the device and the silicon substrate and varying 
its thickness for a balanced heat dissipation rate. Figure 3c shows the 
calculated relationship between the effective output thermal power, 
Pout, and the thickness of SiO2, tSiO2. By adopting a SiO2 layer with a thick-

ness ranging from hundreds of nanometres to several micrometres on 
a silicon substrate, our device could balance the heating and cooling 
processes and possess an ultrafast response. Calculations are in Sup-
plementary Section 8.

Figure 3d shows the experimental set-up for the response time 
characterization, which mainly consists of a light source, a signal 
generator with a voltage amplifier and an optical detector with an 
oscillator. The measured responses for three different substrates are 
shown in Fig. 3e–g. A thick glass substrate is beneficial for a fast rising 
time but leads to a slow falling time (Fig. 3e). The rising and falling 
times are 6.6 µs and 97.7 µs, respectively. A pure silicon substrate 
(Fig. 3f) can provide a fast heat dissipation rate and hence a fast fall-
ing time, but this comes along with a long rising time. With a solely 
silicon substrate, the switching times are 1,947 µs and 85 µs for the 
rising and falling periods, respectively. Neither case can give a fast 
response for both the falling and rising periods simultaneously. By 
using the silicon substrate with a 2-µm-thick SiO2 cap layer, one can 
manipulate and balance the heating and cooling processes, giving 
fast rising and falling times of 5.8 µs and 8.4 µs, respectively, which 
are 335 and 11 times faster than those in the silicon/glass conditions 
as shown in Fig. 3g. Experimental results for other SiO2/Si thickness 
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Fig. 3 | The optimization for the electrothermal response speed of the VO2 
cavities. a, Illustration of the heating and cooling processes. Here T0 and Tth 
are the initial and threshold temperatures, Δtr denotes the rising (heating) 
time and Δtf denotes the falling (cooling) time. The total time is the sum of the 
rising and falling times. Here the symbol U represents the voltage source. b, The 
theoretical estimation of rising and falling times for the device as a function of 
the thermal dissipation power, Pout. The shaded area indicates the Pout needed 
for a fast response time below 20 µs, and the square dots are the total time of 
the experimental results. c, The effective output power estimated from the 
effective thermal conductivity. The arrow indicates the SiO2 thickness region 
required to obtain a thermal dissipation power Pout within the shaded region in b. 

The inset shows the cross section of an ITO heater on a SiO2/Si substrate. d, The 
measurement set-up for the dynamic response. L1(2), lens 1(2); BS, beam splitter; 
Obj., objective; DUT, device under test; PD, photodetector; OSC, oscilloscope; 
AFG, arbitrary function generator. e–g, The measured rising and falling times for 
devices fabricated on different substrates, namely, SiO2 (e), Si (f) and SiO2/Si (g). 
The shaded area is labelled with the time to reach 90% of maximum or minimum 
intensity. The insets show the cross sections of the heaters on different substrate 
configurations. h, The simulated rising and falling times for the device on a 
SiO2/Si substrate. The inset shows the simulation model. The bright yellow area 
indicates the hot spot of the temperature.
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configurations are also labelled in Fig. 3b, fitting well with the theo-
retical results. We conducted an electrothermal simulation (Fig. 3h) 
based on the optimal configuration, and the response times for the 
heating and cooling processes are consistent with the experimental 
results. By further shrinking the pixel size, our device has the potential 
to operate in regimes of a few megahertz and with a decreased driving 

voltage. Supplementary Section 9 provides more detailed information 
about the simulation and experiment.

To further validate the frequency response of the device, we 
carried out modulation measurements on the sample by the loga-
rithmic increase of voltage-biased switching frequency, from 100 Hz 
to 100 kHz, with a total sweep time of 10 s. The measured 3 dB cut-off 
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frequency can be over 70 kHz (Fig. 4a). We also plot the signal 
responses at frequencies of 1 kHz, 5 kHz and 70 kHz, confirming the 
ultrafast response modulation. We evaluated the durability of the 
device by applying a signal with a frequency of 1 kHz and a duty cycle 
of 10%. After switching one million times, we saw no notable change 
in the response of our device (Fig. 4b). The robustness of the present 

switching device was also confirmed by measuring the reflection 
spectra of the sample before and after the experiment. The small 
changes in the reflection spectra and appearance (Fig. 4c,d) indicate 
that the sample did not undergo notable deterioration. This ultra-long 
lifetime is mainly attributed to the low threshold temperature of VO2 
devices, alleviating the burden for a microheater to trigger the phase 
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transition. For the present device, the trigger current for the phase 
transition is around 37.5 mA.

