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Abstract: How can detector click probabilities respond to spatial rotations around a
fixed axis, in any possible physical theory? Here, we give a thorough mathematical anal-
ysis of this question in terms of “rotation boxes”, which are analogous to the well-known
notion of non-local boxes. We prove that quantum theory admits the most general rota-
tional correlations for spins 0, 1/2, and 1, but we describe a metrological game where
beyond-quantum resources of spin 3/2 outperform all quantum resources of the same
spin. We prove a multitude of fundamental results about these correlations, including
an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequal-
ity for spins 3/2 and higher, and a proof that the general spin-J correlations provide
an efficient outer SDP approximation to the quantum set. Furthermore, we review and
consolidate earlier results that hint at a wealth of applications of this formalism: a
theory-agnostic semi-device-independent randomness generator, an exact characteriza-
tion of the quantum (2, 2, 2)-Bell correlations in terms of local symmetries, and the
derivation of multipartite Bell witnesses. Our results illuminate the foundational ques-
tion of how space constrains the structure of quantum theory, they build a bridge between
semi-device-independent quantum information and spacetime physics, and they demon-
strate interesting relations to topics such as entanglement witnesses, spectrahedra, and
orbitopes.
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1. Introduction

Historically, quantum field theory has been developed by combining the principles of
quantum theory with those of special relativity. This development has been a huge
success: intersecting both theories turned out to be so constraining that it directly led
to a host of novel physical predictions, such as the spin of particles and its relation
to statistics, the creation and annihilation of particles, and phenomena such as Unruh
radiation.

If, motivated by quantum information theory, we take an operational perspective
on this development, then we can describe quantum field theory as the combination
of two theories describing different phenomenological aspects of physics: our most
successful theory for predicting the probabilities of events (quantum theory), and our
most successful theory for describing space and time (special or general relativity).
Probabilities have to interplay consistently with spacetime to yield a successful predictive
theory.

While it has long been understood that special relativity describes just one possible
spacetime geometry among many others, the intuition until recently has been that quan-
tum theory is essentially our only possible choice for describing probabilities of events,
except for classical probability theory. Thus, quantum field theory is defined entirely in
terms of operator algebras, encompassing both classical and quantum probability theory
and their hybrids, and only those.

However, motivated again by quantum information theory and by quantum founda-
tions research, recent years have seen a surge of interest in probabilistic theories that are
neither classical nor quantum. One particularly successful direction has been the device-
independent (DI) framework [1–6] for describing quantum information protocols. The
main idea is to certify the security of one’s protocols (such as quantum key distribution
or randomness generation) by a few simple physical principles only. No assumptions or
(in the semi-DI framework [7–10]) only very mild ones are made on the inner workings
of the devices, and the security of the protocol follows from the observed statistics and
plausible assumptions such as the no-signalling principle alone.

In this paper, we explore the foundations for studying the interplay of spacetime sym-
metries with the probabilities of events without assuming the validity of quantum theory.
Assuming special relativity, physical systems must react to symmetry transformations
(in general, Poincaré transformations) in a consistent way: the symmetry group must act
continuously on its state space while preserving its structure. In quantum theory, this
means that systems must carry projective representations of this group. Here, we con-
sider more general black boxes (which need not be quantum) yielding statistics which
responds to such transformations. Instead of the full Poincaré group, we study the action
of one of its simplest nontrivial subgroups: the group of spatial rotations around a fixed
axis, SO(2). In an abstract DI language, we study black boxes whose input is given by a
spatial rotation around a fixed axis, and which produce one of a finite number of outputs.
This specializes, but also greatly extends the framework introduced in [11].

In particular, we consider such “rotation boxes” under the semi-DI assumption that
their “spin”, i.e. representation label of SO(2) on the ensemble of boxes, is upper-
bounded by some value J . We obtain surprising insights into the structure and possible
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behavior of such boxes, showing, for example, that for J = 0, J = 1/2, and J = 1,
quantum theory describes the most general ways in which any theory could respond to
spatial rotations, but that for J ≥ 3/2, correlations exist which cannot be generated by
quantum theory with the same J . We give a Tsirelson-type inequality [12] delineating the
quantum correlations from more general ones, and describe a metrological task [13,14]
where post-quantum spin-3/2 systems can outperform all quantum ones. Moreover,
rotation boxes can be wired together in Bell experiments, and we review and reinterpret
existing work showing that our semi-DI assumption on the maximal spin can be used
to certify Bell nonlocality with fewer measurements than otherwise possible, as well
as to characterize the quantum-(2, 2, 2) Bell correlations exactly within the set of non-
signalling correlations.

Our motivation for studying such boxes and their generalizations is threefold:

1. Studying how spacetime structure constrains the structure of quantum theory
(QT). If we assume that a probabilistic theory “fits into space and time”, does this
already imply important structural features of QT? Can we perhaps derive QT from
this desideratum? Or how much wiggle room is there in spacetime for probabilistic
theories that go beyond quantum theory? A version of this question has been posed
and studied for correlations generated by space-like separated parties, where the set of
quantum correlations is known to be a strict subset of the general set of no-signalling
correlations [12,15–17]. We formulate and solve an analogous question: how can we
characterize the set of quantum spin-J correlations in the space of general spin-J
correlations?

2. Novel theory-independent and physically better motivated semi-DI protocols.
Assumptions on the response of physical systems to spacetime symmetries can be
used directly in semi-DI protocols for certification. In particular, such assumptions are
sometimes physically simpler or more meaningful (corresponding to e.g. energy or
particle number bounds [10,18]) than abstract assumptions often made in the field,
such as upper bounds on the Hilbert space dimension of the physical system. For
example, in [19], some of us have constructed a semi-DI protocol for the generation
of random numbers whose security relies on an upper bound of the system’s spin,
without assuming the validity of quantum theory.

3. The study of resource-bounded correlations. What we study in the SO(2)-case
in this paper is a special case of analyzing resource-bounded correlations: given
some spacetime symmetry, and an upper bound on the symmetry-breaking resources,
determine the resulting correlations that quantum theory (or a more general theory)
admits. The paradigmatic example is the study of quantum speed limits [20–23]:
upper-bounding the (expectation value or variance of the) energy constrains how
quickly quantum states can become orthogonal. Replacing time-translation symmetry
by rotational symmetry leads to the formalism of this paper.

Our article is organized as follows. In Sect. 2, we consider a metrological game to
illustrate a gap between the predictions of quantum theory and those of hypothetical,
more general theories consistent with rotational symmetry. In Sect. 3, we introduce the
conceptual framework and discuss the background assumptions of rotation boxes. More
specifically, in Sect. 3.1, we define and analyze the structure of the sets of quantum
correlations, when the spin is constrained. In Sect. 3.2, we do so for the corresponding
sets of general “rotational correlations”, when boxes are characterized only by their
response to rotations (but need not necessarily be quantum). In Sect. 3.3, we discuss
how, although defined independently, the rotation set can be interpreted as a relaxation
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Table 1. Notation used in the paper

L(V ) Space of linear operators on the vector space V
LH(Cn) Space of Hermitian operators on Cn

LS(Rn) Space of symmetric operators on Rn

D(H) Set of density operators on Hilbert space H
E(H) Set of POVM elements on H
LSH(Cn) Space of symmetric Hermitian operators on Cn

Symd (V ) Symmetric subspace of V⊗d
N Natural numbers {1, 2, 3, 4, . . .}
N0 Non-negative integers {0, 1, 2, 3, 4 . . .}

of the quantum set of correlations, and show how this leads to an efficient semidefinite
programming (SDP) characterization.

Next, in Sect. 4, we outline our main results, which concern rotation boxes in prepare-
and-measure scenarios, and the relation between the quantum and general sets. In
Sect. 4.1, we start by analyzing the scenario for the cases J ∈ {0, 1/2}, for which
we show that every rotation box correlation can be generated by a quantum system of
the same J . In Sect. 4.2, we consider the J = 1 case, and show the equivalence of the
rotation and quantum sets of correlations specifically for 2 outputs, based on an exact
convex characterization of this set. In Sect. 4.3, we demonstrate that a gap between the
sets appears for J ≥ 3/2. We construct a Tsirelson-like inequality for J = 3/2 and
provide an explicit correlation of rotation box form that violates the quantum bound.
Using the same methodology, we further show that the gap exists for all finite J ≥ 3/2.
In Sect. 4.4, we examine the case where J is unconstrained (i.e. J →∞), in which every
rotation correlation can be approximated arbitrarily well by finite-J quantum systems. In
Sect. 4.5, we then review our previous results [19], concerning two input rotation boxes,
in which we have applied the framework to describe a theory-independent protocol for
randomness generation. Finally, in Sect. 4.6, we address how one should understand a
“classical” rotation box.

In Sect. 5, we consolidate earlier results concerning Bell setups using our framework.
First, in Sect. 5.1, we review and shed some new light on the results of [11], which yield an
exact characterization of the (2, 2, 2)-quantum Bell correlations; second, in Sect. 5.2, we
clarify the additional assumption of [24] allowing for indirect witnesses of multipartite
Bell nonlocality. Next, in Sect. 6, we outline connections to other known results. In
particular, in Sect. 6.1, we discuss the conceptual similarity to “almost quantum” Bell
correlations [25] in more depth; in Sect. 6.2, we show that the state spaces of rotation
boxes are isomorphic to Carathéodory orbitopes [26]; and in Sect. 6.3, we make a
connection between the effect space of the rotation GPT system and a family of rebit
entanglement witnesses. Finally, we conclude in Sect. 7.

Table 1 gives a brief overview on our notation.

2. Invitation: A Spin-Bounded Metrological Task

Consider the following situation, which resembles a typical scenario in quantum metrol-
ogy. A referee promises to perform a spatial rotation by some angle θ . Before this, we
may prepare a physical system in some state, submit it to the rotation, and subsequently
measure it to estimate θ . How well can we do this?

If our physical system is a classical gyroscope, we can certainly determine θ perfectly—
the challenge lies in the use of microscopic systems. Think of the system as carrying
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Fig. 1. Schematic sketch of the metrological task. An agent holds a physical system of spin J = 3/2, in an
initial state ρ. She gives it to a referee, who, in a black box with respect to the agent, performs some spatial
rotation of angle θ on the system, where θ is chosen according to the distribution function μ(θ) (defined in the
main text and shown in Fig. 2). The referee then passes the system back to the agent, who measures it using a
two-outcome box in order to determine whether the angle θ is in the range R+ or R− (see also Fig. 2)

some intrinsic spin J , an integer or half-integer, that responds to rotations. Classical
systems correspond to the case of J →∞, supported on an infinite-dimensional Hilbert
space with narrowly peaked coherent states, allowing us to resolve the rotation arbitrarily
well. Hence, consider a more interesting case: we demand that the system is a quantum
spin-J system, where J is small. Concretely, let us choose J = 3/2 (the smallest inter-
esting J for this task, as we will see in subsequent sections). That is, we regard the total
spin, as represented by the spin quantum number, as a resource, and are constrained in
our access to such resources (Fig. 1).

Moreover, suppose that our task is not to estimate θ directly. Instead, our task is to
guess whether θ is in region R+ or in region R−, as depicted in Fig. 2, corresponding to
the sets of angles where the function cos(2θ)+sin(3θ) is either positive or negative. That
is, our guess will be a single bit, + or−, and we would like to maximize our probability
that this bit equals the sign of cos(2θ) + sin(3θ).

Let us summarize the task (also sketched in Fig. 1) and specify it some more. First,
the referee picks an angle θ , but not uniformly in the interval [0, 2π), but according to
the distribution function μ(θ) := n−1| cos(2θ) + sin(3θ)|, where n is a constant such
that

∫ 2π

0 μ(θ)dθ = 1 (it turns out that n = 5
3

√
5 + 2

√
5). Then, we prepare a spin-3/2

system in some state ρ and send it to the referee, who subsequently applies a rotation
by angle θ to it. Finally, we retrieve the system and measure it with a two-outcome
POVM (E+, E−). Our task is to produce outcome + if the angle was chosen from R+,
and outcome − if the angle was chosen from R−.

This may not be the most obviously relevant task to consider, but it will serve its
purpose to demonstrate an in-principle gap between quantum and beyond-quantum re-
sources for metrology.

It turns out that the two events + and − both have probability 1/2, since

∫

R+

μ(θ)dθ =
∫

R−
μ(θ)dθ = 1

2
.



Spin-Bounded Correlations: Rotation Boxes Within and Beyond Quantum Theory Page 7 of 88   292 

Fig. 2. The task is to estimate whether θ is in the range R+ (gray) or in the range R− (white). These ranges
are defined according to where the function cos(2θ) + sin(3θ) is either positive or negative. Here we plot its
normalized absolute value, which is the probability density that our referee uses to draw the angle θ in our
metrological game. The ranges correspond to R+ = (0, 3π/10) ∪ (7π/10, 11π/10) ∪ (19/10π, 2π), R− is
the complement R− = (3π/10, 7π/10) ∪ (11/10π, 19/10π)

But our goal is to improve upon random guessing by preparing and measuring a quantum
system used for sensing in the optimal way. By the Born rule, the conditional probability
of our measurement outcome is

P(±|θ) = Tr(eiθ Zρe−iθ Z E±)

= c±0 + c±1 cos θ + s±1 sin θ + c±2 cos(2θ)

+ s±2 sin(2θ) + c±3 cos(3θ) + s±3 sin(3θ), (1)

where ρ is some quantum state, Z = diag(3/2, 1/2,−1/2,−3/2) is the spin-3/2 rep-
resentation of the generator of a rotation around a fixed axis, and E± ≥ 0, E+ + E− = 1
is a measurement operator. The coefficients c±i , s±i can be determined from the state
and measurement operator. The set of all such probability functions will be called the
quantum spin-3/2 correlations, Q3/2. In fact, our construction will be more general
than this: we will not define spin-J correlations as those that can be realized on the
(2J + 1)-dimensional irreducible representation, but on any quantum system where all
outcome probabilities are trigonometric polynomials of degree at most 2J . That these
correlations can always be realized on C2J+1 is a non-trivial fact which we are going to
prove.

The success probability becomes

Psucc =
∫

R+

P(+|θ)μ(θ)dθ +
∫

R−
P(−|θ)μ(θ)dθ

=
∫

R+

P(+|θ)μ(θ)dθ +
1

2
−
∫

R−
P(+|θ)μ(θ)dθ

=
∫ 2π

0
P(+|θ)n−1 ( cos(2θ) + sin(3θ)

)
dθ +

1

2
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= π

n
(c+

2 + s+
3 ) +

1

2
,

where we have used that, by definition, | f (θ)| = ± f (θ) for θ ∈ R±, where f (θ) =
cos(2θ)+ sin(3θ). To compute the maximum success probability PQ

succ over all spin-3/2
quantum systems, we have to determine the maximum value of c2 + s3 on all quantum
spin-3/2 correlations. We will do this in Sect. 4.3, showing in Theorem 7 that this
maximum equals 1/

√
3. Thus

PQ
succ = max

P∈Q3/2

π

n
(c+

2 + s+
3 ) +

1

2
= 1

2
+

3π

5
√

3(5 + 2
√

5)

≈ 0.8536.

Note that we do not allow the system to start out entangled with another system that is
involved in the task. In particular, we are not considering the situation that we keep half
of an entangled state and send the other half to the referee that performs the rotation.
We leave an analysis of this more general situation for future work.

Now suppose that we drop the assumption that quantum theory applies to the sce-
nario. What if we use a spin-3/2 system for sensing that is not described by quantum
physics? In the following sections, we will discuss in detail how such generalized “ro-
tation boxes” can be understood, by considering arbitrary state spaces on which SO(2)

acts. In summary, a generalized spin-3/2 correlation (an element of what we denote by
R3/2) will be any probability function P(±|θ) that is a trigonometric polynomial of
degree three (as the second line of Eq. (1)), but without assuming that it comes from a
quantum state and measurement (as in the first line of Eq. (1)).

It turns out that c2 + s3 can take larger values for such more general spin−3/2
correlations, and we give an example in Theorem 7. The maximum value turns out to be
5/8. Thus, when allowing more general spin-3/2 rotation boxes, the maximal success
probability is

PR
succ = max

P∈R3/2

π

n
(c+

2 + s+
3 ) +

1

2
= 1

2
+

3π

8
√

5 + 2
√

5
≈ 0.8828.

Hence, general rotation boxes allow us to succeed in this metrological task with about
3% higher probability.

From a foundational point of view, tasks like the above can be used to analyze the
interplay of quantum theory with spacetime structure. For example, we will see that for
spins J = 0, 1/2, 1, a gap like the above does not appear, and quantum theory is thus
optimal for metrological tasks like the above. From a more practical perspective, the
correlation sets RJ are outer approximation to the quantum sets QJ which have char-
acterizations in terms of semidefinite program constraints (in mathematics terminology,
the RJ are projected spectrahedra). This allows us to optimize linear functionals (such
as the quantity c2 +s3 above) over RJ in a computationally efficient way, yielding useful
bounds on the possible quantum correlations that are achievable in these scenarios. We
will see that general spin-J correlations stand to quantum spin-J correlations in a similar
relation as “almost quantum” Bell correlations stand to quantum Bell correlations [25].

In the following section, we will introduce the notions of rotation boxes and spin-J
correlation functions in a conceptually and mathematically rigorous way, corroborating
the above analysis.
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Fig. 3. Boxes, rotation boxes, and the different ways to think about their physical realization. See the main
text for details

3. Rotation Boxes Framework

In DI approaches, one often considers quantum networks (such as Bell scenarios) where
several black boxes are wired together. As sketched in Fig. 3a, a black box of this kind
is typically thought of accepting an abstract input x (for example, a bit, x ∈ {0, 1}) and
yielding an abstract output (for example, a ∈ {−1, +1}). In QT, this could describe a
measurement, where x denotes the choice of measurement and a its outcome.

In this paper, we consider boxes whose input is given by a spatial rotation around a
fixed axis. The input is therefore an angle 0 ≤ θ < 2π . However, we do not just aim
at describing generic boxes that accept continuous inputs. The intuition is not that we
input a classical description of θ into the box (say, written on a piece of paper or typed
on a keyboard), but rather that we physically rotate the box in space (Fig. 3b). That is,
we assume that we have a notion of a physical rotation that we can apply to the box,
and that this notion is a clear primitive of spatiotemporal physics. This is comparable to
a Bell experiment, where we believe that we understand, in a theory-independent way,
what it means to “spatially separate two boxes” (say, to transport one of them far away),
such that the assumption that no information can travel faster than light enforces the
no-signalling condition.

To unpack this idea further, we have to be more specific. A more detailed way to
describe black boxes is in terms of a prepare-and-measure scenario: we have a prepara-
tion device which generates a physical system in some state, and a measurement device
that subsequently receives the physical system and generates a classical outcome. The
input x is thought of being supplied to the preparation device such that the resulting state
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can depend on x . Here, instead, we think of a physical operation being applied to the
preparation device:

The input to the rotation box consists of rotating the preparation device by angle θ

around a fixed axis, relative to the measurement device, see Fig. 3c.
Assuming that physics is covariant under rotations about this fixed axis leads to a

representation of the SO(2) group on the state space. To see this, we follow similar
argumentation to that of [27, Chapter 13]. First, consider an observer O equipped with
a coordinate system and holding a k-outcome measurement device, which measures
the state ω ∈ � transmitted by the preparation device (which need not necessarily be
described by quantum theory). This produces probability tables, which can be character-
ized by a function PO : [0, 2π)×�→ [0, 1]k , such that every pair of angles and states
are mapped to valid probability vectors. We assume that the outcome statistics uniquely
characterize the state ω, and that � is finite-dimensional. Next, consider a different ob-
server O ′, with their own coordinate system and k-outcome measurement device, related
to O by a rotation φ of angle α around the fixed axis on which the input angle is defined.
This reorientates the coordinate system, which induces a map φ̂ : [0, 2π) → [0, 2π)

on the set of inputs, defined by φ̂(θ) := θ − α, i.e. relating the input angles of O to the
input angles of O ′. According to rotational covariance, this is equivalent to a situation
in which the observer O is unchanged but a state ω′ ∈ � exists such that

PO(θ, ω′) = PO ′(φ̂(θ), ω). (2)

That is to say, there are no probabilities that could be observed in one frame that could
not be observed in another (i.e there are no distinguished frames). Finally, from Eq. (2),
a map φ̄ : �→ � can be defined, as φ̄(ω) := ω′. Now we consider all possible rotations
around the fixed axis. This collection of rotations φ relating observers is isomorphic to
the group SO(2), hence we label them φα , where α is the angle of the corresponding
SO(2) rotation. From Eq. (2), it follows that

φ̄α1 ◦ φ̄α2 = φ̄α1+α2 . (3)

Statistical mixing of preparation procedures should be conserved under rotations, there-
fore every φ̄α must be linear (for further details, see Sect. 3.2). Therefore, these maps
{φ̄α}α define a group representation.

Our mathematical formalism below will not depend on this specific interpretation
of the SO(2)-element as a spatial rotation: it will also apply to situations where this
group action has a different physical interpretation, for example as some periodic time
evolution, or as some abstract transformation without any spacetime interpretation what-
soever. However, the specific scenario of preparation procedures that can be physically
rotated in space gives us the clearest and perhaps most theory-independent motivation
for believing that our formalism applies to the given situation. This is comparable to the
study of non-local boxes [5,6], where the no-signalling condition is usually motivated
by demanding that Alice’s and Bob’s procedures are spacelike separated, but where the
probabilistic formalism does not strictly depend on this interpretation. For such boxes,
one might also imagine that the procedures are close-by but separated by a screening wall
[28], or that the statistics just happen to not be signalling for other reasons. However,
the most compelling physical situation in which non-local boxes are realized are those
including spacelike separation. Similarly, the most compelling physical realizations of
our rotation boxes will be via physical rotations in space.

Note that we do not need to assume a picture that is as specific as depicted in Fig. 3c:
there need not literally be a “transmission of some system” from the preparation to the
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measurement device. We can also think of the preparation as just happening somewhere
in space, and the measurement happening at the same place later in time. In this case,
any time evolution happening in between the two events will be considered part of
the preparation procedure. More generally, the physical transmission of the system to
the measurement device can also be considered part of the measurement procedure.
Furthermore, what a physical system really “is”, and whether we might want to think of
it as some actual object with standalone properties, is irrelevant for our analysis.

We will make one further assumption that is often made in the semi-DI framework:
essentially, that there is no preshared entanglement between the preparation and mea-
surement devices. More generally:

The preparation and measurement devices are initially uncorrelated. That is, all
correlations between them are established by the preparation procedure.

This has several important consequences, for example the following. Imagine an
entangled state of two spin-1/2 particles shared between preparation and measurement
devices. Suppose that the preparation device is rotated by 360◦, i.e. 2π . Then this may
introduce a phase factor of (−1) on the preparation subsystem. After transmission to
the measurement device, this relative phase can be detected. Thus, a 2π -rotation of the
preparation device would induce a transformation on the physical system that does not
correspond to the identity. Our assumption above excludes such behavior.

We will be interested in how the probability of the outcome can depend on this spatial
rotation, i.e. in the conditional probability P(a|θ). Without any further assumptions, this
probability is not constrained at all: we will see that continuity in θ is the unique assump-
tion arising from the standard formalism of quantum theory. We will thus add a simple
assumption that has often a natural realization in QT: that the physical systems which
are generated by the preparation device admit an upper bound J on their SO(2)-charge,
J ∈ {0, 1

2 , 1, 3
2 , . . .}. This is an abstract representation-theoretic assumption about how

the physical system is allowed to react to spatial rotations. Within QT, it bounds the
system’s total angular momentum quantum number relative to the measurement device.
If there is no angular momentum, e.g. if we imagine sending a point particle on the axis
of rotation to the measurement device as depicted in Fig. 3c, then this becomes a bound
on the spin of the system. To save some ink, we will always have this idealized example
in mind, and talk about “spin-bounded rotation boxes” in this paper. A more detailed
definition and discussion is given in the following subsections.

Since we will only study sets of correlations that arise from upper bounds on the spin,
we can always extend our preparation procedure and allow it to prepare an additional
spin-0 system (i.e. a system that does not respond to spatial rotations at all) in some
random choice of classical basis state. Keeping one copy and transferring the other
one to the measurement device will establish shared classical randomness between the
two devices, and we can imagine that this happens before the rest of the procedure is
accomplished. This shows the following:

All our results remain unchanged ifwe allowpreshared classical randomness between
the preparation and measurement devices.

Mathematically, this will be reflected in the fact that all our sets of spin-bounded
correlations will be convex.

Let us now turn to the mathematical description of rotation boxes of bounded spin.
We will begin by assuming quantum theory, and drop this assumption in the subsequent
subsection.
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3.1. Quantum spin-J correlations QJ . Let us assume that the Hilbert space on which
the preparation procedure acts is finite-dimensional. In quantum theory, spacetime sym-
metries are implemented via projective representations on a corresponding Hilbert space.
It is easy to see, and shown by some of us in [19], that this implies that there is some
finite set J of, either, integers (J ⊂ Z = {. . . ,−2,−1, 0, 1, 2, . . .}) or half-integers
(J ⊂ Z + 1

2 = {. . . ,−5/2,−3/2,−1/2, 1/2, 3/2, 5/2, . . .}) such that the representa-
tion is

U ′θ =
⊕

j∈J
1n′j e

i jθ ,

where the n′j ∈ N are integers. That is, the rotation by angle θ is represented by a
diagonal matrix (in some basis) of complex exponentials, repeating an arbitrary number
of times. Only integersor half-integers may appear, which is an instance of the univalence
superselection rule which forbids superpositions of bosons and fermions.

Let us begin by writing the above in a canonical form. Setting m := minJ and M :=
maxJ as well as 
 := (m + M)/2, we can obtain the representation Uθ := e−i
θU ′θ
which acts in the same way on density matrices. It is straightforward to see that it has
the form

Uθ =
J⊕

j=−J

1n j e
i jθ , (4)

where n j := n′j+
 (or zero if the latter is undefined) and J := (M −m)/2. We stipulate
that quantum spin-J rotation boxes are those that are described by projective unitary
representations of this form. As always in this paper, we have J ∈ {0, 1

2 , 1, 3
2 , 2, . . .}.

We say that Uθ is a proper quantum spin-J rotation box if it is not also a quantum
spin-(J − 1

2 ) box, i.e. if nJ and n−J in (4) are both non-zero.
Quantum spin-J rotation boxes can now be described as follows. The preparation

device prepares a fixed quantum state ρ. The spatial rotation of the device by angle θ

maps this state toUθρU
†
θ . Finally, the measurement device performs some measurement

described by a POVM {Ea}a∈A, where A is the set of possible outcomes. In this paper,
we are only interested in the case that A is a finite set, but this can straightforwardly be
generalized.

Definition 1. The set of quantum spin-J correlations with outcome set A, where |A| ≥
2, will be denoted QA

J , and is defined as follows. It is the collection of all A-tuples of
probability functions

(
θ �→ P(a|θ)

)
a∈A ,

such that there exists a Hilbert space with a projective representation of SO(2) of the
form (4), some quantum state (i.e. density matrix) ρ, and a POVM {Ea}a∈A on that
Hilbert space such that

P(a|θ) = Tr(UθρU
†
θ Ea).

The special case of two outcomes, A = {−1, +1}, will be denoted QJ (without the
A-superscript). Instead of pairs of probability functions, we can equivalently describe
this set by the collection of functions P(+1|θ) only, because P(−1|θ) = 1 − P(+1|θ)

follows from it.
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Note that the integers n j in Eq. (4) can be arbitrary finite numbers, and so there is
no a priori upper bound on the Hilbert space dimension on which the rotation box is
represented. We can use this to prove convexity of these sets of correlations:

Lemma 1. The sets QA
J are convex.

Proof. Let P, P̃ ∈ QA
J , then

P(a|θ) = Tr(EaUθρU
†
θ ), P̃(a|θ) = Tr(ẼaŨθ ρ̃Ũ

†
θ )

for suitable representations, quantum states, and POVM elements. If 0 ≤ λ ≤ 1, we can
define the block matrices

Fa := Ea ⊕ Ẽa, σ := λρ ⊕ (1− λ)ρ̃, Vθ := Uθ ⊕ Ũθ ,

such that the Fa form a POVM, σ is a density matrix, and Vθ is still a representation of
the form (4). Then

λP(a|θ) + (1− λ)P̃(a|θ) = Tr(FaVθσV
†
θ ),

hence λP + (1− λ)P̃ ∈ QA
J . ��

At first sight, it seems as if our choice of terminology conflicts with its usual use in
physics: there, a spin-J system is typically meant to describe a spin-J irrep (irreducible
representation) of SU(2), living on a (2J + 1)-dimensional Hilbert space. Remarkably,
we will now show that we can realize all quantum spin-J correlations exactly on such
systems:

Theorem 1. Let P ∈ QA
J be any quantum spin-J correlation. Then there exists a pure

state |ψ〉 ∈ C2J+1 and a POVM {Ea}a∈A on C2J+1 such that

P(a|θ) = 〈ψ |U †
θ EaUθ |ψ〉,

where Uθ := eiθ Z , with Z = diag(J, J − 1, . . . ,−J ). Moreover, we can choose |ψ〉 to
have real nonnegative entries in any chosen eigenbasis of Z.

In particular, without loss of generality, we can always assume that n j = 1 in Eq. (4).

In other words, we can always assume that the SO(2)-rotation is given by rotations
around a fixed axis of a spin-J particle in the usual sense, i.e. one that is described
by a spin-J irrep of SU(2). We note that two different spin-J correlations P(a|θ) and
P ′(a|θ) may require different orbits Uθ |ψ〉 and Uθ |ψ〉′ as well as different POVMs to
be generated.

The proof is cumbersome and thus deferred to Appendix B1. A simple consequence
of Theorem 1 is that the sets QA

J are compact: they arise from the compact sets of
|A|-outcome POVMs and quantum states on C2J+1 under a continuous map, mapping
the pair ({Ea}, ρ) to the function θ �→ Tr(UθρU

†
θ Ea). Furthermore, multiplying out

the complex exponentials in Uθ = eiθ Z shows that these functions are all trigonometric
polynomials of degree at most 2J (as in Lemma 5). As we show in the appendix, we
can say more:

Lemma 2. The correlation setsQA
J are compact convex subsets of full dimension (|A|−

1)(4J + 1) of the |A|-tuples of trigonometric polynomials of degree 2J or less that sum
to one.
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Fig. 4. The binary quantum spin-1/2 correlations Q1/2, which happens to be the set of trigonometric polyno-
mials P(+|θ) = c0 +c1 cos θ + s1 sin θ with 0 ≤ P(+|θ) ≤ 1 for all θ . The two endpoints are the constant zero
and one functions, and the other extremal points on the circle correspond to functions θ �→ 1

2 + 1
2 cos(θ −ϕ),

with ϕ some fixed angle

This lemma is proven in Appendix B3.
In particular, for A = {+1,−1}, the set QJ is a compact subset of the trigonometric

polynomials of degree at most 2J , of full dimension 4J + 1.
As a simple example, consider the case of two outcomes, A = {−1, +1}, and

J = 1/2. Then Q1/2 is a compact convex set of dimension 3. Its elements are pairs
(P(+|θ), P(−|θ)). Since P(−|θ) = 1 − P(+|θ), we need to specify the functions
P(+|θ) only, and can identify Q1/2 with this set of functions. Every such function is a
trigonometric polynomial of degree one,

P(+|θ) = c0 + c1 cos θ + s1 sin θ,

and we can depictQ1/2 by plotting the possible values of c0, c1 and s1. The result is shown
in Fig. 4. Indeed, as we will show in Sect. 4.1, in this simple case, the only condition for
a trigonometric polynomial of degree one to be contained in Q1/2 is that P(+|θ) gives
valid probabilities, i.e. that 0 ≤ P(+|θ) ≤ 1 for all θ . This simple characterization will,
however, break down for larger values of J , as we will see.

Further, as we prove in the Appendix B4, the set of spin-J quantum correlations for
any fixed outcome set A grows with increasing J :

Lemma 3. For all J , we have QA
J ⊂ QA

J+1/2.

Since dim QA
J < dim QA

J+1/2, this set inclusion is strict.
In the next section, we will drop the requirement that the rotation box—or, rather, the

corresponding prepare-and-measure scenario—is described by quantum theory. In order
to do so, we will leave the framework of Hilbert spaces, and make use of general state
spaces that could describe the scenario. To consider quantum boxes as a special case of
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a general scenario of this kind, we have to slightly reformulate their description: while it
is convenient to consider unitary transformations acting on state vectors, quantum states
are actually density matrices, and the rotations act on them by unitary conjugation,
ρ �→ UθρU

†
θ . The following lemma gives a representation-theoretic characterization

of quantum spin-J boxes in terms of the way that spatial rotations act on the density
matrices. This reformulation will later on allow us to motivate and derive the generalized
definition of rotation boxes beyond quantum theory.

Lemma 4. Let θ �→ Uθ be any finite-dimensional projective representation of SO(2).
Then the following statements are equivalent:

(i) Up toglobal phases, the representation canbewritten in the form (4)with nJ n−J �= 0,
i.e. it is a representation corresponding to a proper quantum spin-J rotation box.

(ii) The maximum degree of any trigonometric polynomial θ �→ Tr(UθρU
†
θ E), where ρ

is any quantum state and E any POVM element, equals 2J .
(iii) The associated real representation on the densitymatrices, θ �→ Uθ•U †

θ , decomposes
on the real vector space of Hermitian matrices into

1m0 ⊕
2J⊕

k=1

1mk ⊗
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, (5)

where the mk are non-negative integers with m2J �= 0. In the case where n j = 1
for all j ∈ {−J, ..., J }, i.e. when we have the representation on C2J+1 derived in
Theorem 1, we obtain mk = 2J + 1− k.

This lemma is proven in Appendix B5. Let us now drop the assumption that quantum
theory holds, and consider more general rotation boxes.

3.2. General spin-J correlationsRJ . We now introduce the framework of spin-J rota-
tion boxes [11,19]. Similarly to quantum rotation boxes, a general spin-J rotation box
has a preparation procedure that can be rotated by some angle θ ∈ SO(2) relative to the
measurement procedure, which in turn yields some output a ∈ A. The behavior of the
box is given by the set of probability functions {P(a|θ)}a∈A, where P(a|θ) : R → R

satisfies 0 ≤ P(a|θ) ≤ 1 for all θ and P(a|θ) = P(a|θ + 2nπ) for all n ∈ Z.
But how can we characterize such boxes without appeal to quantum theory, and how

can we say what it even means that such a box has spin at most J? Let us begin with an
obvious guess for what the answer to the second question should be, before we justify
this by answering the first question.

Our main observation will be that every θ �→ P(a|θ) of a quantum spin-J correlation
P ∈ QA

J is a trigonometric polynomial of degree at most 2J . In the characterization of
the set QA

J , we demand in addition that the resulting probability functions come from a
quantum state and POVM together with a unitary representation of SO(2) on a Hilbert
space, producing these probabilities via the Born rule. It seems therefore natural to drop
the latter condition, and to only demand that the P(a|θ) are trigonometric polynomials
of degree at most 2J , giving valid probabilities for all θ . This will be our definition of a
general spin-J correlation, to be contrasted with the quantum version in Definition 1:
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Definition 2. The set of (general) spin-J correlations with outcome set A, where |A| ≥
2, will be denoted RA

J , and is defined as follows. It is the collection of all A-tuples of
functions

(θ �→ P(a|θ))a∈A
such that every one of the functions is a trigonometric polynomial of degree at most 2J
in θ , and 0 ≤ P(a|θ) ≤ 1 as well as

∑
a∈A P(a|θ) = 1 for all θ .

The special case of two outcomes, A = {−1, +1}, will be denoted RJ (without the
A-superscript). Instead of pairs of probability functions, we can equivalently describe
this set by the collection of functions P(+1|θ) only, because P(−1|θ) = 1 − P(+1|θ)

follows from it.

For concreteness, and for later use, let us denote here again what we mean by a
trigonometric polynomial of degree at most 2J , and how we typically represent it:

Lemma 5. Suppose that P is a real trigonometric polynomial of degree 2J , and write
it as

P(θ) = c0 +
2J∑

j=1

(
c j cos( jθ) + s j sin( jθ)

) =
2J∑

k=−2J

ake
ikθ .

Then a− j = a j , a0 = c0, and for all j ≥ 1, we have c j = 2 Re(a j ) and s j = −2 Im(a j ).

This follows from a straightforward calculation.
Clearly, by construction, this notion of spin-J correlations generalizes that of the

quantum spin-J correlations:

Lemma 6. Every quantum spin-J correlation is a spin-J correlation. That is, QA
J ⊆

RA
J .

The comparison of these two sets will be our main question of interest in the following
sections. But first, let us return to the question of how to understand rotation boxes
without assuming quantum theory, and how to obtain the notion of spin-J correlations
in a representation-theoretic manner.

As will be shown, all general rotation box correlations can be generated by an under-
lying physical system, which may not be quantum. Non-quantum systems can be defined
using the framework of Generalized Probabilistic Theories (GPTs). For an introduction
to GPTs, see e.g. [29–32]. A GPT system A consists of a set of states �A which is a convex
subset of a real finite-dimensional vector space VA and a convex set of effects EA ⊂ V ∗A .
We assume that �A and EA span VA and V ∗A respectively. This assumption is automat-
ically satisfied if the GPT is constructed from an operational theory, defining states as
equivalence classes of preparation procedures, and effects as equivalence classes of out-
comes of measurement procedures [33,34]. The natural pairing (e, ω) ∈ [0, 1] gives the
probability of the measurement outcome corresponding to the effect e when the system
is in state ω. A measurement is a set of effects {ei }i such that

∑
i ei = u with u the unit

effect, which is the unique effect such that (u, ω) = 1 for all ω ∈ �A. A transformation
of a GPT system A is given by a linear map T : VA → VA which preserves the set of
states, T (�A) ⊂ �A, and the set of effects, T ∗(EA) ⊂ EA. The linearity of these maps
follows from the assumption that statistical mixtures of preparation procedures must
lead to the corresponding statistical mixtures of outcome probabilities, for all possible
measurements after the transformation. The set of all transformations of the system A
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is given by a closed convex subset of the linear space L(VA) of linear maps from VA to
itself.

The set of reversible transformations Rev(A) corresponds to those transformations T
for which T−1 exists and is also a transformation. It forms a group under composition of
linear maps. If there exists a group homomorphismG → Rev(A) (i.e. a representation of
G) for some group G then G is said to be a symmetry of A. In this spirit, the set {φ̄α}α of
Sect. 3 (or, more precisely, the linear extensions of those maps) are an SO(2) symmetry
of the GPT system that describes the scenario. If, given a GPT system (A,�A, EA)

with an SO(2) symmetry θ �→ Tθ , with Tθ ∈ Rev(A), then the probability distribution
P(a|θ) = (ea, Tθω) is a rotation box correlation. In this case, we say that the correlation
P(a|θ) can be generated by the GPT system A.

Lemma 7. Consider any finite-dimensional GPT system A = (VA,�A, EA), together
with a representation of SO(2), θ �→ Tθ , such that every Tθ is a reversible transforma-
tion. Then the following are equivalent:

(i) The maximum degree of any trigonometric polynomial θ �→ (e, Tθω), whereω ∈ �A
is any state and e ∈ EA any effect, equals 2J .

(ii) The real representation θ �→ Tθ of SO(2) decomposes on the real vector space A
into

1m0 ⊕
2J⊕

k=1

1mk ⊗
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, (6)

where the mk are integers with m2J �= 0.

If one of these two equivalent conditions is satisfied, we call the GPT system a spin-J
GPT system.

Proof. Since θ �→ Tθ is a representation of SO(2) on the real vector space VA, it
can be decomposed into irreps. In some basis, this gives us the representation Tθ =
1m0⊕

⊕n
k=1 1mk ⊗

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ),

)

for some finite integer n, where mn �= 0. Now

since �A spans VA and EA spans V ∗A , the linear functionals T �→ (e, Tω) span L(VA)∗,
where L(VA) is the set of linear operators on VA. In other words, there will be some
real numbers αi , effects ei and states ωi such that

∑
i αi (ei , Tθωi ) yields the component

cos(nθ), and this is only possible if θ �→ (e, Tθω) is a trigonometric polynomial of
degree at least n for some effect e and state ω. But the degree of this trigonometric
polynomial can of course not be higher than n. ��

This characterization resembles Lemma 4 for the quantum case: it tells us that quan-
tum spin-J rotation boxes are spin-J GPT systems. And it allows us to obtain a justifi-
cation for our definition of spin-J correlations:

Theorem 2. Let P ≡ (P(a|θ))a∈A be an A-tuple of functions in θ . Then the following
are equivalent:

(i) P is a spin-J correlation, i.e. P ∈ RA
J .

(ii) There is a spin-J GPT system (VA,�A, EA) with a state ω ∈ �A and measurement
{ea}a∈A ⊂ EA such that P(a|θ) = (ea, Tθω).

Proving the implication (i i) ⇒ (i) is immediate, given Lemma 7. For the converse
implication, we will now show how all correlations in RA

J can be reproduced in terms
of a single GPT system that we will call RJ :
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Definition 3 (Spin-J rotation box system RJ ). Let RJ be a GPT system with state space
�J ⊂ R4J+1 and effect space EJ ⊂ R4J+1 defined as follows:

�J = conv ({ωJ (θ) | θ ∈ [0, 2π)}) , (7)

with

ωJ (θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
cos(θ)

sin(θ)
...

cos(kθ)

sin(kθ)
...

cos(2Jθ)

sin(2Jθ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8)

and

EJ := {e ∈ R4J+1 | e · ω ∈ [0, 1] for all ω ∈ �J }. (9)

The unit effect is

u = (1, 0, ..., 0). (10)

The system RJ carries a representation SO(2)→ L(R4J+1), θ �→ Tθ of SO(2), given
by

Tθ =
2J⊕

k=0

γk(θ), (11)

γ0(θ) = 1, (12)

γk(θ) =
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, k ∈ {1, ..., 2J }. (13)

The system RJ is an unrestricted system by definition. These systems belong to the
family of GPT systems with pure states given by the circle S1 and reversible dynamics
SO(2); i.e. for J ≥ 1, they can be interpreted as rebits with modified measurement
postulates [35]. The state space �J is the convex hull of an SO(2) orbit of the vector
ω(0) ∈ R4J+1 and is hence an SO(2) orbitope [36].

The system RJ is canonical in the sense that the SO(2) correlation set it generates is
exactly RA

J , as shown in the following lemma:

Lemma 8. The set of spin-J correlations RA
J can be generated by the system RJ : for

every P ∈ RA
J , there is a measurement {ea}a∈A on RJ with

P(a|θ) = ea · ωJ (θ).

Conversely, every tuple of probability functions (P(a|θ))a∈A generated in this way with
measurements in RJ is inRA

J .
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Proof. The set RJ is given by all functions P : θ �→ [0, 1] of the form P(θ) =
c0 +

∑2J
j=1(c j cos( jθ) + s j sin( jθ)). This can be expressed as

P(θ) = e · ωJ (θ), (14)

where ωJ (θ) is defined as in Eq. (8) and e = (c0, c1, s1, ..., c2J , s2J ). e is an effect on the
system RJ since by construction e · ωJ (θ) ∈ [0, 1], which in turn implies e · ω ∈ [0, 1]
for all ω ∈ conv{ωJ (θ)|θ ∈ [0, 2π)} = �J . This show that any P(θ) can be generated
using the orbit of states {ωJ (θ) | θ ∈ [0, 2π)}.

Given a tuple (P(a|θ))a∈A ∈ RA
J , we show that it can be generated by a measurement

{ea}a∈A applied to the orbit �J (θ).

P(a|θ) is a function θ �→ [0, 1] of the form P(a|θ) = ca0 +
∑2J

j=1(c
a
j cos( jθ) +

saj sin( jθ)). The requirement
∑

a∈A P(a|θ) = 1 for all θ implies that

∑

a

⎛

⎝ca0 +
2J∑

j=1

(
caj cos( jθ) + saj sin( jθ)

)
⎞

⎠ = 1, (15)

which in turn entails

∑

a

ca0 = 1,
∑

a

caj =
∑

a

saj = 0 (1 ≤ j ≤ 2J ). (16)

Every P(a|θ) = ea ·ωJ (θ) for ea = (ca0 , ca1 , sa1 , ..., ca2J , s
a
2J ) which is a valid effect.

Moreover, the conditions of Eq. (16) entail that
∑

a∈A ea = u with u the unit effect.
Hence {ea}a∈A form a measurement.

Conversely, consider an arbitrary tuple (P(a|θ))a∈A of SO(2) probability functions
generated by RJ :

P(a|θ) = ea · Tθω, (17)

where
∑

a∈A ea = u and ω ∈ �J . Since Tθ ∈ L(R4J+1) P(a|θ) is a linear functional,
L(R4J+1)→ R and hence inL(R4J+1)∗. This implies that P(a|θ) is a linear combination
of entries in Tθ and therefore a trigonometric polynomial of order at most 2J . Hence
P(a|θ) ∈ RJ .

The condition
∑

a ea = u implies

∑

a∈A
P(a|θ) =

∑

a

ea · Tθω = u · Tθω = 1 (18)

Thus (P(a|θ))a∈A ∈ RA
J . ��

It follows from the proof of the above lemma that the effect space EJ is isomorphic
to RJ as a convex set.
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3.3. General spin-J correlations as a relaxation of the quantum set. The space of spin-
J correlations RJ is defined independently of the quantum formalism, however it can
also be interpreted as arising from a relaxation of the quantum formalism.