Structural colour display by row–column 
addressing
We adopted a row–column addressing scheme to achieve program-
mable control of the 12 × 12 pixels for a prototype structural colour 
display52. More information about the design can be found in Supple-
mentary Section 10. Figure 5a shows the image of our sample bonded 
to a printed circuit board, and the row and column electrodes are con-
nected to a switch matrix and FPGA. More information about the matrix 
control can be found in Supplementary Section 11. Figure 5b,c shows 
the zoomed-in optical microscope and scanning electron microscope 
images of the chip. The pixels are scanned and displayed line by line 
with FPGA control. Figure 5d gives a series of line-scanning screenshots 
with a time interval of 100 ms. More information about single-pixel 
scanning and line scanning is included in Supplementary Videos 1 and 
2. In addition to the high-speed response, based on the hysteresis effect 
of VO2, we also demonstrated a non-volatile display. The whole device 
was first placed on a hotplate at ~54 °C. Then a 1.1 V pulsed signal was 
applied to some of the pixels to trigger the phase transition process. 
Due to the hysteresis effect (Fig. 5e), the pixels with a voltage on under-
went a different colour change. Figure 5f shows a pattern of ‘NANO’ 
created by this effect. The pixel-to-pixel uniformity of the matrix was 
also characterized as shown in Supplementary Section 12.

Spatiotemporal spectrum detection
To show its versatility, the programmable matrix of spectral pixels was 
then employed for spectrum detection. In conventional miniaturized 
spectrometer systems, the unknown spectrum is reconstructed either 
by grating/filter arrays, spatially (for example, as in one study53 and the 
references therein), or by tunable filters temporally (for example, as in 
another study54 and the references therein). These methods present the 
dilemma of either enlarging the footprint or deteriorating the detection 
performance (for example, spectral resolution, response time or work-
ing wavelength range). By harnessing the multiple intermediate states 
and the pixel-addressing feature of the matrix, we tackled this trade-off 
with a unique spatiotemporal modulation scheme. The design approach 
involves integrating 2 × 2 VO2 tunable filters on a single ITO heater to 
form a unit pixel as shown in Fig. 6a. These tetrachromatic filters act like 
RGGB Bayer filters (the filter pattern is half green, one quarter red and 
one quarter blue) but offer reconfigurable responses. Consequently, the 
scheme possesses spectrum detection aided by advanced reconstruc-
tion algorithms (Supplementary Section 13 for the principle of colour 
and spectrum sensing with these active spectral filters). The pixelated 
tuning feature combined with multiple states provides versatile strate-
gies for spectrum detection with flexible degrees of freedom over the 
spatial, spectral and temporal domains. As an example, the strategies of 
snapshot mode and tuning mode for spectrum detection, as illustrated 
in Fig. 6b,c, showcase the flexibility and power of this spatiotemporal 
filter matrix. For snapshot mode detection, sixteen unit pixels with 
each pixel triggered at a unique intermediate state are employed, ena-
bling a real-time overview of the input spectral content through the 
reconstruction process. For tuning mode detection, a single unit pixel 
is cycled through various intermediate states, allowing for a fine-tuned 
spectral response with an ultracompact footprint.

Figure 6d shows the reflection spectra for four filters in a unit pixel, 
and Fig. 6e–g shows the spectra reconstructed by these filters for both 
narrowband and broadband input signals. All reconstruction agrees 
well with the reference spectra recorded by a commercial spectrometer 
with a root mean square error (r.m.s.e.) of less than 0.05 (narrowband) 
and 0.06 (broadband), with the largest peak difference (Δλ) less than 
2.5 nm. The consistency between the reconstructed and reference spec-
tra underscores the versatility and reliability of this spectral detection 
system. Furthermore, we also compared the reconstruction fidelity 

with different intermediate states (Fig. 6h). Using only four interme-
diate states, a fidelity of around 90% can be achieved (Fig. 6i), which 
greatly accelerates the reconstruction process without compromising 
the quality of the results. More experimental details and the reconstruc-
tion process can be found in Supplementary Section 14.