To see that, we start by noting the Fejér–Riesz theorem [37], which has several
important applications for quantum and general rotation boxes:

Theorem 3 (Fejér–Riesz theorem). Suppose that P(θ) := ∑2J
j=−2J a j ei jθ satisfies

P(θ) ≥ 0 for all θ . Then there is a trigonometric polynomial Q(θ) := ∑J
j=−J b j ei jθ

such that P(θ) = |Q(θ)|2.
From this, we can easily derive the following Lemma:

Lemma 9. Let P(θ) = ∑2J
j=−2J a j ei jα be a trigonometric polynomial. Then we have

P(θ) ≥ 0 for all θ ∈ R if and only if there exists a vector b = (b0, b1, . . . , b2J ) ∈ C2J+1

such that

ak =
∑

0≤ j, j+k≤2J

b j b j+k .

Note that necessarily

‖b‖2 = a0 = 1

2π

∫ 2π

0
P(θ)dθ,

and the matrix Q jk := b jbk is positive semidefinite. Consequently, the following theo-
rem follows from Fejér–Riesz’s theorem:

Theorem 4. If P ∈ RJ , then there is a pure quantum state |ψ〉 on C2J+1 and a positive
semidefinite matrix E+ ≥ 0 such that

P(+|θ) = 〈ψ |U †
θ E+Uθ |ψ〉.

We can always choose |ψ〉 as the uniform superposition |ψ〉 := (2J +1)−1/2∑J
j=−J | j〉,

Uθ as defined in Theorem 1, and E+ = (2J + 1)|b〉〈b|, where |b〉 is the vector from
Lemma 9. Note, however, that E+ is not in general a POVM element, i.e. it will in
general have eigenvalues larger than 1.

Proof. Let P(+|θ) =∑2J
j=−2J a j ei jθ ∈ RJ , then by Theorem 3:

P(+|θ) =
⎛

⎝
J∑

j=−J

b̄ j e
−i jθ

⎞

⎠

(
J∑

k=−J

bke
ikθ

)

. (19)

Now use Uθ as defined in Theorem 1, with orthonormal basis {| j〉}Jj=−J such that

Uθ | j〉 = ei jθ | j〉, and define |b〉 =∑ j b j | j〉. Then

P(+|θ) =
⎛

⎝〈b|U †
θ

∑

j

| j〉
⎞

⎠

(
∑

k

〈k|Uθ |b〉
)

= 〈ψ |U †
θ E+Uθ |ψ〉,

where |ψ〉 := (2J + 1)−1/2∑J
j=−J | j〉 and E+ = (2J + 1)|b〉〈b|. ��
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Therefore, rotation boxes can be regarded as a relaxation of the quantum formalism:
instead of demanding that E+ gives valid probabilities on all states (which would imply
0 ≤ E+ ≤ 1), the above only demands that it gives valid probabilities on the states of
interest, i.e. on the states Uθ |ψ〉 for all θ and some fixed state |ψ〉. This is strikingly
similar to the definition of the so-called almost quantum correlations [25]: for these, one
demands that the operators in a Bell experiment commute on the state of interest and
not on all quantum states, which gives a relaxation of the set of quantum correlations.

Moreover, Theorem 4 entails that RJ is isomorphic to the linear functionals on
conv{Uθ |ψ〉〈ψ |U †

θ |θ ∈ [0, 2π)} giving values in [0, 1]. As discussed in Sect. 6.2, this

entails that conv{Uθ |ψ〉〈ψ |U †
θ |θ ∈ [0, 2π)} is isomorphic to the orbitope �J . This

isomorphism gives a characterization of �J as a spectrahedron.
That rotation boxes represent a relaxation of the quantum formalism can also be

seen by noting the following Lemma which later will be contrasted with its quantum
counterpart (Lemma 11):

Lemma 10. Let P(+|θ) :=∑2J
j=−2J a j ei jθ be a trigonometric polynomial of degree 2J .

Then P ∈ RJ if and only if there exist positive semidefinite (2J + 1)× (2J + 1)-matrices
Q, S ≥ 0 such that

• ak =∑0≤ j, j+k≤2J Q j, j+k ,
• 1− a0 = Tr(S),

• ak = −∑0≤ j, j+k≤2J S j, j+k for all k �= 0.

The first condition implies that 0 ≤ P(+|θ) for all θ ∈ R, and the last two constraints
guarantee that P(+|θ) ≤ 1 for all θ ∈ R. The proof of this lemma is a straightforward
application of Lemma 9 and can be found in Appendix B6.

Remarkably, the constraints in Lemma 10 can be adapted into a semidefinite program
(SDP) [38]. For instance, imagine we want to find the boundary of the coefficient space
of spin-J rotation boxes in some direction n ∈ R4J+1 of the trigonometric coefficients
space. That is, we want to find the maximal value of f (c, s) = n · (c, s)�, where c, s ∈
R2J+1 are vectors c = (c0, . . . , c2J ), s = (s1, . . . , s2J ) collecting the trigonometric
coefficients leading to valid rotation boxes. Then, one can pose the following SDP:

max
Q,S

f (c, s)

s.t. • ak =
∑

0≤ j, j+k≤2J

Q j, j+k for all k,

• ak = −
∑

0≤ j, j+k≤2J

S j, j+k for all k �= 0,

• 1− a0 = Tr(S),

• Q, S ≥ 0,

(20)

where the entries of Q, S are labelled from 0 to 2J . For example, for J = 1 the first
condition above becomes

a−2 = Q2,0

a−1 = Q1,0 + Q2,1

a0 = Q0,0 + Q1,1 + Q2,2
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a1 = Q0,1 + Q1,2

a2 = Q0,2.

As we show in Appendix B2, the SDP formulation in (20) can be easily generalized
to account for an arbitrary finite number of outcomes, i.e. for the analysis of RA

J with
|A| ≥ 3. In Sect. 4 we use the SDP methodology in (20) to efficiently derive hyperplanes
that bound the set of spin-J rotation boxes (and thus also the set of spin-J quantum
boxes). These hyperplanes can be treated as inequalities which, if violated, ensure that
the system being probed has spin larger than the J considered.

Suppose now that we are not interested in optimizing some quantity restricted to RJ ,
but rather we are given a list of coefficients ã (perhaps by an experimentalist) and we
want to know whether these lead to a valid spin-J correlation. Then, one can recast the
SDP formulation as a feasibility problem (see, e.g., [39]) by setting the given coefficients
as constraints. That is, we are now interested in the following problem:

find Q and S

s.t. • ãk =
∑

0≤ j, j+k≤2J

Q j, j+k for all k,

• ãk = −
∑

0≤ j, j+k≤2J

S j, j+k for all k �= 0,

• 1− ã0 = Tr(S),

• Q, S ≥ 0,

(21)

where, contrary to (20), the coefficients ãk are now fixed. If the SDP is feasible, then it
will give (2J + 1)× (2J + 1) matrices Q, S ≥ 0 certifying that ã leads to a valid spin-J
correlation (c.f. Lemma 10). Conversely, if the SDP is infeasible, then one can obtain a
certificate that the given coefficients ã cannot lead to a valid spin-J correlation (again
see, e.g., [39]).

We have already noted above that there is a conceptual similarity between general
spin-J correlations (as a relaxation of quantum spin-J correlations) and “almost quan-
tum” Bell correlations [25] (as a relaxation of the quantum Bell correlations). Here we
see another aspect of this analogy: the set of almost-quantum Bell correlations has an
efficient SDP characterization (derived from the NPA hierarchy [40]), but the set of
quantum correlations does not. Similarly, as shown above, general spin-J correlations
have an efficient SDP characterization, but we do not know whether quantum spin-J
correlations QA

J have an SDP characterization, for arbitrary J and A.
In particular, the quantum counterpart of Lemma 10 is the following:

Lemma 11. Let P(+|θ) :=∑2J
j=−2J a j ei jθ be a trigonometric polynomial of degree 2J .

Then P ∈ QJ if and only if there exists a positive semidefinite (2J +1)×(2J +1)-matrix
Q ≥ 0 such that

• ak =∑0≤ j, j+k≤2J Q j, j+k ,
• Q is the Schur product of a density matrix and a POVM element, i.e. there exist
0 ≤ E ≤ 1 and 0 ≤ ρ withTr(ρ) = 1 such that Qi, j = Ei, jρi, j (denoted Q = E◦ρ).
The proof follows directly from Theorem 1 and the Born rule, P(+|θ)=Tr(ρU †

θ E
�Uθ ).

Note that the second condition, the Schur product of ρ, E ≥ 0, breaks the linearity re-
quired for an SDP formulation in the general case where both ρ, E act as free optimizing
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variables. Nonetheless, for numerical purposes, one may be interested in circumventing
this limitation by adopting a see-saw scheme [41,42] at the cost of introducing local
minima in the optimization problem. The see-saw methodology consists in linearizing
the problem by fixing one of the free variables and optimizing only over the other free
variable. Then, fix the obtained result and optimize over the variable that had been pre-
viously fixed. One would iteratively continue this procedure until the objective function
converges to a desired numerical accuracy.

For example, in our case, one could start by picking a random quantum state ρ and
use an SDP with the conditions in Lemma 11 to find the optimal POVM E for that given
ρ. Then, fix the POVM to the new-found E and proceed to optimize using ρ as a free
variable in order to update the quantum state to a new more optimal value. One would
continue this procedure until eventually the increment gained at each iteration would be
negligible. However, as opposed to a general SDP, this approach does not guarantee that
a global minimum has been attained due to the possible presence of local minima. To
guarantee that a global minimum has been obtained, one has to provide a certificate of
optimality (for instance, by means of the complementary slackness theorem [38]).

4. Rotation Boxes in the Prepare-and-Measure Scenario

So far, we have defined quantum and more general spin-J correlations, QA
J and RA

J ,
describing how outcome probabilities can respond to the spatial rotation of the prepara-
tion device in a prepare-and-measure scenario. But how are these two sets related? Do
they agree or is there a gap? Can all possible continuous functions P(+|θ) be realized for
large J? What can we say in the special case of restricting to two possible input angles
only, and what is the correct definition of a “classical” rotation box? In this section, we
answer all these questions, and we review earlier work by some of us [19], which shows
how the results can be applied to construct a theory-agnostic semi-device-independent
randomness generator.

4.1. QA
0 = RA

0 and QA
1/2 = RA

1/2. In this subsection, we will see that all the spin-J
correlations for J = 0 and J = 1/2 have a quantum realization. That is, for every
P ∈ RA

0 (resp. P ∈ RA
1/2), we can find a spin-0 (resp. spin-1/2) quantum system, a

quantum state ρ, and a POVM {Ea}a∈A such that P(a|θ) = tr(UθρU
†
θ Ea).

First, we consider J = 0. In this case the set of rotation boxes corresponds to
all sets with cardinality |A| of constant functions between zero and one summing to
one, i.e. P ∈ RA

0 is given by P(a|θ) = ca for all θ ∈ [0, 2π), where 0 ≤ ca ≤ 1

and
∑|A|

a=1 ca = 1. In the quantum case, we consider a representation Uθ of SO(2)
consisting of the direct sum of |A| copies of the trivial representation, i.e. Uθ = 1|A|.
Now, to realize P ∈ RA

0 , we pick an orthonormal basis {φa}|A|a=1 and construct the state

|ψ〉 = ∑|A|
a=1

√
ca |φa〉, such that P(a|θ) = |〈φa |Uθψ〉|2 = |〈φa |1|A|ψ〉|2 = ca for

every a ∈ A and therefore QA
0 = RA

0 .
Next, we will turn our attention to the first non-trivial case, i.e. to J = 1/2.

Theorem 5. The correlation setRA
1/2 is equal to QA

1/2, i.e. QA
1/2 = RA

1/2.
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Proof. We recall (see Definition 3) that the state space of the GPT systemR1/2 generating
RA

1/2 is given by

�1/2 := conv
{(

1 cos(θ) sin(θ)
)� | θ ∈ [0, 2π)

}
, (22)

and thatR1/2 is unrestricted. Next, we will show that the state space �1/2 can be identified
with the state space of a rebit, which follows from the fact that every pure rebit state
ρ ∈ D(R2) ⊂ LS(R2), where LS(R2) is the space of real symmetric 2 × 2- matrices,
can be written as

ρ = 1

2
(1 + cos(θ)σx + sin(θ)σz) , (23)

with the Pauli matrices σx and σz . Hence, we define the bijective linear map L : R3 →
LS(R

2) by
⎛

⎝
r0
r1
r3

⎞

⎠ �→ 1

2
(r01 + r1σx + r3σz). (24)

Since R1/2 and the rebit are both unrestricted [43], we can map the effects of R1/2 one to
one to the effects of the rebit via the map (L−1)∗ : (R3)∗ → (LS(R

2))∗. Furthermore,
the system R1/2 carries the representation Tθ :

Tθ =
⎛

⎝
1 0 0
0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

⎞

⎠ . (25)

Using the map L again, we can define the SO(2)-representation U on the rebit by
U [θ ] = LTθ L−1. Applied to ρ ∈ Ls(R

2), this family of transformations acts as

U [θ ](ρ) = UθρU
†
θ , (26)

where

Uθ = exp(i
θ

2
σy) =

(
cos( θ

2 ) sin( θ
2 )

− sin( θ
2 ) cos( θ

2 )

)

. (27)

Now, let P ∈ RA
1/2 and let ω ∈ �1/2 and {ea}|A|a=1 ⊂ E1/2 be the state and measurement

generating P . We show

P(a|θ) = (ea, Tθω)R3 = (ea, L
−1LTθ L

−1Lω)R3

= 〈(L−1)∗ea, LTθ L
−1Lω〉HS = 〈Ea,U [θ ](ω′)〉HS

= Tr(EaUθω
′U †

θ ), (28)

where (·, ·)R3 and 〈·, ·〉HS denote the standard inner product in R3 and Hilbert-Schmidt
product, respectively, and the Ea = (L−1)∗ea and ω′ = Lω are a rebit effect and a rebit
state, respectively. ��

For a characterization of the extreme points of R1/2, see [19] and Fig. 4 above.
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4.2. The convex structure ofR1 andQ1 = R1. For clarity, we write the general form of
spin-J correlations of Definition 2 in the case J = 1. The setR1 of correlations generated
by spin-1 rotation boxes consists of all probability distributions P(+|•) : R → R of the
following form:

P(+|θ) = c0 + c1 cos θ + s1 sin θ + c2 cos(2θ) + s2 sin(2θ), (29)

where c0, c1, s1, c2, s2 ∈ R and 0 ≤ P(+|θ) ≤ 1 for all θ .

4.2.1. Characterizing the facial structure ofR1 We now characterize some of the prop-
erties of the convex set R1. Our main goal is to characterize the extreme points of R1,
which will then allow us to obtain explicit quantum realizations of these extreme points
and hence of all of R1. For θ0 ∈ [0, 2π) we define the following face of R1:

Fθ0 := {P ∈ R1 | P(θ0) = 0}. (30)

The condition P(θ0) = 0 defines a hyperplane in the space of coefficients (c0, c1, s1, c2,

s2) ∈ R5. Since it is a supporting hyperplane of R1, its intersection with this compact
convex set is a face. For some background on convex sets, their faces, and other convex
geometry notions used in this section, see e.g. the book by Webster [44].

Lemma 12. The face Fθ0 has dimension dim(Fθ0) ≤ 3 for every θ0 ∈ [0, 2π).

Proof. For every P ∈ Fθ0 it must be the case that P(θ0) is a minimum, since P(θ) ≥ 0.
This implies that P ′(θ0) = d

dθ
P(θ)|θ=θ0 = 0. Thus, we obtain two linearly independent

constraints

P(θ0) = 0, P ′(θ0) = 0, (31)

and the face Fθ0 is at most three-dimensional. ��
For θ0, θ1 ∈ [0, 2π), we define the following subsets of Fθ0 :

Fθ0,θ1 := {P ∈ R1 | P(θ0) = 0, P(θ1) = 1}. (32)

Every non-empty Fθ0,θ1 is a face of Fθ0 and therefore of R1 (and thus itself compact
and convex). Denote the extremal points of a compact convex set C by ∂extC .

Lemma 13. Every non-constant function P ∈ ∂extR1 is contained in at least one face
Fθ0,θ1 .

This lemma is proven in Appendix C1.
If P is extremal in R1, then it is also extremal in every face in which it is contained.

Thus, we can determine the extremal points ofR1 by determining ∂extFθ0,θ1 (and keeping
in mind that the functions which are constant, P(θ) = 0 for all θ and P(θ) = 1 for all
θ , are also extremal in R1).

Next, note that it is sufficient to determine the extremal points in the case that θ0 = 0.
This is because

P(θ) ∈ Fθ0,θ1 ⇔ P(θ + θ0) ∈ F0,θ1−θ0 .

Hence Fθ0,θ1 and F0,θ1−θ0 are related by a linear symmetry Tθ0 of R1, which is defined
by

Tθ0(P)(θ) := P(θ + θ0).
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Fig. 5. Different perspectives of the set containing the associated trigonometric coefficients of the face F0 of
the binary spin-1 correlationsR1, and its extremal points from Lemma 14. The red and yellow lines correspond
to the two consecutive extremal points for F0,θ1 with θ1 ∈ (π/2, 3π/2), the pink dot corresponds to the case
F0,π/2 = F0,3π/2, and the green and cyan dots correspond to the two consecutive cases for F0,π

That is, Tθ0 : R1 → R1 is a convex-linear map that rotates every rotation box by angle
θ0. Since it is a symmetry of R1, it maps extremal points of faces to extremal points of
faces. To determine ∂extFθ0,θ1 , we only need to “rotate” ∂extF0,θ1−θ0 by θ0.

We now explicitly characterize the faces F0,θ1 by the functions corresponding to their
extremal points.

Lemma 14. The faces F0,θ1 for θ1 ∈ [0, 2π) are characterized as follows:

1. If θ1 ∈ [0, π
2 ) ∪ ( 3π

2 , 2π), then

F0,θ1 = ∅.
2. If θ1 ∈ {π2 , 3π

2 }, then F0,θ1 contains a single element:

F0, π
2
= F0, 3π

2
=
{
P(θ) = sin2 θ

}
.

3. If θ1 ∈
(

π
2 , 3π

2

) \{π}, then F0,θ1 contains exactly two distinct extremal points,

∂extF0,θ1 = {P(θ), P̃(θ)},
where

P(θ) = c(1− cos θ)(1− cos(θ − θ ′0)),
P̃(θ) = 1− P(θ1 − θ),

and θ ′0 = 2θ1 for θ1 ∈ (π
2 , π) and θ ′0 = 2(θ1 − π) for θ1 ∈ (π, 3π

2 ). The parameter
c > 0 is uniquely determined by the condition maxθ P(θ) = 1.

4. If θ1 = π then the face F0,π contains exactly two extremal points, namely

F0,π = {P(θ), P̃(θ)},
where

P(θ) = sin4 θ

2
,

P̃(θ) = 1− P(θ1 − θ) = 1

4
(1− cos θ)(3 + cos θ).

This lemma is proven in Appendix C2.
In Fig. 5, we plot the face F0 in the coefficients space, illustrating the resulting ex-

tremal points from Lemma 14. Note that from the conditions (31) for θ0 = 0, one has
c0 = −c1 − c2 and s1 = −s2, thus dim F0 = 3.
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4.2.2. Quantum realizability ofR1 Having characterized the facial structure of R1 and
its extremal functions, we now ask if this set of correlations can be realized by a quantum
spin-1 system.

By Theorem 1, the space Q1 of SO(2)-correlations generated by a quantum spin-1
system is given by the functions P(+|θ) = 〈ψ |U †

θ E+Uθ |ψ〉, where |ψ〉 ∈ C3, E+ a
POVM element on C3, and Uθ = ei Zθ with Z = diag(1, 0,−1).

It follows immediately from the convexity ofR1 and ofQ1 that it is sufficient to show
that the extremal points of R1 are quantumly realizable to show that all the correlations
in R1 are quantumly realizable.

Lemma 15. δextR1 ⊆ Q1 implies R1 = Q1.

This will be used to prove the main result of this subsection:

Theorem 6. (Q1 = R1) The correlation set R1 is equal to Q1.

For the proof, see Appendix C3. It follows from constructing explicit quantum spin-1
realizations of all the extremal points of R1 which have been enumerated in Lemma 14.

Although the correlation spaces R1 and Q1 are equal, the J = 1 general rotation
box system R1 (which generates R1) is not equivalent to a quantum spin-1 system. This
can be seen immediately from the fact that R1 is a 5-dimensional GPT system, while a
quantum spin-1 system is a 9-dimensional system (since dim(LH(C3)) = 9).

In the next section, we will see that these two GPT systems, although they generate
equivalent SO(2)-correlations, have distinct informational properties.

4.2.3. Inequivalence of spin-1 rotation box system and quantum system Every P ∈ RA
1

can be decomposed in the following way:

P(a|θ) = c(a)
0 + c(a)

1 cos(θ) + s(a)
1 sin(θ) + c(a)

2 cos(2θ) + s(a)
2 sin(2θ)

=
(
c(a)

0 , c(a)
1 , s(a)

1 , c(a)
2 , s(a)

2

)
·

⎛

⎜
⎜
⎜
⎝

1
cos(θ)

sin(θ)

cos(2θ)

sin(2θ)

⎞

⎟
⎟
⎟
⎠

= ea · ω(θ), (33)

where ea and ω(θ) are an effect and state of the spin-1 rotation box system R1, as defined
in Definition 3 for general spin-J .

We give an explicit definition of the R1 =
(
R5,�1, E1

)
GPT system here. The state

space �1 is given by:

�1 := conv {ω(θ) | θ ∈ [0, 2π)]} ,
where

ω(θ) =

⎛

⎜
⎜
⎜
⎝

1
cos(θ)

sin(θ)

cos(2θ)

sin(2θ)

⎞

⎟
⎟
⎟
⎠

.
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Let V � R5 be the real linear span of � and V ∗ its dual space. The effect space of R1 is

E1 := {e ∈ V ∗ | 0 ≤ (e, ω) ≤ 1 for all ω ∈ �1}.
By definition, R1 is an unrestricted GPT. The state space �1 belongs to a family of
SO(2)-orbitopes of the form Ca,b := conv{(1, cos(aθ), sin(aθ), cos(bθ), sin(bθ) | θ ∈
[0, 2π)} for integers a < b. The facial structure of these orbitopes was studied in [45].
They are a subset of the Carathéodory orbitopes defined in Sect. 6.2. The SO(2) reversible
transformations are given by

T (θ) =

⎛

⎜
⎜
⎜
⎝

1 0 0 0 0
0 cos(θ) − sin(θ) 0 0
0 sin(θ) cos(θ) 0 0
0 0 0 cos(2θ) − sin(2θ)

0 0 0 sin(2θ) cos(2θ)

⎞

⎟
⎟
⎟
⎠

. (34)

Lemma 16. The effect space E1 is isomorphic (as a convex set) to R1, i.e. there is an
invertible linear map that maps one of these sets onto the other.

Proof. The effect space E1 consists of all (c0, c1, s1, c2, s2) ∈ R5 such that Eq. (33) is
in [0, 1] for all θ ∈ [0, 2π). This is equivalent to the condition that P(+|θ) ∈ [0, 1] for
all θ which defines R1 in Eq. (29). ��

We now describe some informational properties of R1:

Lemma 17 (Properties of R1). The GPT system R1

1. has three jointly perfectly distinguishable states and no more;
2. has four pairwise perfectly distinguishable states;
3. violates bit symmetry.

This lemma is proven in Appendix C4.
Bit symmetry is the property that any pair of perfectly distinguishable pure states

(ω0, ω1) of a GPT system can be reversibly mapped to any other pair of perfectly
distinguishable pure states (ω′0, ω′1) of that system [46]. Namely, there exists a reversible
transformation T such that (ω′0, ω′1) = (Tω0, Tω1).

We note that R1 violates bit symmetry not just for the set of SO(2) reversible transfor-
mations but for the set of all symmetries. This set is larger than the SO(2) transformations
of Eq. (34) and includes the transformation diag(1, 1,−1, 1,−1) which is not of the form
T (θ).

Considering the full set of symmetries is important when contrasting to a qutrit, since
the qutrit when restricted to the spin-1 SO(2)-transformations violates bit symmetry, but
it obeys bit symmetry when considering the full symmetry group SU(3).

Although the space of correlations R1 ∼= E1, the GPT system R1 contains additional
structure, namely in its state space �1. Hence, although every P(+|θ) ∈ R1 can be
generated using a quantum system Q1, this does not imply that every information-
theoretic game carried out using the system R1 can be equally successfully carried out
with a spin-1 quantum system. For instance, a game which required one to encode a
pair of bits (i, j) ∈ {0, 1}2 in four states of a GPT system such that one could perfectly
decode either the first bit or the second bit can be implemented withR1 with 100% success
probability, but will necessarily have some error when implemented on a quantum spin-1
system.
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A key difference between the the GPT system R1 and the SO(2) quantum spin-1
system Q1 (i.e. a qutrit with dynamics restricted to Uθ = ei Zθ ) is that inequivalent
SO(2)-orbits of pure states of the qutrit are needed to generate R1, whilst a single
SO(2)-orbit of states {ω(θ) | θ ∈ [0, 2π)} of R1 is needed to generate R1.

A formal way to understand the equivalences and inequivalences of RJ and QJ for
different values of J is in terms of linear embeddings [47]. We say that a GPT A =
(VA,�A, EA) can be embedded into a GPT B = (VB,�B, EB) if there is a pair of
linear maps �,� such that �(�A) ⊂ �B and �(EA) ⊂ EB which reproduces all
probabilities, (�(eA),�(ωA)) = (eA, ωA) for all eA ∈ EA, ωA ∈ �A. As argued
in [47], this means that B can simulate the GPT A “univalently”, i.e. in a way that
generalizes the concept of noncontextuality for simulations by classical physics.

In the proof that QA
1/2 = RA

1/2 in Sect. 4.1, we have used the fact that the spin-1/2
GPT system R1/2 (the rebit) can be embedded into the qubit Q1/2, seen as a quantum
spin-1/2 system. Moreover, it can be done in a way such that the orbit θ �→ ω(θ) is
mapped to an orbit ρ(θ) = �(ω(θ)). That is, the quantum system can reproduce the
full probabilistic behavior of the general spin-1/2 system.

However, it is easy to see that no such embedding can exist for the case of J = 1.
If we had such a pair of linear maps, and if it mapped the orbit ω(θ) to some or-
bit ρ(θ), then it could not reproduce all probabilities: it would give us four states
ρ(0), ρ(π

2 ), ρ(π), ρ( 3π
2 ) of the qutrit which are pairwise perfectly distinguishable. But

no four pairwise orthogonal states can exist on a qutrit. Clearly, the converse is also true:
The spin-1 quantum system Q1 spans the vector space LH(C3) � R9 and hence cannot
be embedded in the GPT system R1 which spans R5. More generally, we can say the
following:

Lemma 18. The spin-1 GPT system R1 cannot be embedded into any finite-dimensional
quantum system.

Proof. According to Theorem 2 of [47], all unrestricted GPTs that can be so embedded
are special Euclidean Jordan algebras. For all such systems, the numbers of jointly and
pairwise perfectly distinguishable states coincide. This can be seen e.g. by noting that
perfectly distinguishable pure states in Euclidean Jordan algebras are orthogonal (with
respect to the self-dualizing inner product) idempotents (see e.g. [48, Lemma 3.3]), and
pairwise orthogonality implies that they are elements of a Jordan frame and hence jointly
perfectly distinguishable. But as we have shown in Lemma 17 above, this correspondence
does not hold for R1. ��

Hence, even though the set of spin correlations R1 and Q1 agree, the corresponding
GPT systems have genuinely different information-theoretic and physical behaviors.
This is also the reason why we do not currently know whether QA

1 = RA
1 for |A| ≥ 3.

4.3. QJ � RJ for J ≥ 3/2. Up until now we have seen that for J ≤ 1 an equivalence
holds between the correlation setsQJ andRJ . However, in this section we show that this
equivalence breaks for J ≥ 3/2. We split the analysis in two parts: First, we provide an
explicit counterexample of a spin-J correlation outside of the quantum set for J = 3/2;
Second, we use the same methodology to show that a non-empty gap exists between
both sets for any J ≥ 3/2.
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4.3.1. Q3/2 � R3/2 We start by showing that Q3/2 � R3/2. Every spin-3/2 correlation
can be expressed as a degree-3 trigonometric polynomial:

P(θ) = c0 + c1 cos θ + s1 sin θ + c2 cos(2θ) + s2 sin(2θ)

+ c3 cos(3θ) + s3 sin(3θ), (35)

where the coefficients ci and si are suitable real numbers such that 0 ≤ P(θ) ≤ 1 for
all θ . To show that there exist correlations P ∈ R3/2 which are not contained in Q3/2,
we construct an inequality that is satisfied by all quantum boxes, but violated by some
P� ∈ R3/2. In particular, we show the following:

Theorem 7. If P ∈ Q3/2, then its trigonometric coefficients, as taken from representa-
tion (35), satisfy

c2 + s3 ≤ 1√
3

� 0.5774.

On the other hand, the trigonometric polynomial

P�(θ) := 2

5
+

1

4
sin θ +

7

20
cos(2θ) +

1

4
sin(3θ)

satisfies 0 ≤ P�(θ) ≤ 1 for all θ , hence P� ∈ R3/2, but c2 + s3 = 0.6, i.e. P� �∈ Q3/2.
Therefore, Q3/2 � R3/2.

Clearly, this also implies thatQA
3/2 � RA

3/2 for three or more outcomes, k := |A| ≥ 3,
since P� can always appear as the probability of the first of the k outcomes.

In the remainder of this section, we prove this theorem by solving the optimization
problem

β := max
P∈Q3/2

(c2 + s3)[P], (36)

and show that the quantum bound is β = 1√
3
. Since (c2 + s3)[P�] = 3

5 , P� violates

the inequality, thus proving Q3/2 � R3/2. For the sake of completion, by adapting the
SDP in Eq. (20) one can show that the maximal value attainable with rotation boxes is
βR = maxP∈R3/2(c2 + s3)[P] = 5

8 = 0.625, hence β < (c2 + s3)[P�] < βR. In Fig. 6
we illustrate Theorem 7 by showing the 2D projection of the correlation sets onto the
c2-s3 plane and plotting the inequality given by c2 + s3 ≤ 1/

√
3 as well as the point P�

violating it.
Suppose that there exists a quantum realization P ∈ Q3/2, i.e. that there exist a

POVM element 0 ≤ E ≤ 1 and a quantum state ρ such that P(θ) = Tr(E�UθρU
†
θ )

(the transpose on E is not necessary, but is used by convention to relate to the Schur
product in Lemma 11). Following Lemma 11, then one has

(c2 + s3)[P] = 2 Re(a2[P])− 2 Im(a3[P])
= 2 Re(Q02 + Q13)− 2 Im(Q03)

= 2 Re(E02ρ02 + E13ρ13)− 2 Im(E03ρ03)

= Tr(M[E]ρ), (37)



Spin-Bounded Correlations: Rotation Boxes Within and Beyond Quantum Theory Page 31 of 88   292 

Fig. 6. Spin-3/2 rotation and quantum correlations sets in the c2-s3 plane projection illustratingQ3/2 � R3/2.

The inequality corresponds to the case that saturates Theorem 7, i.e., c2 + s3 = 1/
√

3. The boundary of the
2D projections for the sets Q3/2 (blue) and R3/2 (green) have been numerically obtained using the SDP
methodology presented in Appendix D. The quantum inequality (red line) and validity of the rotation box (red
dot) P� ∈ R3/2 but P� /∈ Q3/2 are analytically proven in the main text

where

M[E] :=
⎛

⎜
⎝

0 0 E20 −i E30
0 0 0 E31
E02 0 0 0
i E03 E13 0 0

⎞

⎟
⎠ .

Maximizing this over ρ yields the largest eigenvalue of M[E], see e.g. [49]. We determine
this eigenvalue in Appendix E1, and the result is as follows:

Lemma 19. The quantum bound of Eq. (36) satisfies

2β2 = max
E

(
|E20|2 + |E30|2 + |E31|2 +

+
√

(|E20|2 + |E30|2 + |E31|2)2 − 4|E20|2|E31|2
)

,

where the maximization is over all POVM elements 0 ≤ E ≤ 1 or, equivalently, over all
orthogonal projectors E = E† = E2 on C4.

Matrix entries of orthogonal projectors satisfy certain inequalities as described, for
example, in [50]. There, it is shown that |E20|2 + |E30|2 ≤ 1

4 , |E30|2 + |E31|2 ≤ 1
4 , and

thus

2β2 ≤ max
x,y,z≥0,
x+y≤1/4,
y+z≤1/4

(

x + y + z +
√

(x + y + z)2 − 4xz

)

. (38)
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The maximum is here over a polytope in three dimensions, and we perform the corre-
sponding optimization in Appendix E2. We find that the maximum equals 2/3, and
thus β ≤ 1/

√
3. In Appendix E2, we also provide an explicit POVM element E

and quantum state ρ saturating this bound, hence β = 1/
√

3. Furthermore, since
β = 1/

√
3 < (c2 + s3)[P∗] = 3/5, we have shown that P∗ ∈ R3/2 lies outside of

Q3/2 and, therefore, Q3/2 � R3/2. See Fig. 6, where we plot P∗ for a visual illustration
of this result. This proves Theorem 7.

4.3.2. QJ � RJ for J ≥ 2 In order to show that QJ � RJ for any J ≥ 2, one can
easily generalize the inequality from the previous section to the following one:

P ∈ QJ !⇒ (c2J−1 + s2J )[P] ≤ β = 1√
3
.

See the proof in Appendix E3.
Therefore, we now want to find a spin-J correlation P�

J ∈ RJ such that this inequality
is violated for J ≥ 2, i.e., (c2J−1 + s2J )[P�

J ] > 1√
3
. For instance, an educated guess

motivated by numerical results is the following trigonometric polynomial:

P�
J (θ) :=

2J∑

k=−2J

ake
ikθ ,

with a−k = ak , a0 = 1
2 , a2J = − i

8 , and

a2J−1−2m = 3

16

(

−1

4

)m
m = 0, . . . , "J − 1#,

a2J−2−2l = − 3i

32

(

−1

4

)l
l = 0, . . . , $J − 2%.

Indeed, this trigonometric polynomial has s2J + c2J−1 = 5/8 > β, thus violating the
quantum bound of the inequality above. Furthermore, in Appendix E4, we show that this
trigonometric polynomial satisfies 0 ≤ P�

J (θ) ≤ 1 for J ≥ 7/2 and, thus, it is a valid
rotation box probability distribution for J ≥ 7/2 which lies outside of the quantum set.
However, for values of J ≤ 3, the trigonometric polynomial P∗J (θ) is not a probability
distribution. The way in which we deal with the remaining cases J ∈ {2, 5/2, 3} is to
treat them on a case-by-case basis. In particular, in Appendix E4 we provide an explicit
example for each case of a P�

J ∈ RJ which is not in QJ . In order to find these examples,
we have adapted the SDP in (20) to the following one:

max
Q,S

c2J−1 + s2J = 2 Re(a2J−1)− 2 Im(a2J )

s.t. • ak =
∑

0≤ j, j+k≤2J

Q j, j+k for all k,

• ak = −
∑

0≤ j, j+k≤2J

S j, j+k for all k �= 0,

• 1− a0 = Tr(S),

• Q, S ≥ 0.

(39)
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When the SDP is feasible, it returns some (2J + 1)× (2J + 1) matrices Q, S and some
complex variables ak with k ∈ {0, . . . , 2J } that lead to a valid spin-J correlation (c.f.
Lemma 10). Indeed, as shown in Appendix E4, the SDP for each of these cases is feasible
and, moreover, its solutions are such that c�

2J−1 + s�
2J > 1/

√
3, thus showing that there

exist spin-J correlations that go beyond the quantum set for any J ≥ 2.

4.4. QJ approximates all correlations for J → ∞. In this section, we will concern
ourselves with the case of rotation boxes of unbounded spin (producing correlations
which we will denote by R∞) and their quantum realization. We will see that in this
case, we can approximate those boxes arbitrarily well with quantum boxes of finite spin
J .

Elements of R∞ are conditional probability distributions θ �→ P(+|θ), but we do
not make any assumptions on the spin as in the case of RJ . However, one remaining
physically motivated assumption is to demand that these outcome probabilities depend
continuously on the angle θ . In fact, this is always the case in quantum theory: there, it
is typically assumed that representations θ �→ Uθ are strongly continuous. It is easy to
convince oneself that this implies that also the probabilities P(+|θ) = Tr(U †

θ E+Uθρ)

are continuous in θ . Thus, we will define

R∞ := { f ∈ C(SO(2)) | 0 ≤ f (θ) ≤ 1 for all θ ∈ [0, 2π)}.
Here, C(SO(2)) denotes the continuous real functions on SO(2), which we parametrize
by the angle θ . Note that periodicity holds, f (2π) = f (0), by definition of SO(2).

We will now show that every function in R∞ can be approximated to arbitrary
precision by quantum spin-J correlations, for large enough J . We are interested in
uniform approximation, i.e. if P ∈ R∞, we would like to find some Q ∈ QJ , where
J is finite (but typically large), such that ‖P − Q‖∞ := maxθ |P(θ)− Q(θ)| is small.
The following theorem makes this claim precise:

Theorem 8. The set of continuous rotational correlationsR∞ is the closure of the union
of all sets of spin-J quantum boxes QJ with finite J <∞, i.e.

R∞ =
⋃

J

QJ , (40)

where the closure is taken with respect to the uniform norm ‖·‖∞ .

As we will explain at the end of this subsection, this statement holds in completely

analogous form for more than two outcomes too, i.e. RA∞ =
⋃

J QA
J , with the obvious

definition of RA∞.
Note that the corresponding statement with QJ replaced by RJ is trivially true: it is

well-known that every continuous function on the circle can be uniformly approximated
by trigonometric polynomials [51]. However, at this point, we do not know whether all
probability-valued trigonometric polynomials are contained in some QJ .

Proof. Here, we will only outline the proof idea. The technical details can be found
in Appendix F. The proof can be divided into three steps. In the first step, we will use
the Hilbert space L2(SO(2)) of equivalence classes of square integrable functions over
the circle and construct quantum models for elements of R∞. To construct a quantum
model for any given rotation box correlation θ ′ �→ P(+|θ0 + θ ′) ∈ R∞ we find an



  292 Page 34 of 88 A. Aloy, T. D. Galley, C. L. Jones, S. L. Ludescher, M. P. Müller

operator P̂ ∈ E(L2(SO(2))) and a sequence of states {[ fθ0,n]}n ∈ N ⊂ L2(SO(2))
such that P(+|θ0 + θ ′) = limn→∞〈U †(θ ′) fθ0,n|P̂U †(θ ′) fθ0,n〉,where U is the regular
representation, acting as U (θ) f (θ ′) = f (θ ′ + θ). In more detail, we define the operator
P̂ in the following way:

(P̂ψ)(θ) = P(+|θ)ψ(θ). (41)

The sequence { fθ0,n}n is given by the normalized functions that are constant in the
interval [θ0 − 1

n , θ0 + 1
n ] and 0 everywhere else. The limit of these sequences can be

thought as generalized normalized eigenfunctions |θ0〉 of P̂ , and we can write 〈θ |θ0〉 =
limn→∞〈 fθ,n| fθ0,n〉 = δ(θ−θ0). It is easy to convince oneself that Uθ fθ0,n = f(θ0−θ),n

and hence, Uθ |θ0〉 = |θ0 − θ〉, and the claim P(+|θ0 + θ ′) = limn→∞〈U †(θ ′) fθ0,n|
P̂U †(θ ′) fθ0,n〉 = 〈θ0 + θ ′| P̂ |θ0 + θ ′〉 follows. In total, we have seen that by making n
larger and larger, the quantum box Pn(+|θ0 + θ ′) = 〈U †(θ ′) fθ0,n|P̂U †(θ ′) fθ0,n〉 more
and more closely models the behavior of the rotation box P(+|θ0 + θ ′).

In the second step, we will approximate the described quantum box Pn(+|θ0 +θ ′) by a
finite-dimensional quantum model. We will start with the same model as before, and then
project it on to a finite-dimensional subspace. We recall that for the regular representation,
we have a decomposition of the Hilbert space L2(SO(2)) =⊕ j H j , where H j is a one-

dimensional subspace corresponding to the j-th irrep of SO(2), i.e.U (θ) |φ j 〉 = ei jθ |φ j 〉
for every |φ j 〉 ∈ H j . Using a basis of L2(SO(2)) that respects this decomposition, we
can define the projector �J = ∑J

j=−J |φ j 〉〈φ j |. Using this projection, we can define

P J
n (+|θ0 + θ ′) = Tr(�J P̂�JU †(θ ′)�J | fθ0,n〉〈 fθ0,n|�JU (θ ′)), which is an element of

QJ . From the Gentle Measurement Lemma [52] and Theorem 9.1. of [53], it follows
that if Tr(�J | fθ0,n〉〈 fθ0,n|) ≥ 1− ε then

√
ε ≥ ∣∣Pn(+|θ0 + θ ′)− P J

n (+|θ0 + θ ′)
∣
∣.

In the third and final step, we show that we can make ε arbitrarily small by making
J larger and larger. This is the case since �J → 1 strongly for J →∞. ��

The above theorem can be generalized to N -outcome boxes. We say that an N -
outcome rotation box is a family of functions {Pk}Nk=1 such that every Pk is a non-negative
and continuous function on the circle, Pk(θ) := P(ak |θ) for A = {a1, . . . , aN }, and∑N

k=1 Pk(θ) = 1 for every θ . For the construction of the quantum model, we use the
family of operators {P̂k}Nk=1 defined by

(P̂kψ)(θ) = Pk(θ)ψ(θ), (42)

and the rest of the extension to N outcomes is straightforward. For the details, see again
Appendix F.

4.5. Two settings: QJ,α = RJ,α and a theory-independent randomness generator. In
previous work [19], some of us have shown that the quantum and rotation sets of correla-
tions are precisely the same for all J , when one considers just two settings (i.e. two possi-
ble rotations θ ∈ {0, α}). This equivalence is used to describe semi-device-independent
protocols for randomness certification, which do not need to assume quantum theory, but
instead implement some physical assumption on the response of any transmitted system
to rotations.

The setup is as follows (see Fig. 3c for an illustration). The “preparation” box with
settings x ∈ {1, 2} is either left unchanged for x = 1, or rotated by some fixed angle
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α > 0 for x = 2. The prepared system is then communicated to the “measurement”
box, which outputs a ∈ {±1}. Like every semi-device-independent protocol, we have to
make some assumption about the transmitted systems. Here, we assume that the spin is
upper-bounded by some value J .

The statistics of the setup is described by a conditional probability P(a|θx ), where
θ1 = 0 and θ2 = α. There may be other variables � that would admit an improved
prediction of the outcome a, such that P(a|θx ) is a statistical average over λ,

P(a|θx ) =
∑

λ∈�

qλP(a|θx , λ),

with some probability distribution qλ. Equivalently, we can describe the statistics with
the correlations (E1, E2), where Ex = P(+1|θx ) − P(−1|θx ). The protocol works by
showing that the observation of certain correlations (E1, E2) implies for the conditional
entropy

H(A|X,�) ≥ H � > 0, (43)

which essentially means that the setup produces H � random bits, unpredictable even by
eavesdroppers holding additional classical information λ ∈ �.

If we assume that quantum theory holds, the set of possible correlations in this
scenario is

QJ,α := {(E1, E2) | Ex = P(+1|θx )− P(−1|θx ), P ∈ QJ },
where θ1 = 0 and θ2 = α. Based on earlier work by other authors [10,18], we have
shown in [19] that this quantum set of correlations QJ,α can be exactly characterized by
the inequality

1

2

(√
1 + E1

√
1 + E2 +

√
1− E1

√
1− E2

)
≥ δ, (44)

where

δ =
{

cos(Jα) if |Jα| < π
2

0 if |Jα| ≥ π
2

. (45)

If we do not assume quantum theory, the corresponding set of correlations is

RJ,α := {(E1, E2) | Ex = P(+1|θx )− P(−1|θx ), P ∈ RJ }.
Using a lemma [54, Thm. 1.1] that constrains the derivative of trigonometric polynomials
(also used here for the convex characterization of R1, see Eq. (C16)), we show that
rotation box correlations must satisfy precisely the same condition as in the quantum
case, i.e.

QJ,α = RJ,α. (46)

Thus, for two settings and two outcomes, the possible quantum and general spin-J
correlations are identical. For example, statements like “the system must be rotated by
at least π/(2J ) to obtain a perfectly distinguishable state” are not only true in quantum
theory, but in every physical theory:

Lemma 20. Suppose that P ∈ RJ with P(+|θ0) = 0 and P(+|θ1) = 1. Then |θ1−θ0| ≥
π/(2J ).
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This equivalence, Eq. (46), allows us certify randomness independently of the validity
of quantum theory. In particular, we characterize the set of “classical” correlations, i.e.
for a given set of correlations, the subset containing all those that admit a description as
the convex combination of deterministic correlations. This is clearly the same for both
quantum and rotation cases, due to the equivalence expressed in Eq. (46). Moreover,
for 0 < Jα < π/2, the classical set is a strict subset of the quantum and rotation
sets: CJ,α � QJ,α = RJ,α . Therefore, there exist correlations (predicted by quantum
theory) that are incompatible with any deterministic description, even when one allows
for post-quantum strategies. Observing such correlations (E1, E2) ∈ QJ,α\CJ,α certifies
a number H � of random bits, as in Eq. (43), which is independent of whether quantum
theory holds. That is, even an eavesdropper with arbitrary additional classical information
λ ∈ �, as well as access to post-quantum physics, could not anticipate the outputs of
the device.

Accordingly, we can conceive of a random number generator whose outputs are
provably random irrespective of the validity of quantum theory, with its security instead
anchored in the geometry of space. This analysis is further shown to be robust under
some probabilistic assumption that allows for experimental error in the spin bound.