Conclusions
In conclusion, we have demonstrated a video-rate nanophotonic 
display with VO2-based active pixels and introduced a unique spati-
otemporal modulation for spectrum detection. By further optimiz-
ing the thermal capacity along with an advanced driving scheme55, 
our device has the potential to operate in megahertz regimes. As the 
matrix size increases, the increasing number of sneak current paths will 
lead to substantial waste power dissipation for the structural colour 
display (Supplementary Section 15). Moreover, the thermal cross-talk 
between adjacent pixels also requires careful consideration (Supple-
mentary Section 16). Transistors could be incorporated into the pixel to 
improve the selectivity and suppress the sneak path effect, particularly 
in high-power-consuming devices. In Supplementary Section 17, we 
compare our study with previously reported dynamic structural col-
our based on PCMs. As for spectrum detection, the current prototype 
uses an 8 × 8 matrix of active spectral pixels, which could be expanded 
to a larger scale with the more sophisticated read-out circuits widely 
used in current image sensors. With megapixels, one could achieve 
an on-demand spectral imaging system, by customizing the region of 
interest with the hybrid strategy of snapshot mode and tuning mode. 
With a more complicated design strategy, the spatiotemporal filter 
could also work in transmissive mode or be extended to infrared bands 
(Supplementary Section 18). Due to its compatibility with present-day 
Bayer filters, the spatiotemporal concept is expected to generate new 
detection architectures for imaging and sensing applications by adapt-
ing other active platforms such as two-dimensional (2D) materials56, 
liquid crystals57 and semiconductors58. This enables many program-
mable devices that have customized requirements, such as multifocal 
lenses, biomedical sensing and imaging, high-speed and solid-state 
optical switches, video displays and light detection and ranging.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Numerical simulation
The optical reflectance of our devices was simulated by Ansys 
finite-difference time-domain software with a 2D model to reduce the 
simulation time. In the simulation, the refractive indices of VO2 were 
adopted as the measured values. Other materials were adopted from 
the software library. Electrical and thermal responses were simulated 
with COMSOL. The measured conductivity (5 × 104 S m–1) of the ITO 
was used in the simulation. All other material properties were adopted 
from the built-in library. The reflective colours and colour differences 
were obtained by homemade MATLAB scripts.

Design and fabrication
The SiO2/Si substrate was fabricated by plasma-enhanced chemical 
vapour deposition (made by Surface Technology Systems Ltd, model 
M/PLEX CVD) from a bare silicon substrate. The whole device fabrica-
tion process was as follows. First, the ITO heater patterns were fabri-
cated by UV photolithography (Suss, MA6 mask aligner), followed by 
the sputtering and lift-off process for the ITO heater. After that, we 
fabricated the Cr/Au electrode/wire patterns with the same method, 
using an electron-beam evaporator (Denton Vacuum, Explorer). Then 
the lossy cavities were fabricated by UV photolithography, followed 
by depositing a thin SiO2 layer by plasma-enhanced chemical vapor 
deposition. Then Cr, Ag and V layers were sputtered sequentially by 
a magnetron sputtering machine (Kurt J. Lesker, PVD75). A VO2 layer 
was formed by thermal annealing at 400 °C for 30 min in a thermal 
oxidation furnace (ATV-tech, PEO601). The vanadium, gold, silver and 
chromium targets with a diameter of 50.8 mm were purchased from 
ZhongNuo Advanced Material (Beijing) Technology. The ITO target 
was purchased from JiuYue Advanced Material Technology.

Measurement and characterization
The optical images were captured by an Olympus BX53M microscope. 
To measure the reflectance of the samples, a modified Olympus BX53M 
microscope mounted with a fibre and a spectrometer (Ocean Insight, 
QE Pro) was used. The electrical signal was generated using a signal 
generator (SIGLENT, SDG1062X) and a power amplifier (Aigtek, ATA-
105). The response time was measured by a photodetector (Thorlabs, 
PDA100A-EC) connected with an oscilloscope (RIGOL, DS1202). For the 
durability measurement, a 532 nm laser (Lasever) was used to irradiate 
the sample, and we measured the reflectance of the sample using an 
amplified photodetector (Thorlabs, PDA100A-EC) with a gain of 40 by 
applying an a.c. voltage signal. The output of the photodetector was 
then fed to an oscilloscope.
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