4.6. What are classical rotation boxes?. Classical rotation box correlations are gener-
ated by a classical system with an SO(2) symmetry. For finite-dimensional systems, this
entails there is a representation of SO(2) of the form given in Eq. (6) acting on the state
space of the classical system. For n ∈ N, the finite-dimensional n-level classical system
has a state space given by an n-simplex [31,32]:


n = {(p1, ..., pn) | pi ≥ 0,

n∑

i=1

pi = 1} ⊂ Rn, (47)

and an effect space given by a n-dimensional hypercube

�n = {(e1, ..., en) | 0 ≤ ei ≤ 1} ⊂ Rn . (48)

The set of symmetries of 
n is �(n), which is the symmetric group on n objects. Since
SO(2) is not a subgroup of �(n), it follows that the only representation of SO(2) which
maps 
n to itself is the trivial representation. Thus the set of finite-dimensional classical
systems generate the set R0 of trivial spin-0 correlations.

Infinite-dimensional classical systems can carry non-trivial actions of SO(2). Con-
sider a system with configuration space given by the circle S1 which carries the standard
action of SO(2).

The circle S1 has a topology induced by the standard topology on R2, and thus a
Borel σ -algebra [51]. States of the S1 classical system are probability measures on S1,
while effects are given by measureable functions f : S1 → R that take values between
zero and one everywhere, i.e. 0 ≤ f (θ) ≤ 1 for all θ . We denote the space of probability
measures on S1 by M+

1 (S1), and the space of measureable functions on S1 by M∗(S1).
Note that every continuous function f (S1) → R is such that the preimage f −1(A)

is open if A is open. Since the Borel σ -algebra is the σ -algebra generated by open sets,
every f ∈ C(S1) is measurable. Since trigonometric polymomials are continuous, every
trigonometric polynomial P(a|θ) ∈ M∗(S1).
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Denoting by δθ the Dirac measure at the point θ , we have that every element in R∞
can be generated by this infinite-dimensional classical system:

P(a|θ) =
∫

θ ′
P(a|θ ′)δθ . (49)

We note that the standard action of SO(2) on the circle induces an action on M+
1 (S1),

which acts on the extremal measures as:

δθ �→ δθ+θ ′ . (50)

The classical system can be thought of as ‘containing’ every spin-J system, since the
subspace of M∗(S1) of trigonometric polynomials of degree 2J or less carries a repre-
sentation

⊕2J
k=0 γk , where γk is the real representation of SO(2) given in Eqs. (12) and

(13). Thus, there is no finite J that characterizes this classical system. Moreover, for any
fixed finite value of J , this mathematical subspace cannot be interpreted as an actual
standalone physical subsystem in any operationally meaningful way.

Conversely, every classical system has the property that all pure states are perfectly
distinguishable. Thus, if the SO(2)-action θ �→ Tθ acts non-trivially on at least one pure
state ω, then ω(θ) := Tθω will be another pure state that is perfectly distinguishable
from ω, no matter how small the angle θ > 0. But this is incompatible with a finite value
of J , as observed in Lemma 20.

The inexistence of any classical finite-spin boxes means that while any rotation box
correlation P(a|θ) can be arbitrarily well approximated by a finite-dimensional quantum
spin-J system, one always needs an infinite-dimensional SO(2) classical system to
approximate or reproduce it, unless P(a|θ) is constant in θ for every a.

Our discussion above has focused on the paradigmatic examples of classical systems
described by finite- or infinite-dimensional simplices of probability distributions, but one
might instead ask more nuanced and detailed questions about the compatibility of finite
spin J and different notions of classicality. For example, how about classical systems
with an epistemic restriction [55]? Are systems of finite spin always contextual in the
sense that they cannot be linearly embedded into any classical system [34], and if so,
how crucial is the assumption of transformation-noncontextuality [56]? We leave the
discussion of these interesting questions to future work.

5. Rotation Boxes in the Bell Scenario

In this section, we consolidate and generalize two earlier results which show how the
notion of rotation boxes can be applied in the context of Bell nonlocality: assumptions
on the local transformation behavior can be used to characterize the quantum Bell cor-
relations for 2 parties with 2 measurements and 2 outcomes each [11], and they allow us
to construct witnesses of Bell nonlocality for N parties [24]. Since many experimental
scenarios indeed feature continuous periodic inputs, we think that these are only two
examples of a potentially large class of applications of the framework.

5.1. Two parties: exact characterization of the quantum (2, 2, 2)-behaviors. One of us
and co-authors have shown in [11] that the quantum (2,2,2)-correlations can be char-
acterized exactly in terms of the local transformation behavior with respect to rotations
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in d-dimensional space, for every d ≥ 2. Here, we give a stand-alone argument for the
special case d = 2.

This result contributes to the longstanding research program of characterizing the set
of quantum correlations inside the larger set of correlations that satisfy the no-signalling
(NS) principle, see [15] for an overview. The no-signalling principle formalizes the idea
that information transfer has finite speed in order to constrain the influence between
space-like separated events: one party’s choice of measurement cannot instantaneously
influence the local statistics of the other. The NS principle, initially introduced in [16],
was established as a foundational component of a framework in [17] where the so-called
Popescu-Rohrlich correlations (or PR boxes) revealed that non-local correlations beyond
those allowed by quantum mechanics are theoretically possible under the constraints of
relativistic causality. That is, the set of NS correlations is known to contain the set of
quantum correlations as a proper subset. However, while the NS principle has proven
useful in several contexts for upper-bounding feasible correlations, characterizing the
set of quantum correlations Q via simple physical principles remains an open problem
[15].

Suppose that Alice holds a spin-1/2 rotation box, P ∈ Q1/2: she can choose her
input by performing a spatial rotation by some angle α, and obtain one of two outcomes
a ∈ {−1, +1}. Furthermore, suppose that the outcome is not only an abstract label, but has
an additional geometric interpretation: Alice’s input is a spatial vector n = (cos α, sin α)

(say, of a magnetic field), and her output is physically realized by giving her an answer
that is either parallel (a = 1) or antiparallel (a = −1) to n. Indeed, this situation is
realized by a Stern-Gerlach experiment on a spin-1/2 particle in d = 3 dimensions; here
we restrict ourselves to d = 2.

This physical intuition can be expressed as the following expectation:

(i) If outcome a is obtained on input α, then outcome−a would have been obtained
on input α + π .

To make this mathematically rigorous, we have to adapt this (untestable) counterfactual
claim to a (testable) statement about probabilities, namely:

(ii) P(a|α) = P(−a|α + π).

Since we can always write P(+|α) = c0 + c1 cos α + s1 sin α, this is equivalent to the
condition c0 = 1

2 , and it is also equivalent to

(iii) 1
2π

∫ 2π

0 P(a|α) dα = 1
2 for a = +1 and a = −1.

That is, on average (over all directions), no outcome is preferred. We say that Alice’s
box is unbiased [11] if one of the two (and thus both) equivalent conditions (ii) or
(iii) hold. As explained above, this property follows from a geometric interpretation of
Alice’s outcome as indicating that she obtains a resulting vector that is either parallel or
antiparallel to her input vector.

Now consider a Bell experiment, where both Alice and Bob hold unbiased spin-1/2
boxes. Let us not assume that quantum theory holds; let us only assume that the no-
signalling principle is satisfied. In this case, Alice and Bob would choose inputs α and
β and obtain outputs a, b ∈ {−1, +1} such that the resulting behavior

P(a, b|α, β)

satisfies the no-signalling conditions
∑

a

P(a, b|α, β) =
∑

a

P(a, b|α′, β) =: PB(b|β),
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∑

b

P(a, b|α, β) =
∑

b

P(a, b|α, β ′) =: PA(a|α).

Let us assume that Alice’s and Bob’s local boxes are always spin-1/2 boxes, and are
always unbiased, regardless of what the other party measures. That is, consider the
situation in which Bob decides to input angle β into his box, and obtains outcome b, and
subsequently communicates this choice and outcome to Alice (say, over the telephone).
In this case, Alice would update her probability assignment to

PA
b,β(a|α) := P(a, b|α, β)

PB(b|β)
,

where PB(b|β) is the probability for Bob to obtain outcome b. We will assume that this
“conditional box” still produces an unbiased spin-1/2 correlation, for all values of β and
b, and we make the analogous assumption if the roles of Alice and Bob are interchanged.

Note that we are not making any assumptions about the global correlations (or their
transformation behavior) directly, except that we demand no-signalling.

Surprisingly, the conditions above enforce that the global correlations are quantum
(see Appendix G1 for the proof):

Theorem 9. Under the assumptions above, the behavior P is a quantum behavior. That
is, there exists a quantum state ρAB on the two-qubit Hilbert space AB and a positive
map τ on B with τ(1B) = 1B such that

P(a, b|α, β) = Tr
(
ρABe

−iαZ |a〉〈a|eiαZ ⊗ τ(e−iβZ |b〉〈b|eiβZ )
)

,

where Z = 1
2

(
1 0
0 −1

)

is half of the Pauli-Z matrix, and | ± 1〉 = 1√
2
(|0〉 ± |1〉).

We do not currently know whether the unitary rotation by angle β can be pulled out
of the map τ , or whether this positive, but not necessarily completely positive, map can
perhaps be dropped completely. This map τ is, however, necessary in the analogous
statement for dimension d = 3: it is well-known that the quantum singlet state of two
spin-1/2 particles leads to perfect anticorrelation between Alice’s and Bob’s binary
outcomes [57], but that there is no quantum state that would lead to perfect correlation.
Formally, perfect correlation can be obtained by taking the partial transpose of one half of
the singlet state, and considering the resulting action on Bob’s local measurement (while
leaving the singlet state intact) can be interpreted as a reflection of Bob’s description of
spatial geometry relative to Alice’s.

Note that P will be a quantum correlation even if a non-completely positive map
τ is necessary: this map cannot be physically implemented, but Bob can still use it to
calculate the set of POVM elements that he should use to measure. This way, Alice and
Bob can make sure to generate correlations according to P(a, b|α, β).

If Alice and Bob restrict themselves to input one of two angles each, α0, α1 or β0, β1,
they generate an instance of what has been called the quantum (2, 2, 2)-behaviors (2
parties, 2 settings and 2 outcomes each):

P(a, b|x, y) := P(a, b|αx , βy) (x, y ∈ {0, 1}).
The above theorem shows that if Alice’s and Bob’s local conditional boxes are spin-
1/2 boxes and unbiased, then P(a, b|x, y) will be a quantum (2, 2, 2)-behavior. In
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this case, the mere possibility that Alice and Bob could have input other angles, and
that the outcome probabilities would have had to depend linearly on the resulting two-
dimensional vectors, constrains these correlations to be quantum.

The results of [11], however, show more: all quantum (2, 2, 2)-behaviors can be
obtained in this way, if supplemented with shared randomness:

Theorem 10. The set of quantum (2, 2, 2)-behaviors is exactly the set of non-signalling
behaviors that can be obtained in Bell experiments from ensembles of nonlocal boxes
that are locally unbiased and locally spin-1/2.

That is, regardless of which theory holds, the resulting behaviors will be quantum.
Moreover, all such quantum behaviors can be realized in some theory, namely quantum
theory, via random choices among boxes that are locally spin-1/2 and unbiased.

The proof is based on the well-known fact that all extremal quantum (2, 2, 2)-
behaviors can be generated on two qubits (and, locally, on the equatorial plane of these
qubits, i.e. on two rebits) [12,25,58,59]. To obtain all non-extremal quantum (2, 2, 2)-
behaviors, Alice and Bob need additional shared randomness that allows them to select
at random between one of several such boxes. See [11] for an explanation of why shared
randomness cannot be avoided.

To see that local unbiasedness cannot be removed as a premise of the theorems above,
consider the following example. Suppose that Alice and Bob hold local spin-1/2 boxes
SA, SB ∈ R{0,1}

1/2 , satisfying

QA(1|α) = 1

2
+

1

2
cos α, QB(1|β) = 1

2
+

1

2
cos β.

What they do is the following. Alice and Bob input their angles into their local boxes,
and feed their respective outcomes x, y ∈ {0, 1} into a PR box

PPR(a, b|x, y) = 1

2
δ(1−ab)/2,xy (a, b ∈ {−1, +1}).

That is, if the inputs to the PR box are x = y = 1, they obtain perfectly anticorrelated
outputs, and otherwise, perfectly correlated ones. The result of this procedure defines
their non-signalling behavior P . It is not difficult to see that PB(b|β) = 1

2 for all b and
all β, and hence

PA
b,β(a|α) = 2P(a, b|α, β)

= 2
1∑

c,d=0

PPR(a, b|c, d)QA(c|α)QB(d|β) (51)

is a trigonometric polynomial of degree 1 in α, for every fixed b, β, and a. Similar
reasoning applies to PB

a,α(b|β). Hence, all local conditional boxes are spin-1/2 boxes.
Set α0 = β0 := π and α1 = β1 := 0, then QA(c|αx ) = δcx and QB(d|βy) = δdy , and
so

P(a, b|αx , βy) = 1

2

1∑

c,d=0

δ(1−ab)/2,cd QA(c|αx )QB(d|βy)

= 1

2
δ(1−ab)/2,xy = PPR(a, b|x, y).
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Since P can reproduce the PR box correlations for two fixed angles, it is not a quan-
tum behavior. And this is consistent with the theorems above because P is not locally
unbiased. To see this, use Eq. (51) and find, for example,

PA−1,β(+1|α) =
(

1

2
+

1

2
cos α

)(
1

2
+

1

2
cos β

)

.

Treating this as a trigonometric polynomial in α, the coefficient c0 equals 1
4 (1 + cos β),

which is not for all β equal to 1
2 . That is, P is not locally unbiased.

5.2. Many parties: witnessing Bell nonlocality. Our framework also helps to clarify and
generalize the results of Nagata et al. [24]. In this paper, the authors offer an additional
constraint on local realistic models of physical phenomena, which they refer to as ro-
tational invariance, but we shall call spin direction linearity (reasons for which will
become clear). This allows for indirect witnesses of Bell nonlocality, for correlations
that would otherwise have a local hidden variable description.

They consider an N -party Bell-type scenario, in which every party holds a spin- 1
2

particle. Each party measures the spin component in a chosen direction n j , and outputs
a local result r j (n j ) ∈ {±1}. The “Bell” correlation function is introduced as the aver-
age of the product of all local results: E(n1, . . . , nN ) = 〈r1(n1) . . . rN (nN )〉avg. Their
additional assumption (spin direction linearity) enforces the following structure for any
such correlations:

E(n1, . . . , nN ) = T̂ · (n1 ⊗ . . .⊗ nN ),

where T̂ is the correlation tensor Ti1,...,iN ≡ E(x(i1)
1 , . . . , x(iN )

N ), where x
(i j )
j , i j ∈

{1, 2, 3} are unit directional vectors of the local coordinate system of the j th party. This
is to say that the correlation function is linearly dependent on the unit directions n j
along which the spin component is measured, i.e.

E(n1, . . . , nN ) = Ti1,...,iN ni1 . . . niN ,

with summation over repeated indices.
The three assumptions allow the authors to derive a more restrictive Bell-type in-

equality, namely:

πN
∑

i1,...,iN=1,2

T 2
i1,...,iN ≤ 4N Tmax,

where Tmax is the maximal possible value of the correlation tensor component, i.e.

Tmax = max
n1,...,nN

E(n1, . . . , nN ).

This would be evaluated by measuring the components Ti1,...,iN that compose T̂ , and then
using the tensor to determine the maximum value of E(n1, . . . , nN ). Their inequality
being strictly less general than Bell’s theorem then allows for the certification of “non-
classical” phenomena by observing correlations that would otherwise not violate any
Bell inequality. In such an instance, non-classicality is to say that the assumptions of
locality, realism and spin direction linearity cannot jointly hold. In particular, the authors
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of [24] give an example of correlations T that admit a local hidden variable model, but
that do not admit such a model if one assumes in addition spin direction linearity.

Although their result is formulated for SO(3), with spin directions defined by vectors
n j in three dimensions, the authors use the reparameterization n j (α j ) = cos(α j )x

(1)
j +

sin(α j )x
(2)
j , for the plane defined by x(1)

j , x(2)
j , such that their main result is stated

in terms of just one parameter α j per party. Accordingly, the results hold equally for
rotations constrained to a 2D-plane, i.e. SO(2) rather than SO(3). It follows that our
framework may be relevant to understand or generalize their results.

In particular, spin direction linearity is not actually about rotational invariance, as is
claimed in their paper, but rather captures the assumption that the local systems are spin-
1
2 particles. (Moreover, we will claim that one need only assume that the local systems
can be described by a spin- 1

2 box.) The states of a single spin- 1
2 system (a qubit) can be

represented by unit vectors on the Bloch ball:

ρ = 1

2
(1 + n · σ ),

which, by measuring in the basis as defined by the j th observer, are mapped via unitary
transformations Uθ to states

ρ′ = 1

2
(1 + (Rθ · n) · σ ).

Local probabilities are linear in states, so are affine-linear in spin direction n j = Rθ · n.
The local, conditional boxes P̃(r j |n j ) (an N -party extension of the conditional boxes
introduced in Sect. 5.1) can be written as

P(r1, . . . , rN |n1, . . . , nN )

P(r1, . . . , r j−1, r j+1, . . . , rN |n1, . . . , n j−1, n j+1, . . . , nN )
,

so probabilities P(r1, . . . , rN |n1, . . . , nN ) will be affine-linear in spin directions n j , for
all 1 ≤ j ≤ N . The constant drops out when going from probabilities to correlations,
so then we get spin direction linearity when all subsystems are spin 1

2 .

So far, this demonstrates that the systems being spin- 1
2 is a sufficient condition for

E(n1, . . . , nN ) to be linear in spin directions. This can also be seen in our framework,
by noting that the local systems being spin- 1

2 means that the local conditional boxes
P̃(r j |n j ) should be in R1/2; i.e. they are trigonometric polynomials in α j of degree 1 at
most. On the other hand, if the local systems are not spin- 1

2 , then the probabilities may
contain sin(kα j ) or cos(kα j ) terms (for k ≥ 2), in which case spin direction linearity is
violated. As such, we can note that the systems being spin- 1

2 is also a necessary condition
for spin direction linearity. This is to say, the main result of [24] can be clarified using
our framework as an inequality derived from locality, realism and the assumption that
the local systems can be characterized as spin- 1

2 boxes. Notably, this reformulation does
not rely on the validity of quantum theory (the systems do not need to be quantum spin- 1

2
particles, as in their paper); all three assumptions are theory-independent.
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6. Connection to Other Topics

6.1. Almost quantum correlations. As discussed in Sect. 3.3, the set of rotation box
correlations bears close resemblance to the set of almost quantum correlations [25].
Indeed, any P ∈ RJ can be generated as follows:

P(+|θ) = 〈ψ |U †
θ E+Uθ |ψ〉, (52)

where |ψ〉 ∈ C2J+1 and E+ is positive semidefinite but not necessarily a POVM element.
The only requirement is that E+ gives valid probabilities on the states of interest, i.e. on
the states Uθ |ψ〉 for all θ .

This is analogous to almost quantum correlations which are a relaxation of the Bell
correlations generated by quantum systems. In standard quantum theory, local separation
of the measurement parties (and therefore the no-signalling condition) is implemented
by assigning commuting subalgebras to them. For example, consider the case where
we have two observers Alice and Bob. We denote Alice’s subalgebra by A ⊆ C and
Bob’s subalgebra by B ⊆ C, where C can be thought of as a larger global algebra.
Here, the commutativity of A and B means that every A ∈ A commutes with every
B ∈ B, i.e. [A, B] = 0. When we describe the measurements of Alice and Bob, we
equip them with collections of PMs (projective measurements) {E A

a|x }a,x ⊂ A and

{EB
b|y}b,y ⊂ B respectively, where for every input x , the set {E A

a|x }a is a valid PM
(and similarly for Bob). Then, the correlations between Alice and Bob are given by
P(a, b|x, y) = 〈ψ | E A

a|x E B
b|y |ψ〉. For “almost quantum” correlations, the assumption

that Alice’s and Bob’s collections of PMs are subsets of two commuting subalgebras is
relaxed. That is, not all elements of Alice’s collection of PMs have to commute with all
elements of Bob’s PM collections, but it is only assumed that they commute on the state
of interest for a given setup. In other words, if a given preparation is described by the
state |ψ〉, it is assumed that [E A

a|x , EB
b|y] |ψ〉 = 0 for all inputs x and y and outputs a

and b. Furthermore, the correlations are still computed by the Born rule p(a, b|x, y) =
〈ψ | E A

a|x E B
b|y |ψ〉. We note that the product E A

a|x E B
b|y cannot be considered a bipartite

local effect by itself, but only obtains its meaning by combining it with the state |ψ〉
describing the physical situation. This resembles the situation for the rotation boxes,
where E+ by itself is not a POVM element, and only the combination of E+ with the
states {Uθ |ψ〉}θ has a physical meaning.

Furthermore, a notable feature both relaxation sets share is that they admit a charac-
terization in terms of semidefinite constraints (as we have seen in 3.3), which allows us
to efficiently solve optimization problems within their set by means of SDP in order to
bound quantum solutions [60]. This is in contrast to the quantum sets (of Bell resp. spin
correlations) which are not known to have characterizations in terms of SDPs.

6.2. Orbitopes and spectrahedra. In this section, we show that the state spaces of the
spin-J rotation box systems �J are isomorphic to universal Carathéodory orbitopes.
Moreover, we show they are isomorphic to spectrahedra. A spectrahedron is the inter-
section of an affine space with the cone of positive-semidefinite matrices.

Given a list of integers A = (a1, ..., an) ∈ Nn , the Carathéodory orbitope CA [26] is
defined as the convex hull of the following SO(2) orbit in R2n :

{(cos(a1θ), sin(a1θ), ..., cos(anθ), sin(anθ))|θ ∈ [0, 2π)}. (53)
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The orbitopeC(1,...,d) is known as the universal Carathéodory orbitopeCd , and is affinely
isomorphic to the state space �J= d

2
of the spin-J rotation box system. Similarly Ĉo

d , the
co-orbitope cone dual to C(1,...,d) is the set of non-negative trigonometric polynomials
and is isomorphic to the cone generated by the effect space EJ .

Explicitly, Ĉo
d is given by:

{(c0, c1, s1, ..., cd , sd) ∈ R2d+1|c0 +
d∑

k=1

ck cos(kθ) + sk sin(kθ) ≥ 0}. (54)

We can characterize Cd in terms of Ĉo
d as follows: a point (a1, b1, ..., ad , bd) ∈ R2d is

in the universal Carathéodory orbitope Cd if and only if

c0 +
d∑

k=1

ckak + skbk ≥ 0,∀(c0, c1, s1, ..., cd , sd) ∈ Ĉo
d . (55)

By Theorem 5.2 of [26], the universal Carathéodory orbitope Cd (and therefore
�J= d

2
) is isomorphic to the following spectahedron:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x1 . . . xd−1 xd

y1 1
. . . xd−2 xd−1

...
. . .

. . .
. . .

...

yd−1 yd−2
. . . 1 x1

yd yd−1 . . . y1 1,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (56)

where

x j = a j + ib j , (57)

y j = a j − ib j , (58)

and (a1, b1, ..., ad , bd) ∈ R2d is a point in the orbitope Cd . The extremal points occur
for ak = cos(kθ) and bk = sin(kθ), thus the orbitope Cd is the convex hull of:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 eiθ . . . ei(d−1)θ eidθ

e−iθ 1
. . . ei(d−2)θ ei(d−1)θ

...
. . .

. . .
. . .

...

e−i(d−1)θ e−i(d−2)θ . . . 1 eiθ

e−idθ e−i(d−1)θ . . . e−iθ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (59)

Let us note that this statement is equivalent to Theorem 4. Consider the orbitUθ |ψ〉〈ψ |
U †

θ for |ψ〉 and Uθ as defined in Theorem 4:

1

2J + 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 eiθ . . . ei(2J−1) ei2J

e−iθ 1
. . . ei(2J−2) ei(2J−1)

...
. . .

. . .
. . .

...

e−i(2J−1) e−i(2J−2) . . . 1 eiθ

e−i2J e−i(2J−1) . . . e−iθ 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (60)
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This orbit is isomorphic to the orbit of Eq. (59) for d = 2J . According to Theorem 4,
every spin-J correlation P ∈ RJ can be written

P(+|θ) = Tr(E+Uθ |ψ〉〈ψ |U †
θ ),

i.e. is a linear functional that takes values in [0, 1] on this orbitope; and, conversely,
every such functional is an element of RJ . Therefore, we may say that �J= d

2
, the state

space of the spin-J GPT system RJ , is an orbitope, and moreover, it can be interpreted,
due to Theorem 4, as a subset of the quantum state space.

6.3. Symmetric entanglement witnesses for rebits. Consider the following orbit of qubit
states |ψ(θ)〉〈ψ(θ)| in D(C2), where

|ψ(θ)〉 = U (θ) |+〉 = 1√
2
(ei

θ
2 |0〉 + e−i

θ
2 |1〉), (61)

with

U (θ) =
(
ei

θ
2 0

0 e−i θ
2

)

, |±〉 = |0〉 ± |1〉√
2

.

By writing the orbit in the {|+〉 , |−〉}-basis

|ψ(θ)〉 = cos

(
θ

2

)

|+〉 + sin

(
θ

2

)

|−〉, (62)

we see that it corresponds to the pure states of a rebit (a qubit in quantum theory over
the real numbers R), acted on by a real projective representation of SO(2). The orbit
|ψ(θ)〉〈ψ(θ)| can thus be viewed as an orbit of rebit states in LS(R2), the symmetric
linear operators on R2, or alternatively as an orbit of symmetric qubit states inLSH(C2) ⊂
LH(C2), whereLSH(C2) are the symmetric Hermitian operators, in this case with respect
to the |±〉 basis.

Given d rebits with pure states corresponding to rays in (R2)⊗d , the pure symmetric
states are those lying in Symd(R2), the symmetric subspace of (R2)⊗d . The set of pure
symmetric product states is the set of |ψ〉⊗d , where |ψ〉 is an arbitrary rebit state, and
they span the space Symd(R2). The mixed symmetric states are given by the positive
unit-trace operators in LS(Symd(R2)) � LSH(Symd(C2)). This isomorphism follows
from the fact that Symd(C2) is the complexification of Symd(R2) and that LS(Rd) �
LSH(Rd ⊗ C), as shown in Lemmas 30 and 29.

Now consider the orbit of a symmetric two-rebit pure state |ψ(θ)〉⊗2, where |ψ(θ)〉
defined in Eq. (61). Explicitly, |ψ(θ)〉〈ψ(θ)|⊗2 ∈ LSH(Symd(C2)) ⊂ Sym2(C2) ⊗
Sym2(C2) is

|ψ(θ)〉〈ψ(θ)|⊗2 = 1

4

⎛

⎜
⎜
⎝

1 eiθ eiθ ei2θ

e−iθ 1 1 eiθ

e−iθ 1 1 eiθ

e−2iθ e−iθ e−iθ 1

⎞

⎟
⎟
⎠ . (63)

Compare this to the orbit Uθ |ψ〉〈ψ |U †
θ ∈ LH(C3) defined in Eq. (60) for J = 1, where

Uθ |ψ〉 = 1√
3
(e−iθ |−1〉 + |0〉 + eiθ |1〉), (64)
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and

Uθ |ψ〉〈ψ |U †
θ =

1

3

⎛

⎝
1 eiθ e2iθ

e−iθ 1 eiθ

e−2iθ e−iθ 1

⎞

⎠ . (65)

There exists an invertible linear map that maps |ψ(θ)〉〈ψ(θ)|⊗2 to Uθ |ψ〉〈ψ |U †
θ which

can be constructed as follows:

L |ψ(θ)〉〈ψ(θ)|⊗2 L� = Uθ |ψ〉〈ψ |U †
θ , (66)

L =
√

4

3

⎛

⎝
1 0 0 0
0 1

2
1
2 0

0 0 0 1

⎞

⎠ . (67)

The inverse of this map is given by

MUθ |ψ〉〈ψ |U †
θ M

� = |ψ(θ)〉〈ψ(θ)|⊗2 , (68)

M =
√

3

4

⎛

⎜
⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞

⎟
⎠ . (69)

This shows that the convex hulls of the two orbits are isomorphic as convex sets. This
entails that the space of linear functionals that map every element |ψ(θ)〉〈ψ(θ)|⊗2 into
the interval [0, 1] is isomorphic to R1. Thus, for every P ∈ R1, there exists a linear
operator W ∈ LSH(Sym2(C2)) and therefore also in LS(Sym2(R2)) such that

P(+|θ) = Tr(W |ψ(θ)〉〈ψ(θ)|⊗2). (70)

The set of linear operators W such that Tr(W |ψ(θ)〉〈ψ(θ)|⊗2) ≥ 0 for all θ are two-rebit
symmetric entanglement witnesses. Thus, the cone generated by R1, is isomorphic to
the cone of two-rebit symmetric entanglement witnesses.

The following theorem generalizes the above observation to arbitrary J :

Theorem 11. Every P ∈ RJ can be realized as

P(+|θ) = Tr(|ψ(θ)〉〈ψ(θ)|⊗2J E+), (71)

with E+ an operator in LS(Sym2J (R2)), the symmetric operators on the symmetric
subspace of 2J rebits, such that Tr(|ψ(θ)〉〈ψ(θ)|⊗2J E+) ∈ [0, 1].

This theorem is proven in Appendix H2.
The possible operators E+ include positive operators in LS(Sym2J (R2)), which cor-

respond to standard POVM elements on 2J rebits. However, the possible operators E+
also include non-positive operators such as rebit symmetric entanglement witnesses. A
d-rebit symmetric entanglement witness W ∈ LS(Symd(R2)) is an operator defined as:

〈ψ |⊗d W |ψ〉⊗d ≥ 0 for all ψ ∈ R2. (72)

In typical applications of entanglement witnesses, it is assumed that there exists at least
one state ρ such that Tr(ρW ) < 0, which must then be entangled. Here, however, we are
using the notion of an entanglement witness in the generalized sense, such that it also
includes W that are non-negative on all symmetric states. Thus, we obtain the following
corollary:
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Corollary 1. The cone generated by RJ is isomorphic to the set of 2J -rebit symmetric
entanglement witnesses.

The fact that Q1 = R1, but Q3/2 � R3/2 can thus be interpreted as follows: all
correlations (in θ ) generated by two-rebit symmetric entanglement witnesses can also
be generated by proper two-rebit measurement operators (and similarly for zero or one
rebits, because Q0 = R0 and Q1/2 = R1/2). However, the analogous statement for
three rebits is false.

There is a compelling analogy of this behavior to the study of Bell correlations: all
non-signalling correlations on pairs of quantum systems are realizable within quantum
theory [61], but this is not true for all non-signalling correlations on triples of quantum
systems [62]. The proof of this uses the fact that non-signalling correlations of quantum
systems can always be generated by entanglement witnesses, regarded as a generalization
of the notion of quantum states, which is yet another similarity to our result above.

7. Conclusions and Outlook

In this paper, we have introduced a notion of “rotation boxes”, describing all possible
ways in which measurement outcome probabilities could respond to spatial rotations
around a fixed axis, in any covariant physical theory. We have thoroughly analyzed
the resulting notion of spin-bounded correlations, and have demonstrated a variety of
interesting results and applications. First, for the prepare-and-measure scenario, we have
shown that, for spin J ∈ {0, 1/2} systems, quantum theory predicts the same observable
correlations as the most general physics consistent with the SO(2)-symmetry of the setup.
For scenarios with two outcomes, the same is also true for the spin-1 case, although it
remains an open questions as to whether this generalizes to any number of outcomes.

However, for spin J ≥ 3/2, we have demonstrated a gap between quantum and
more general predictions; we have derived a Tsirelson-type inequality and constructed
an explicit counterexample consistent with general rotation boxes, but inconsistent with
quantum rotation boxes. Moreover, we have presented a family of GPT systems that
generate these “post-quantum” correlations. On the one hand, this result could hint at
possible probabilistic phenomena consistent with spacetime geometry that, if indeed
observed, would not be consistent with quantum theory. On the other hand, it is con-
ceivable that the gap closes when we consider the full Lorentz or Poincaré group, which
would thus reproduce crucial predictions of quantum theory from spacetime principles
alone. For J →∞, we have shown that every continuous rotational correlation can be
approximated arbitrarily well by finite-J quantum systems.

Given the theoretical gap between quantum and more general rotational correlations,
we have presented a metrological game in which general spin-3/2 resources outperform
all quantum ones, demonstrating a post-quantum advantage. We have further applied our
framework to Bell scenarios, building on previous results. First, we have demonstrated
why the “local unbiasedness” assumption introduced in [11] is crucial to recover the
(2, 2, 2)-quantum Bell correlations from the no-signalling set, and that it has a geometric
interpretation relating the outputs to the inputs of the box. Second, we have clarified the
“rotational invariance” assumption used in [24], from which the authors derive indirect
witnesses of multipartite Bell nonlocality. In particular, we argued that their assumption
actually expresses the statement that all local subsystems are spin-1/2 (quantum or
otherwise), and therefore that is does not rely on the validity of quantum theory.

In addition to addressing foundational questions, our work offers several interesting
applications to explore in future work, such as the semi-device-independent analysis
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of experimental data. For instance, recent experiments have successfully probed Bell
nonlocality in many-body systems like Bose–Einstein condensates, using so-called Bell
correlation witnesses [63]. These witnesses have the advantage of being experimentally
accessible by treating the Bose–Einstein condensate as a single party in which collec-
tive observables can be measured. However, a disadvantage of this approach is that it
requires additional assumptions compared to a typical Bell test, namely the validity of
spin-algebra in quantum mechanics and trust in the measurements, making it device-
dependent. Our framework is a suitable candidate for providing weaker assumptions
for carrying out semi-device-independent analysis of the observed experimental data, in
particular in situations where the experimental parameters are spatiotemporal in nature.

Another interesting application would be to devise self-testing-inspired protocols via
rotations. Typical self-testing [6,64] protocols are tailored to specific pairs of states and
measurements, but do not tell us how to operationally implement other valid measure-
ments on the state. It would be interesting to explore whether semi-device-independent
self-testing-inspired protocols can be devised where the inputs correspond to direc-
tions in physical space (on which the rotation group acts), and the outputs are angular-
momentum-valued physical quantities (instead of abstract labels), in order to not only
certify a certain state and the implemented measurements, but also certify the state with
all other valid measurements in different directions.

A further direction to explore would be whether one can carry a similar study than
the one in this manuscript by replacing the local spin bound by a local energy bound
(for instance, making use of the Mandelstam-Tamm quantum speed limit [20,22]). The
settings would then not correspond to two different directions in space, but to two
different time intervals according to which we let the systems evolve locally. Formally,
this would replace the group of rotations SO(2) of this paper by the time translation group
(R, +). More generally, it will be a natural next step to consider other groups of interest,
such as the full rotation group SO(3) or the Lorentz group, and to see which novel
statistical phenomena arise from the non-commutativity and other strutural properties
of these groups.

Furthermore, the interplay of entanglement and nonlocality with the group theoretic
structure deserves more study. The paradigmatic example is that of spin-1/2 fermions
obtaining a (−1) phase on (2π)-rotations, visible in the presence of initial entanglement.
This already demonstrates one surprising insight, potentially amongst others still waiting
to be discovered, at the intersection of probabilistic and spacetime structure.
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Appendices

Appendix A. Background Material

1. Finite-dimensional projective representations of SO(2). Theorem 16.47 of [65] states
that given a compact group G with universal cover G̃, a covering map � : G̃ → G,
and a finite-dimensional projective unitary representation � : G → PU(H), there is
a unitary representation � : G̃ → U(H) such that � ◦ � = Q ◦ �, where Q is the
quotient homomorphism Q : U(H) → PU(H), Q : U �→ U/{eiθ } for θ ∈ R. Any such
� is irreducible if and only if � is irreducible.

If G = SO(2), then G̃ = (R, +). The irreducible unitary representations R �→ U(1)

are given by x �→ eitx with t ∈ R. These are projective representations of SO(2) and
are projectively equivalent to the trivial representation x → 1. Thus the only irreducible
projective representation of SO(2) is the trivial representation. Equivalently, unitary
projective irreducible representations are maps SO(2) → PU(1), and PU(1) is just the
trivial group.

We now characterize reducible projective representations of SO(2).

Lemma 21. Any finite-dimensional projective representation of SO(2) can be written in
the form of Eq. (4):

Uθ =
J⊕

j=−J

1n j e
i jθ , (A1)

where J ∈ {0, 1
2 , 1, ...} and n j ∈ N0.

Proof. A generic representation R → U(H) is of the from

x �→ eidiag( j1,..., jn)x ( ji ∈ R) (A2)

in some basis, where there can be repeated entries and, without loss of generality, i ≥
k !⇒ ji ≥ jk .

The requirement that it is a projective representation of SO(2) entails that

eidiag( j1,..., jn)2π = eiφ, (A3)

http://creativecommons.org/licenses/by/4.0/
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for some φ ∈ R, which entails

2π ji + 2πqi = φ for some qi ∈ Z, (A4)

ji + qi = φ

2π
. (A5)

Thus, ji − jk = qi − qk , and the difference ji − jk is integer-valued for all i, j .
Setting j1 = φ0 and ji = j1 + ki with ki ∈ N0, the projective representation is of the

form:

eiφ0eidiag(0,k2,...,kn), (A6)

and can be characterized by a list of non-negative integers {k2, ..., kn}. We are however
interested in special unitary representations and can transform as follows:

eiφ0eidiag(0,k2,...,kn) �→ ei(φ0+ kn
2 )eidiag(− kn

2 ,k2− kn
2 ,...

kn
2 ). (A7)

Thus, every projective unitary representation can be characterized by a list of integers
or half-integers {k′1, ..., k′n} = {− kn

2 , k2 − kn
2 , ... kn2 }, where k′1 = −k′n . ��

This lemma entails that any projective representation of SO(2) is characterized by a
list { j1, ..., jn} of integers or half-integers.

Lemma 22. Projective representations of SO(2) of the form {−J,−J + 1, ..., J − 1, J }
with J ∈ N are also representations of SO(2), while those with J ∈ N/2 are purely
projective representations.

Proof. This is because eidiag(−J,...,J )2π equals 1 for integer J and −1 for half-integer
J . ��

2. Real projective representations of SO(2). Real irreducible representations of SO(2)

are labelled by non-negative integers k ∈ N0 and are given by the trivial representation
for k = 0 and by

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

(A8)

for k ∈ N. Thus, a real representation of SO(2) is labelled by a list of non-negative
integers {k1, ..., kn}. We note that for k a half-integer, Eq. (A8) defines a real irreducible
projective representation of SO(2).

Lemma 23. The complexification of the real irreducible projective representation {k} of
SO(2) with k �= 0 integer or half-integer is the complex reducible protective represen-
tation {k,−k}.
Proof. The real matrix

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, (A9)

acting on C2 can be diagonalized:
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

�→
(
eikθ 0

0 e−ikθ
)

.

��
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Our general framework of rotation boxes implies that we have real representations
of SO(2), because the space of ensembles of boxes (the vector space carrying the GPT
system which represents it) will always be a vector space over R. This is also true for
projective representations in quantum theory, where SO(2) acts on the vector space of
Hermitian matrices that contains the density matrices. However, the following lemma
will be useful when discussing quantum theory over the real numbers R:

Lemma 24. Representations of SO(2) {−J,−J + 1, ..., J − 1, J } with integer J are
also real representations of SO(2) {0, ..., J }, while projective representations SO(2)

{−J,−J+1, ..., J−1, J }withhalf-integer J are real projective representations { 1
2 , ..., J }.

Proof. Consider the following change of basis:
(
eikθ 0

0 e−ikθ
)

�→
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

. (A10)

Thus, for integer J :

eidiag(−J,...,J ) �→
J⊕

j=0

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, (A11)

which is a real representation of SO(2).
For half-integer J :

eidiag(−J,...,J ) �→
J⊕

j= 1
2

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, (A12)

which is a real projective representation of SO(2). ��

3. Representation-theoretic background. We introduce some necessary representation-
theoretic concepts before proceeding with the proofs. Here vector spaces V are iso-
morphic to Cn , unless otherwise stated. A representation of G is a homomorphism
ρ : G → GL(V ) with the general linear group GL(V ) the group of automorphisms on
V . We note that we do not require the representation to be faithful (i.e the map is not
required to be injective) since we are interested in finite-dimensional unitary representa-
tions of (R, +), which is the universal cover of SO(2). The vector space V is the carrier
space or representation space of ρ; however, we sometimes call it the representation.

When two representations ρ : G → GL(V ) and σ : G → GL(W ) are isomor-
phic, we write ρ � σ , or, when the context is clear, V � W . An isomorphism of
representations is given by an invertible linear map L : V → W which is equivariant:
σ(g)L(v) = L(ρ(g)v).

Given a representation ρ : G → GL(V ), we denote by ρ̄ : G → GL(V̄ ) the
complex conjugate representation and by ρ∗ : G → GL(V ∗) the dual representation.
For finite-dimensional representations, we have ρ̄ � ρ∗.

We denote the space of linear maps from V to W by L(V,W ). It carries a represen-
tation τ : G → GL(L(V,W )) given by (τ (g)(M))(v) = σ(g)M(ρ(g−1)v).

Given a complex vector space V , restricting scalar multiplication from C to R defines
the real vector space VR, known as the realification ofV , where dimR(VR) = 2 dimC(V ).
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Given a representation ρ : G → GL(V ), the space VR carries a real representation
ρR : G → GL(VR, R) [66].

Given a real vector space W with basis {ei }i , it can be complexified to obtain WC =
C ⊗R W with basis {1 ⊗R ei }i . Given a real representation ρ : G → GL(W, R),
the complexification of the representation ρ is ρC : G → GL(WC, C) defined as
ρC(g)(1⊗ ei ) = 1⊗ ρ(g)(ei ) [66].

Definition 4 (Real structure). Given a complex vector space V , a real structure j is
an antilinear map j : V → V which is an involution: j ◦ j = 1V . If V carries a
representation ρ : G → GL(V ), then the representation ρ carries the real structure j if
j is equivariant: ρ(g) j (v) = j (ρ(g)v).

Given a complex vector space V with a real structure j , an arbitrary v ∈ V can be
expressed as v = v j=+1 + v j=−1 where v j=+1 = v+ j (v)

2 and v j=−1 = v− j (v)
2 . Hence

the realification VR decomposes into the direct sum V �R V j=1 ⊕R V j=−1 where
V j=±1 := {v ∈ V | j (v) = ±v}.

Equivariance of j implies that the real subspaces Vj=±1 are closed under the action
of ρ(g), and hence ρR decomposes into the direct sum of real representations ρ j=+1⊕R

ρ j=−1, where ρ j=+1 �R ρ j=−1 [67, p.95].

Lemma 25. Given a representation ρ : G → GL(V ) with real structure j , we have
(ρ j=+1)C � ρ.

Proof. Given a complex representation ρ with real structure j , we define the map �+ :
(ρ, j) �→ ρ j=+1, where ρ j=+1 is the real representation defined above.

Given a real representation σ , we define the map � : σ �→ (σC, k), where σC is the
complexification of σ and the real structure k is defined as k(z ⊗ v) = z̄ ⊗ v.

From [67, p.94], it follows that ��+ is the identity morphism, which implies

(ρ, j) � ��+(ρ, j) � ((ρ j=1)C, k). (A13)

Defining the map � : (ρ, j) �→ ρ, the claim eC
R
= r+e+ of [67, Proposition (6.1)] can

be expressed in our notation as

��(ρ) = ρC. (A14)

Combining the above two equivalences gives

ρ � �(ρ, j) � ���+(ρ, j) � �((ρ j=1)C, k) � (ρ j=1)C, (A15)

which proves the lemma. ��
Lemma 26. Given a representation ρ : G → GL(V ), the real subspace Sym(V ⊗
V̄ ) ⊂ V ⊗ V̄ carries the real representation ρ′ : G → GL(Sym(V ⊗ V̄ )), whose
complexification is isomorphic to ρ(g)⊗ ρ̄(g).

Proof. Given a linear space V and its complex conjugate space V̄ , where V̄ has the
same elements, but scalar multiplication given by α � v = ᾱv, we can define the tensor
product space W � V ⊗ V̄ , where scalar multiplication is defined as

α �W (v ⊗ w) = αv ⊗ w = v ⊗ α � w = v ⊗ ᾱw. (A16)
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This space carries a representation ρ(g)⊗ ρ̄(g). Consider the swap map S : W → W ,
v ⊗ w �→ w ⊗ v. This map is anti-linear since

S(α �W (v ⊗ w)) = S(αv ⊗ w) = w ⊗ αv (A17)

= w ⊗ ᾱ � v = ᾱ �W S(v ⊗ w). (A18)

Moreover, S is equivariant:

S(ρ(g)⊗ ρ̄(g)(v ⊗ w)) = ρ(g)⊗ ρ̄(g)S(v ⊗ w). (A19)

The existence of an equivariant anti-linear map S : V ⊗ V̄ → V ⊗ V̄ entails that
V ⊗ V̄ has a real structure given by S. The +1 eigenspace of S is Sym(V ⊗ V̄ ) :=
{w ∈ V ⊗ V̄ |S(w) = w}. By Lemma 25, Sym(V ⊗ V̄ ) carries a real representation
ρ′ : G → GL(Sym(V ⊗ V̄ )), whose complexification is ρ. ��
Lemma 27. The real subspace of Hermitian operators on H, LH(H) ⊂ L(H), carries
a real representation of G.

Proof. The Hermitian adjoint of a map M ∈ L(H,H′) is the map M∗ ∈ L(H′,H) de-
fined by 〈Mv,w〉H′ = 〈v, M∗w〉H. The resulting map (“adjoint map”) ∗ : L(H,H′)→
L(H′,H), M �→ M∗ is anti-linear. Moreover, it is equivariant:

〈v, (σ (g)M ◦ ρ(g−1))∗w〉H = 〈σ(g)M ◦ ρ(g−1)v,w〉H′

= 〈M ◦ ρ(g−1)v, σ (g−1)w〉H′ = 〈ρ(g−1)v, M∗ ◦ σ(g−1)w〉H
= 〈v, ρ(g)M∗ ◦ σ(g−1)w〉H.

Thus, the +1 eigenspace LH(H) := {M = M∗ | M ∈ L(H,H)} carries a real represen-
tation of G. ��
Lemma 28. LH(H) � Sym(H⊗ H̄) as real representations.

Proof. We define an equivariant invertible linear map Sym(H ⊗ H̄) → LH(H). First,
we define the map

L : H⊗ H̄→ L(H,H) � H⊗H∗, (A20)

ei ⊗ e j �→ ei ⊗ e∗j (A21)

which is a group representation isomorphism H⊗ H̄→ H⊗H∗. We now show it maps
Sym(H⊗ H̄) to LH(H) and hence is an isomorphism of real representations:

L(S(ei ⊗ e j )) = L(e j ⊗ ei ) = e j ⊗ e∗i = (ei ⊗ e∗j )∗

= (L(ei ⊗ e j ))
∗.

Hence L(S(·)) = L(·)∗, which implies that for all w ∈ Sym(H⊗ H̄),we have L(w) =
L(w)∗. Conversely, for all w ∈ H ⊗ H∗ such that w = w∗, we have L−1(w) ∈
Sym(H⊗ H̄). ��
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4. Relevant vector space isomorphisms

Lemma 29. Given a real Hilbert spaceH and its complexificationH′, the space LS(H)

of symmetric operators onH is isomorphic to the spaceLSH(H′) of symmetricHermitian
operators onH′.
Proof. H � Rn and its complexification H′ � Cn . Fixing a basis, an operator O ∈
LH(H′) is symmetric if and only if its entries are real-valued. Thus the symmetric
Hermitian operators on H′ are given by the n× n real symmetric matrices and therefore
isomorphic to LS(H). ��
Lemma 30. The space Symd(C2) is the complexification of Symd(R2).

Proof. Consider a basis {|0〉 , |1〉} for both H ∈ {R2, C2}. The symmetric group �d acts
on H⊗d by permuting the tensor factors. A basis for Symd(H) is {|i〉}d0 , with

|i〉 =
∑

x∈{0,1}d |H(x)=i
|x〉 , (A22)

where H(x) is the Hamming weight of the bit string x ∈ {0, 1}d . Thus, there is a common
basis {|i〉}d0 for Symd(R2) and Symd(C2), showing that Symd(C2) is the complexifica-
tion of Symd(R2). ��
Corollary 2. The real vector space of symmetric operatorsLS(Symd(R2)) is isomorphic
to the real vector space of symmetric Hermitian operators LSH(Symd(C2)).

5. Relevant SO(2) group representation isomorphisms. In the following, C2 carries the
SO(2)projective representation {− 1

2 , 1
2 }, and R2 carries the real projective representation

{ 1
2 }. W � V indicates that the representation of SO(2) on V is isomorphic to the

representation of SO(2) on W . We note that the representation {− 1
2 , 1

2 } is isomorphic to
its conjugate and thus to its dual and hence is known as self-dual.

Lemma 31. Symd(C2) carries the representation {− d
2 , ..., d

2 } of SO(2).

Proof. A basis for Symd(C2) is {|k〉}dk=0, where

|k〉 =
∑

x∈{0,1}d |H(x)=k
|x〉 . (A23)

The action of diag(ei
θ
2 , e−i θ

2 )⊗d on this basis is:

|k〉 =
∑

x∈{0,1}d |H(x)=k
|x〉 �→

∑

x∈{0,1}d |H(x)=k
ei

k
2 |x〉 . (A24)

Thus, Symd(C2) carries the representation {− d
2 , ..., d

2 }. ��
Corollary 3. The representation Symd(C2) is self-dual.

Lemma 32. Sym2d(R2) carries the real representation {0, 1, ..., d} of SO(2).

Proof. The space R2 carries a real irreducible projective representation { 1
2 }. The com-

plexification C2 carries a complex irreducible projective representation {− 1
2 , 1

2 }.
Symd(C2) carries the complex projective representation {− d

2 ,− d
2 +1, ..., d

2 } and Sym2d

(C2) carries the complex representation {−d,−d + 1, ..., d − 1, d}. Thus, Sym2d(R2)

carries a real representation {0, ..., d}. ��
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Appendix B. Proofs for Section 3

1. Proof of Theorem 1. The following lemma has been established in a different context
by Miguel Navascués (unpublished). The conditions (ii) and (iii) in this lemma are a
priori inequivalent if G has degenerate spectrum, and the distinction of these two cases
will become useful in the proof of Lemma 34.

Lemma 33 (Miguel Navascués [68]). LetG = G† beanobservable onafinite-dimensio-
nal Hilbert space, and let P(a|·) : R → R, θ �→ P(a|θ), a ∈ A withA some finite set,
be real functions. Then the following statements are equivalent:

(i) There exists a quantum state ρ and a POVM {Ea}a∈A such that

P(a|θ) = Tr(eiGθρe−iGθ Ea).

(ii) There exists an eigenbasis {|n〉}n of G, a probability distribution {pn}n over the
eigenvectors |n〉, and positive semidefinite operators {Sa}a∈A with

∑
a∈A Sa =∑

n pn|n〉〈n| such that

P(a|θ) = 〈+|e−iGθ Sae
iGθ |+〉,

where |+〉 :=∑n |n〉 (note that this vector is not a normalized state).
(iii) For every eigenbasis {|n〉}n of G, there exists a probability distribution {pn}n over

the eigenvectors |n〉, and positive semidefinite operators {Sa}a∈A with
∑

a∈A Sa =∑
n pn|n〉〈n| such that

P(a|θ) = 〈+|e−iGθ Sae
iGθ |+〉.

Moreover, the state ρ in (i) can always be chosen as a pure state, with real non-negative
amplitudes in any fixed choice of eigenbasis of G.

Proof. To prove (i)⇒(iii), write ρ = ∑
jk ρ jk | j〉〈k| in an arbitrary eigenbasis of G

where G| j〉 = g j | j〉 (when G is degenerate, there exist values i �= j such that gi = g j ).
Note that

P(a|θ) =
∑

jk

ρ jke
i(g j−gk )θ 〈k|Ea | j〉

= 〈+|e−iGθ Sae
iGθ |+〉,

where Sa is defined by its matrix elements

(Sa)k j := ρ jk(Ea)k j .

In other words, Sa = ρ�◦Ea for the Schur product ◦. Since the Schur product of positive
semidefinite matrices is positive semidefinite, so is Sa . Moreover, since

∑
a∈A Ea = 1,

S :=∑a∈A Sa satisfies 〈k|S| j〉 = ρ jkδk j , i.e. it is a diagonal matrix with a probability
distribution on its diagonal (namely, the diagonal elements of ρ).

The implication (iii)⇒(ii) is trivial. To prove (ii)⇒(i), define |ψ〉 := ∑n
√
pn|n〉,

ρ := |ψ〉〈ψ | (which is a pure state), and

Ea := MSaM
† +

1

|A|�0,
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where M := ∑n:pn �=0 p−1/2
n |n〉〈n| and �0 := ∑n:pn=0 |n〉〈n|. Then we have Ea ≥ 0

and
∑

a Ea = 1. Note that pn = 0 implies 〈n|Sa |n〉 = 0, and thus 〈m|Sa |n〉 = 0 for all
m. Hence

Tr(eiGθρe−iGθ Ea) = 〈+|e−iGθ Sae
iGθ |+〉 = P(a|θ).

This proves the converse and the claim that ρ can always be chosen pure and with
non-negative amplitudes in the eigenbasis {|n〉}. ��

Now, for every N ∈ N, consider the representation

U (N )
θ :=

J⊕

j=−J

1Ne
i jθ ,

and denote by Q(N )

J,A the quantum spin-J correlations that can be obtained with a suitable
state and measurement on the corresponding Hilbert space. Clearly, every representation
of the form (4) is embedded into some U (N )

θ for N large enough, and so

QA
J ⊂

⋃

N∈N
Q(N )

J,A.

The next lemma will show that, in fact, all the correlation sets are the same, i.e. Q(N )

J,A =
Q(1)

J,A for all N , and hence QA
J ⊂ Q(1)

J,A. Since the converse inclusion is trivial, we

obtain QA
J = Q(1)

J,A, and Lemma 33 shows that the representing state can always be
chosen pure, and with non-negative real amplitudes in the given eigenbasis {| j〉}. This
establishes the validity of Theorem 1.

Lemma 34. We have Q(1)

J,A = Q(N )

J,A for all N ∈ N.

Proof. Let N ∈ N be an integer. On the Hilbert space which carries the representation
U (N )

α , define an eigenbasis {| j, n〉}−J≤ j≤J,1≤n≤N such that

U (N )
α | j, n〉 = ei jα| j, n〉,

i.e. where j labels the SO(2) irrep and n labels the multiplicity. For operators X =∑
( j,m),(k,n) X( j,m),(k,n)| j,m〉〈k, n| on that Hilbert space, define an associated operator

X̃ on C2J+1 via X̃ j,k := ∑
m,n X( j,m),(k,n) (regarding the Hilbert space as a tensor

product space AB, where A = C2J+1 and B = CN , this is X̃ = 〈+|B X |+〉B , with
|+〉B :=∑N

n=1 |n〉B). Let us first show that X ≥ 0 implies X̃ ≥ 0. To this end, if |ψ〉 =∑
j ψ j | j〉 is an arbitrary vector, set ϕ j,m := ψ j for all m and |ϕ〉 :=∑ j,m ϕ j,m | j,m〉.

Then

〈ψ |X̃ |ψ〉 =
∑

jk

ψ j X̃ j,kψk =
∑

jkmn

ϕ j,mX( j,m),(k,n)ϕk,n

= 〈ϕ|X |ϕ〉 ≥ 0.

It is easy to see that if X = ∑ jm p j,m | j,m〉〈 j,m| with {p j,m} some probability dis-

tribution, then X̃ = ∑ j q j | j〉〈 j |, with {q j } another probability distribution (namely,
q j =∑m p j,m).
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Now suppose that P ∈ Q(N )

J,A, i.e. there is a quantum state ρ and a POVM {Ea}a∈A
on the total Hilbert space such that

P(a|θ) = Tr

(

U (N )
θ ρ

(
U (N )

θ

)†
Ea

)

.

Let G be a generator such that U (N )
θ = eiGθ , and let |+(N )〉 :=∑ j,m | j,m〉. According

to Lemma 33, (i)⇒(iii), this implies that there are positive semidefinite matrices Sa and
a probability distribution {p j,m} with

∑
a∈A Sa =∑ j,m p j,m | j,m〉〈 j,m| such that

P(a|θ) = 〈+(N )(U (N )
θ )†SaU

(N )
θ |+(N )〉

=
∑

jkmn

ei(k− j)θ (Sa)( j,m),(k,n)

=
∑

jk

ei(k− j)θ (S̃a) j,k = 〈+|U †
θ S̃aUθ |+〉.

Thus, due to Lemma 33 (ii)⇒(i), we have P ∈ Q(1)

J,A.

We conclude that Q(N )

J,A ⊆ Q(1)

J,A. Conversely, Q(1)

J,A ⊆ Q(N )

J,A because the former can
be trivially embedded into the latter by padding the states with zeroes and the POVM
with constants that sum up to one. ��

2. Generalization of the rotation boxes SDP in Eq. (20) to arbitrary number of outcomes.
Here, we generalize the SDP methodology in Eq. (20) to account for an arbitrary finite
number of outcomes. Following the notation introduced in 2, let us denote the outcome
set with outcomes as A = {b1, . . . , bn}with |A| = n and its corresponding set of spin-J
correlations as RA

J . Then, a generalization of Eq. (20) immediately follows as:

max
Qb1 ,...,Qbn−1 ,S

f (c, s)

s.t. • abik =
∑

0≤ j, j+k≤2J

Qbi
j, j+k for all k and i,

• ãk = −
∑

0≤ j, j+k≤2J

S j, j+k for all k �= 0,

• 1− ã0 = Tr(S),

• Qb1, . . . , Qbn−1 , S ≥ 0,

(B1)

where the entries of Qb1 , . . . , Qbn−1 , S are labelled from 0 to 2J , and we have defined

ãk =
n−1∑

i=1
abik . Note that the condition

n∑

i=1
P(bi |θ) = 1 removes one degree of freedom.

Consequently, we take i ∈ {1, . . . , n−1}, with P(bi |θ) =∑J
k=−J a

bi
k eikθ . The general-

ization follows immediately from Eq. (20), which is the specific case for n = 2. In partic-
ular, the conditions involving Qbi imply 0 ≤ P(bi |θ) for all i ∈ {1, . . . , n − 1}, θ ∈ R,

and the constraints involving S imply
n−1∑

i=1
P(bi |θ) ≤ 1 and, thus, P(bi |θ) ≤ 1 for all
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i ∈ {1, . . . , n − 1}, θ ∈ R. Finally, from
n∑

i=1
P(bi |θ) = 1 one can always find the

missing 0 ≤ P(bn|θ) ≤ 1.

3. Proof of Lemma 2. The arguments in the main text already demonstrate that every
QA

J is a compact convex set, and that every P(a|θ) is a trigonometric polynomial of
degree at most 2J , i.e. of the form

c0 +
2J∑

k=1

(
ck cos(kθ) + sk sin(kθ)

)
.

These are 4J + 1 parameters. If we have |A| functions of this kind that sum to one, then
this tuple is determined by (4J + 1)(|A|−1) parameters. All we need to show is that we
can generate a set of correlations of this dimension via quantum rotation boxes. Denote
the standard basis in C2J+1 by {| j〉}Jj=−J , such thatUθ | j〉 = ei jθ | j〉. For � = 1, . . . , 2J ,

define the pair of matrices F (�),G(�) componentwise:

F (�)
k j := δ j−k,� + δk− j,�, G(�)

k j := i(δ j−k,� − δk− j,�).

For example, if J = 3/2 and � = 1, then

F (�) =
⎛

⎜
⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞

⎟
⎠ ,G(�) = i

⎛

⎜
⎝

0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0

⎞

⎟
⎠ .

These band matrices are Hermitian. Consider the state |+〉 := 1√
2J+1

∑J
j=−J | j〉, then

〈+|U †
θ F

(�)Uθ |+〉 = f�,J cos(�θ),

〈+|U †
θ G

(�)Uθ |+〉 = g�,J sin(�θ),

where f�,J , g�,J �= 0 are constants that only depend on � and J . Now pick an arbitrary
outcome a0 ∈ A, and define a collection of Hermitian operators in the following way.
If a �= a0, set

Ea := c(a)
0 1 +

2J∑

�=1

(
c(a)
� F (�) + s(a)

� G(�)
)

,

and Ea0 := 1−∑a �=a0
Ea . If we choose the coefficients such that 0 < c(a)

� , s(a)
� ' c(a)

0 ,

then every Ea for a �= a0 will be positive semidefinite, because the matrix c(a)
0 1 is

contained in the interior of the set of positive semidefinite matrices. Furthermore, if
we choose the c(a)

0 small enough (but still non-zero), then Ea0 will also be positive
semidefinite such that we obtain a valid POVM. By construction,

P(a|θ) = 〈+|U †
θ EaUθ |+〉

= c(a)
0 +

2J∑

�=1

(
c(a)
� f�,J cos(�θ) + s(a)

� g�,J sin(�θ)
)

,

and varying the coefficients c(a)
� , s(a)

� while respecting the necessary inequalities to have
a POVM produces a set of tuples of trigonometric polynomials of full dimension. ��
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4. Proof of Lemma 3. Let P ∈ QA
J . Then P(a|θ) = Tr(UθρU

†
θ Ea), with ρ some

quantum state and {Ea}a∈A some POVM on the Hilbert space H = C2J+1 = span{| j〉 |
− J ≤ j ≤ J } (every j is an integer, or every j is a half-integer), whileUθ | j〉 = ei jθ | j〉.
Consider the Hilbert space H′ := C2J ′+1 = span{| j ′〉 | − J ′ ≤ j ′ ≤ J ′}, where
J ′ := J + 1

2 . Define the isometry W : H → H′ via W | j〉 := | j + 1
2 〉, then W embeds

H isometrically into H′, and W †W = 1H and WW † = 1H′ − | − J ′〉〈−J ′|. Set
ρ′ := WρW †, which is a quantum state on H′, and E ′a := 1

|A| | − J ′〉〈−J ′| + WEaW †,

then {E ′a}a∈A is a POVM on H′. Set U ′θ | j ′〉 := ei j
′θ | j ′〉, then

eiθ/2WUθW
† = U ′θ − e−i J ′θ | − J ′〉〈−J ′|,

and hence

Tr(U ′θρ′(U ′θ )†E ′a) = Tr(UθρU
†
θ Ea) = P(a|θ),

and so P ∈ QA
J+1/2. ��

5. Proof of Lemma 4. We assume U : SO(2) → U(H), U : θ �→ Uθ , is a finite-
dimensional unitary projective representation of SO(2) on the finite-dimensional com-
plex Hilbert space H, and show that this entails the following three propositions:

• (i): It is proven in Lemma 21 that any finite-dimensional unitary projective rep-
resentation SO(2) → U(V ) is of the form given in Eq. (4) (see also Section 1 of
the Supplemental Materials of [19]), where J is uniquely defined by the condition
nJ n−J �= 0.
• (i) ⇔ (i i): Using the isomorphism of Lemma 28: LH(V ) → Sym(V ⊗ V̄ ), ρ �→ ρ

and the dual isomorphism LH(V )∗ → Sym(V ⊗ V̄ )∗, E �→ E� we have:

Tr(UθρU
†
θ E) = E�(U ⊗ Ū )ρ. (B2)

By Lemma 26, Sym(V ⊗ V̄ ) is closed (as a real vector space) under the action of
U ⊗ Ū . Denoting P the projector P : V ⊗ V̄ → Sym(V ⊗ V̄ ) we have:

E�(U ⊗ Ū )ρ = E�P(U ⊗ Ū )Pρ, (B3)

where P(U ⊗ Ū )P ∈ LR(Sym(V ⊗ V̄ )) the space of real linear operators on
Sym(V ⊗ V̄ ). Since E� ∈ Sym(V ⊗ V̄ )∗ and ρ ∈ Sym(V ⊗ V̄ ), the map U ⊗ Ū →
E�(U ⊗ Ū )ρ can be linearly extended to a functional on LR(Sym(V ⊗ V̄ )) and
hence it is a linear combination of the entries in U ⊗ Ū . As can be seen easily, and
is done explicitly below in (iii), these entries are trigonometric polynomials of order
at most 2J , which entails Tr(UθρU

†
θ E) is a trigonometric polynomial of order at

most 2J . And since these maps span LR(Sym(V ⊗ V̄ ))∗ linearly, the degrees of the
trigonometric polynomials Tr(UθρU

†
θ E) cannot all be strictly smaller than 2J .

• (i) ⇔ (i i i): Denote the Hilbert space space on which the projective representation
acts by HJ . The representation induced on the complex vector space of matrices
L(HJ ) is given by θ �→ Uθ•U †

θ . Using the isomorphismL(HJ ) � HJ⊗H∗J � HJ⊗
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H̄J with corresponding representations Uθ •U †
θ � U (θ)⊗U∗(θ) � U (θ)⊗ Ū (θ),

we obtain the following decomposition of L(HJ ) into irreducible representations:

U (θ)⊗ Ū (θ) =
J⊕

j=−J

1n j e
i jθ ⊗

J⊕

k=−J

1nk e
−ikθ (B4)

=
2J⊕

l=−2J

1ml e
ilθ . (B5)

The multiplicity ml for a given irreducible representation eilθ is given by

ml =
∑

j,k| j−k=l
n j × nk . (B6)

In particular, note that m2J = nJ n−J > 0. This will imply that the representation on
LH(HJ ) is generated not by an arbitrary projective unitary representation of SO(2) but
one specifically of the form (i), with the specific value of J .
The multiplicity m−l is equal to ml :

m−l =
∑

j,k| j−k=−l
n j × nk =

∑

j,k|k− j=l
n j × nk (B7)

=
∑

j,k|k− j=l
nk × n j = ml . (B8)

From the equality
(
eikθ 0

0 e−ikθ
)

= L

(
cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

L−1, (B9)

where

L =
(−i i

1 1

)

, L−1 = 1

2

(
i 1
−i 1

)

, (B10)

and from ml = m−l , it follows that

2J⊕

l=−2J

1ml e
ilθ � 1m0 ⊕

2J⊕

k=1

1mk ⊗
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)

, (B11)

which is a decomposition ofHJ⊗H̄J into real irreducible subspaces. By Lemma 26, the
real subspace Sym(HJ ⊗ H̄J ) carries the real representation of the above form. Thus,
so does LH(HJ ) due to Lemma 28.

We have thus shown that (i) ⇔ (i i) and (i) ⇔ (i i i), hence all three statements
are equivalent. Finally, we consider the specific case where U J

θ := eiθ Z
J
, with Z J =

diag(J, J − 1, . . . ,−J ) The representation �θ acts on the linear space spanned by
density operatorsLH(C2J+1) as �θρ = UθρU

†
θ . Using again the isomorphismUθ ·U †

θ �
Uθ ⊗ Ūθ , Eq. (B6) in the special case n j = 1 entails ml = 2J + 1− l. ��
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6. Proof of Lemma 10. Suppose p ∈ RJ , then the Fejér–Riesz theorem implies that
there is q(θ) =∑J

j=−J b j ei jθ such that p(θ) = |q(θ)|2. Thus

q(θ)q(θ) =
J∑

j,k=−J

ei(k− j)θb jbk = p(θ),

and hence ak = ∑0≤ j, j+k≤2J b j b j+k . Define Q jk := b jbk , then Q ≥ 0 and the first
condition in Lemma 10 follows. Similarly, 1 − p(θ) ≥ 0 implies the second and third
condition.

Conversely, suppose that the first condition of Lemma 10 is satisfied. Then

p(θ) =
2J∑

k=−2J

ake
ikθ =

2J∑

k=−2J

∑

0≤ j, j+k≤2J

Q j, j+ke
ikθ

=
2J∑

k=−2J

2J∑

�=−2J

Q j�e
i(�− j)θ = 〈v|Q|v〉 ≥ 0,

where vk = eikθ , and where we have used the substitution � := j + k. Similarly, the
second and the third condition imply 1− p(θ) ≥ 0 for all θ . ��

Appendix C. Proofs for Section 4.2

For clarity, we restate some of the lemmas or theorems before their proofs.

1. Proof of Lemma 13.
Lemma 13. Every non-constant function p ∈ ∂extR1 is contained in at least one face

Fθ0,θ1 .

Proof. It is sufficient to show that all p ∈ ∂extR1 satisfy minθ p(θ) = 0 and maxθ p(θ) =
1. To show that the maximum is unity, let m := maxθ p(θ). Since p is not identically
zero by assumption, we have m > 0. Suppose that m < 1. Then q(θ) := p(θ)/m is
itself an element of R1, and p(θ) = m · q(θ) + (1− m) · 0. Thus, p is not extremal in
R1, which contradicts our assumption that it is. The proof that the minimum is zero is
analogous. ��

2. Proof of Lemma 14. Lemma 14 gives an explicit characterization of the sets F0,θ1

showing for which values of θ1 the set is empty, and for values where F0,θ1 is non-empty,
and hence a face of F0, it characterizes the functions in δextF0,θ1 .

We first characterize the general form of the functions p ∈ F0, which are of interest
since F0,θ1 ⊂ F0 for all θ1.

Lemma 35. Let p(θ) be a trigonometric polynomial of degree 2 or less with p(θ) ≥ 0
for all θ and p(0) = 0. Then there are constants c ≥ 0, ϕ ∈ [0, 2π) and 0 ≤ s ≤ 1
such that

p(θ) = c(1− cos θ)(1− s cos(θ − ϕ)).
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Proof. Due to the Fejér–Riesz theorem, there is a complex polynomial

h(z) = a0 + a1z + a2z
2

with p(θ) = |h(eiθ )|2; we can choose a2 to be a real number by absorbing complex
phases into the definition of h. We have 0 = p(0) = h(1), and thus a0 = −a1 − a2,
hence h(z) = (z−1)(a2z +a1 +a2). Write−(a1 +a2)/a2 = reiϕ with r ≥ 0 and ϕ ∈ R,
then

p(θ) = |h(eiθ )|2

= |eiθ − 1|2 ·
∣
∣
∣a2e

iθ + a1 + a2

∣
∣
∣
2

= 2a2
2(1− cos θ)

∣
∣
∣eiθ − reiϕ

∣
∣
∣
2

= 2a2
2(1− cos θ)(1 + r2 − 2r cos(θ − ϕ))

= c(1− cos θ)

(

1− 2r

1 + r2 cos(θ − ϕ)

)

,

where c = 2a2
2(1 + r2), and s := 2r/(1 + r2) ∈ [0, 1]. ��

From the previous lemma we can immediately determine the maximal number of
roots for functions p ∈ R1:

Lemma 36. Every function p ∈ R1 reaches value p(θ) = 0 at most twice and value
p(θ) = 1 at most twice

Proof. Consider a function p′ ∈ R1 such that p′(θ0) = 0. The function p(θ) = p′(θ +
θ0) is such that p(0) = 0 and has the same number of roots as p′(θ). Thus we can restrict
ourselves to the case of function p ∈ R1 such that p(0) = 0.

By Lemma 35 these functions have the form:

p(θ) = c(1− cos θ)(1− s cos(θ − ϕ)), (C1)

which attains value 0 at θ = 0 and at θ = ϕ if the parameter s = 1. Thus p(θ) has at
most two roots.

Conversely consider a function p′ ∈ R1 which reaches value p′(θ i1) = 1 for n points
{θ1

1 , ..., θn}. The function p(θ) = 1− p′(θ) has n roots p(θ i1) = 0 for θ i1 ∈ {θ1
1 , ..., θn}.

However, since p ∈ R1, n is at most two. Thus, p′ has at most two points θ i1 such that
p′(θ i1) = 1. ��

Note that compact convex faces have a well-defined dimensionality. We now show
that for all faces (i.e. non-empty F0,θ1 ) the dimensionality is either 0 (i.e the face contains
a single point) or 1 (the face is the convex hull of two distinct points).

Lemma 37. Let θ1 �= π . Then either F0,θ1 = ∅ or dim(F0,θ1) ≤ 1.

Proof. Let p ∈ F0,θ1 , then Lemma 35 shows that

p(θ) = c(1− cos θ)(1− s cos(θ − ϕ)),

where c > 0 is uniquely determined by the equation p(θ1) = 1. Furthermore, θ1 is a
local maximum, hence

0 = p′(θ1)
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= 2c

(

cos
θ1

2
− s cos

(
3

2
θ1 − ϕ

))

sin
θ1

2
.

Since 0 < θ1 < 2π , we know that sin θ1
2 �= 0, hence

cos
θ1

2
− s cos

(
3

2
θ1 − ϕ

)

= 0.

Suppose that cos
( 3

2θ1 − ϕ
) = 0, then cos θ1

2 = 0, which implies θ1 = π , which
contradicts the assumptions of the lemma. Hence cos

( 3
2θ1 − ϕ

) �= 0, and

s = cos θ1
2

cos
( 3

2θ1 − ϕ
) .

But this implies that every p ∈ F0,θ1 is uniquely determined by the parameter ϕ. (Note
that not all ϕ ∈ [0, 2π) yield valid p ∈ F0,θ1 , i.e. only a subset of [0, 2π) is allowed as
possible values for ϕ, but this observation does not affect the present argumentation.)
Hence dim(F0,θ1) ≤ 1. ��
Lemma 38. We have dim(F0,π ) ≤ 1.

Proof. Let p ∈ F0,π , then Lemma 35 implies

p(θ) = c(1− cos θ)(1− s cos(θ − ϕ)), (C2)

where 0 ≤ ϕ < 2π and 0 ≤ s ≤ 1. Furthermore,

1 = p(π) = 2c(1 + s cos ϕ),

hence s cos ϕ > −1 and

c = 1

2(1 + s cos ϕ)
.

Substituting this into Eq. (C2), and using that π is a local maximum, the equation
0 = p′(π) implies

s sin ϕ = 0.

Hence, either s = 0 such that p(θ) = 1
2 (1− cos θ), or ϕ = π such that

p(θ) = 1− cos θ

2(1− s)
(1 + s cos θ), (C3)

or ϕ = 0 such that

p(θ) = 1− cos θ

2(1 + s)
(1− s cos θ).

Equation (C3) contains the other two cases via s = 0 and s ≥ −1, and we conclude that
the single parameter−1 ≤ s < 1 determines the element of F0,π uniquely (note that we
do not claim that all these values of s give valid functions in the face, just that they are
all contained in this family of functions). ��
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A compact convex set of dimension 1 has exactly 2 extremal points. Thus

Corollary 4. Every face F0,θ1 contains either one or two extremal points, depending on
whether its dimension is 0 or 1 (in the former case, it contains only a single element).

The faces F0,θ1 contain those functions p ∈ R1 such that a global minimum is
p(θ0) = 0 and a global maximum p(θ1) = 1. However, some functions in F0,θ1 can
have multiple global maxima and minima, as we shall now see.

Lemma 39. Let θ0 �= θ ′0 ∈ [0, 2π) be two distinct angles. Then there is a unique p ∈ R1
with p(θ0) = p(θ ′0) = 0 and maxθ p(θ) = 1, and it is of the form

p(θ) = c(1− cos(θ − θ0))(1− cos(θ − θ ′0)),

with some suitable uniquely determined c > 0.
Similarly, if θ1 �= θ ′1 ∈ [0, 2π) are distinct angles, then there is a unique p ∈ R1

with p(θ1) = p(θ ′1) = 1 and minθ p(θ) = 0, and it is of the form

p(θ) = 1− c(1− cos(θ − θ0))(1− cos(θ − θ ′0)),

with some suitable uniquely determined c > 0.

Proof. The latter statement follows from the former by considering q(θ) := 1− p(θ).
It is thus sufficient to prove the former statement. For symmetry reasons, it is enough to
consider the case θ0 = 0. Due to Lemma 35,

p(θ) = c(1− cos θ)(1− s cos(θ − ϕ)),

where c ≥ 0, ϕ ∈ [0, 2π) and 0 ≤ s ≤ 1. Since θ ′0 > 0, we have 1− cos θ ′0 �= 0, and so
p(θ ′0) = 0 implies

1− s cos(θ ′0 − ϕ) = 0.

This is only possible if s = 1 and cos(θ ′0 − ϕ) = 1, hence ϕ = θ ′0, and so

p(θ) = c(1− cos θ)(1− cos(θ − θ ′0)), (C4)

and c > 0 is uniquely determined by the condition maxθ p(θ) = 1. ��
Corollary 5. Every p ∈ R1 that either

• attains the value 0 once and the value 1 twice, or
• attains the value 1 once and the value 0 twice

is extremal inR1.

Actually, we can easily transform one of these into the other:

Lemma 40. Let p ∈ R1 as a (2π)-periodic function on R, and suppose that

p(θ0) = 0, p(θ1) = 1, p(θ ′0) = 0.

Then the (2π)-periodic function

p̃(θ) := 1− p(θ0 + θ1 − θ), (C5)

is also an element of R1, and it satisfies

p̃(θ0) = 0, p̃(θ1) = 1, p̃(θ ′1) = 1,

where θ ′1 := θ0 + θ1 − θ ′0.
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The proof is very simple and omitted. In general, we can consider the transformation

Tθ0,θ1 : p �→ p̃,

where p̃ is defined by Eq. (C5), which maps R1 onto itself and is linear. Moreover, the
lemma above also shows that

Tθ0,θ1(Fθ0,θ1) = Fθ0,θ1 ,

i.e. it preserves the faces that we are interested in. The idea is that it maps one of the
extremal point (with two zeros) to the other extremal point (with two ones).

Let us study whether functions can have more than two global maxima or minima.

Lemma 41. Given a function p ∈ R1 with p(θ0) = 0 and p(θ1) = 1we have |θ0−θ1| ≥
π
2 .

Proof. This is the special case J = 1 of Lemma 20. ��
From this it follows

Corollary 6. If 0 ≤ θ1 < π
2 or if 3π

2 < θ1 < 2π then F0,θ1 = ∅.
Proof. The set F0,θ1 contains those functions in R1 such that p(θ0) = 0 and p(θ1) = 1,
where θ0 = 0. For 0 ≤ θ1 < π

2 , we have |θ0 − θ1| < π
2 . Thus, by Lemma 41, F0,θ1 is

empty.
Similarly, since p(2π) = 0, it also follows that for 3π

2 ≤ θ1 < 2π that the face F0,θ1

is empty. ��
By Lemma 36 a function p ∈ δextR1 has at most two global minima and at most two

global maxima.

Corollary 7. A non-constant function p ∈ δextR1 with two global minima θ0 and θ ′0 and
two global maxima θ1 and θ ′1 is such that θ ′0 = θ0 + π , θ1 = θ0 + π

2 and θ ′1 = θ1 + π .

Proof. A function p ∈ δextR1 has global minimum p(θ0) = 0 by Lemma 13. Thus, if
it has two global minima, there is another θ ′0 �= θ0 such that p(θ ′0) = 0.

Similarly the global maxima of the function are reached for p(θ1) = p(θ ′1) = 1.
By Lemma 41 we have the following relations:

|θ0 − θ1| ≥ π

2
, |θ ′0 − θ1| ≥ π

2
, (C6)

|θ0 − θ ′1| ≥
π

2
, |θ ′0 − θ ′1| ≥

π

2
. (C7)

Without loss of generality we assume θ0 < θ ′0 and θ1 < θ ′1.
This implies

|θ0 − θ ′0| ≥ π, |θ1 − θ ′1| ≥ π. (C8)

Thus, θ0 and θ ′0 must lie on antipodal points of the unit circle, and so do θ1 and θ ′1.
Moreover, since θ0 and θ1 must have distance at least π/2, they must have distance
exactly π/2, and the four extrema form the corners of a square inside the circle. This
proves the claimed equations. ��

We now show that such a function exists and is unique.
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Lemma 42. The only p ∈ R1 that have two distinct zeros and two distinct ones are

p(θ) = (1− cos(θ − θ0))(1 + cos(θ − θ0)),

with 0 ≤ θ0 < π .

Proof. Since p(θ0) = p(θ ′0) = 0 and maxθ p(θ) = 1 Lemma 35 implies that p(θ) has
the form:

p(θ) = c · (1− cos(θ − θ0))(1− cos(θ − θ ′0)). (C9)

By Corollary 7, θ ′0 = θ0 + π , hence

p(θ) = c · (1− cos(θ − θ0))(1 + cos(θ − θ0)), (C10)

and maxθ p(θ) = 1 implies that c = 1. ��
Lemma 43. The unique global maximum of the function fθ ′0 : [0, 2π) → R,

fθ ′0(θ) := (1− cos θ)(1− cos(θ − θ ′0)),

occurs at θ1 = θ ′0
2 + π when θ ′0 ∈ (0, π) and at θ1 = θ ′0

2 when θ ′0 ∈ (π, 2π).

Proof. Let us find local extrema:

f ′
θ ′0

(θ) = sin(θ)(1− cos(θ ′0 − θ))− (1− cos(θ)) sin(θ ′0 − θ)

= sin(θ ′0 − 2θ)− sin(θ ′0 − θ) + sin(θ). (C11)

The equation f ′
θ ′0

(θ) = 0 has the following solutions in [0, 2π):

θ ∈
{

0, θ ′0,
θ ′0
2

, π +
θ ′0
2

}

if θ ′0 ∈ [0, π), (C12)

θ ∈
{

0, θ ′0,−π +
θ ′0
2

,
θ ′0
2

}

if θ ′0 ∈ [π, 2π). (C13)

One can check directly that these are zeroes of f ′
θ ′0

. Moreover, since f ′
θ ′0

is a trigonometric

polynomial of degree 2, it has at most 4 zeroes (up to (2π)-periodicity), hence these are
the only zeroes. Clearly, fθ ′0(θ) attains a global minimum for θ = 0 and θ = θ ′0. Let us
determine the global maximum:

fθ ′0

(
θ ′0
2

)

=
(

1− cos
θ ′0
2

)2

, (C14)

fθ ′0

(

π +
θ ′0
2

)

= fθ ′0

(

−π +
θ ′0
2

)

=
(

1 + cos
θ ′0
2

)2

. (C15)

We see that fθ ′0

(
θ ′0
2

)
< fθ ′0

(
θ ′0
2 ± π

)
if and only if cos

θ ′0
2 > 0. This implies that the

unique global maximum occurs at θ1 = π +
θ ′0
2 when θ0 ∈ (0, π), at θ1 = θ ′0

2 for θ ′0 ∈
(π, 2π). ��
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Lemma 44. If θ1 = π
2 or θ1 = 3π

2 , then F0,θ1 contains a single element, namely

F0, π
2
= F0, 3π

2
=
{
p(θ) = sin2 θ

}
.

Proof. Let 0 ≤ θ1 ≤ π
2 , and suppose that p ∈ F0,θ1 . Consider T (θ) := 2p(θ)− 1. We

have −1 ≤ T (θ) ≤ 1 for all θ , thus, we can use the result of [19, Theorem 2]

T ′(θ) + n2T (θ)2 ≤ n2, (C16)

where n is the degree of the trigonometric polynomial (here n = 2). Thus,

θ1 =
∫ θ1

0
dθ ≥

∫ θ1

0

T ′(θ)dθ

2
√

1− T (θ)2
= 1

2

∫ T (θ1)

T (0)

dy
√

1− y2

= 1

2
(arcsin T (θ1)− arcsin T (0)) = π

2
.

This is a contradiction if θ1 < π
2 , and so F0,θ1 = ∅ in this case. On the other hand, to

have equality in the case θ1 = π
2 , we must have equality in Eq. (C16) for all 0 ≤ θ ≤ π

2 ,
which implies that T (θ) = − cos(2θ). A similar calculation for 3π

2 ≤ θ1 < 2π proves
the claim. ��
Lemma 45. Let θ1 ∈

(
π
2 , 3π

2

) \{π}. Then F0,θ1 contains exactly two distinct extremal
points,

∂extF0,θ1 = {p(θ), p̃(θ)},
namely

p(θ) = c(1− cos θ)(1− cos(θ − θ0)),

and p̃ is defined as in Eq. (C5). Here θ0 = 2θ1 for θ1 ∈ (π
2 , π) and θ0 = 2(θ1 − π) for

θ1 ∈ (π, 3π
2 ), and c > 0 is uniquely determined by the condition maxθ p(θ) = 1.

Proof. Fix some θ1 ∈ (π
2 , π). Then, by Lemma 43, the function fθ0 for θ0 = 2θ1

is such that fθ0(θ1) is its global maximum. For θ1 ∈ (π, 3π
2 ), the function fθ0 with

θ0 = 2(θ1 − π) is such that fθ0(θ1) is its global maximum.
Set c := 1/ fθ0(θ1) and p(θ) := c fθ0(θ), then p(0) = 0, p(θ1) = 1 = maxθ p(θ),

and p(θ) ≥ 0 for all θ , hence p ∈ F0,θ1 . By Lemma 43, p(θ) reaches value 0 twice at
θ = 0, θ0, and value 1 at θ1. Hence, due to Corollary 5, p is extremal in R1 and thus also
extremal in F0,θ1 . Since p does not attain the value 1 twice, we have p̃ �= p. Moreover,
for the same reason as for p, we have p̃ ∈ ∂extF0,θ1 .

We have discovered two distinct extremal points of F0,θ1 . Since dim F0,θ1 ≤ 1 ac-
cording to Lemma 37, there cannot be any more extremal points. ��

The following uses the terminology of Lemma 38.

Lemma 46. The face F0,π contains exactly two extremal points, namely

F0,π = {p(θ), p̃(θ)},
where p(θ) = sin4 θ

2 , and p̃ is defined as in (C5) (concretely, p̃(θ) = 1
4 (1− cos θ)(3 +

cos θ)).
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Proof. Every p ∈ F0,π corresponds to some element of the family of functions ps
defined in Eq. (C3), with−1 ≤ s ≤ 1. Indeed, the case s = −1 yields a valid function p ∈
F0,π , and since it is in the topological boundary of the parameter range, it must correspond
to an extremal point of the one-dimensional face. But the reversible transformation T0,π

maps extremal points to extremal points, and hence p̃ := T0,π p must also be an extremal
point of F0,π (in fact, it is the function corresponding to s = 1

3 ). Since dim F0,π ≤ 1
according to Lemma 38, these must be the only extremal points. (Note that this also
shows that the face corresponds to the parameter range −1 ≤ s ≤ 1

3 ). ��
The four statements of Lemma 14 are now proven in Corollary 6, Lemmas 44, 45,

and 46, respectively.

3. Proof of Theorem 6

Theorem. (Q1 = R1) The correlation setR1 is equal to Q1.

By Lemma 6, we have Q1 ⊂ R1. To show the converse, we will use Lemma 15 and
show that all correlations in δextR1 have a quantum spin-1 realization.

Lemma 47. If p(θ) ∈ Q1 then p′(θ) := p(θ + θ0) ∈ Q1.

Proof. The assumption p(θ) ∈ Q1 implies that there is a quantum state ρ and a POVM
element E such that

p(θ) = Tr(EUθρU
†
θ ), (C17)

hence

p′(θ) = p(θ + θ ′) = Tr(EUθ+θ ′ρU
†
θ+θ ′) (C18)

= Tr(EUθ (Uθ ′ρU
†
θ ′)U

†
θ ) = Tr(EUθρ

′U †
θ ), (C19)

with ρ′ = (Uθ ′ρU
†
θ ′) a valid quantum state, hence p′(θ) ∈ Q1. ��

Thus, we only need to show that the extremal points p ∈ δextR1 with p(0) = 0 are
quantum realizable.

Lemma 48. If p(θ) ∈ Q1 with p(θ0) = p(θ ′0) = 0 and p(θ1) = 1, then p̃(θ) :=
1− p(θ0 + θ1 − θ) ∈ Q1.

Proof. p(θ) ∈ Q1 entails there exists a qutrit state ρ and a qutrit effect E such that

p(θ) = Tr(EUθρU
†
θ ), (C20)

where Uθ = diag(eiθ , 1, e−iθ ).
Define the effect E ′ = 1−U †

θ0+θ1
EUθ0+θ1 , then:

p′(θ) = Tr(E ′U−θρU
†
−θ ) (C21)

= Tr(1ρ)− Tr(EUθ0+θ1−θρU
†
θ0+θ1−θ ) (C22)

= 1− p(θ0 + θ1 − θ) = p̃(θ). (C23)

Since θ �→ U−θ is also a quantum spin-1 rotation box, this implies that p̃ ∈ Q1. ��
The above two lemmas and Lemma 14 imply thatR1 = Q1 follows from this lemma:
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Lemma 49. The following functions are contained in Q1:

1. p(θ) = sin2 θ ,
2. p(θ) = sin4 θ

2 ,
3. p(θ) = c(1− cos θ)(1− cos(θ − θ0)) for θ0 ∈ (0, 2π)\{π}, where c > 0 is uniquely

determined by the condition maxθ p(θ) = 1.

Proof. Consider the following SO(2) orbit for a quantum spin-1 system:

|ψ(θ)〉 = 1√
2
(eiθ |1〉 − e−iθ |−1〉). (C24)

For effect E+ = |φ〉〈φ| with |φ〉 = 1√
2
(|1〉 + |−1〉), we obtain

P(+|θ) = |〈φ|ψ(θ)〉|2 = 1

4
(eiθ − e−iθ )2 = sin2 θ. (C25)

This proves item 1. To show item 2., consider the following orbit:

|ψ(θ)〉 = 1

2
(eiθ |1〉 +

√
2 |0〉 + e−iθ |−1〉), (C26)

and the effect E+ = |φ〉〈φ| with |φ〉 = 1
2 (− |1〉 +

√
2 |0〉 − |−1〉). They generate the

conditional probability

P(+|θ) = 1

16

(
2− eiθ − e−iθ

)2 = sin4 θ

2
. (C27)

Finally, let us prove item (3). First, define

θ1 :=
{

θ0
2 + π if 0 < θ0 < π,

θ0
2 if π < θ0 < 2π.

Note that π
2 < θ1 < 3π

2 . Now define

α :=
√

1− 1

1− cos θ1
, β := 1√

2(1− cos θ1)
,

then |α|2 + 2|β|2 = 1. Consider the orbit

|ψ(θ)〉 = α|0〉 + βeiθ |1〉 + βe−iθ | − 1〉,
and the effect E+ := |ψ(θ1)〉〈ψ(θ1)|. Then we have

〈ψ(θ1)|ψ(θ)〉 = cos(θ − θ1)− cos θ1

1− cos θ1
,

and the square of this expression becomes

P(+|θ) = 1

4 sin4 θ1
2

(1− cos θ)(1− cos(2θ1 − θ))

= 1

4 sin4 θ1
2

(1− cos θ)(1− cos(θ − θ0)).

By construction, P(+|θ1) = 1, and this is the maximal value over all θ . Thus, we have
shown that the family of functions of item 3. is contained in Q1. ��
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4. Proof of Lemma 17

Proof.

(i) (a) We first consider a quantum SO(2) rotation box and show that is has three
perfectly distinguishable states belonging to a common SO(2) orbit.

The following three vectors are an orthonormal basis of C3:

|1〉 = 1√
3
(|0〉 + |1〉 + |2〉), (C28)

|ω〉 = 1√
3
(|0〉 + e

2π i
3 |1〉 + e

4π i
3 |2〉), (C29)

|ω2〉 = 1√
3
(|0〉 + e

4π i
3 |1〉 + e

2π i
3 |2〉). (C30)

It is immediate that these states belong to the following U(1) orbit:

|ψ(θ)〉 =
⎛

⎝
1 0 0
0 eiθ 0
0 0 ei2θ

⎞

⎠ |1〉 . (C31)

Using the measurement {|ωa〉〈ωa |}a=0,1,2 allows us to perfectly distinguish the
three states |ψ(0)〉 = |1〉, |ψ( 2π

3 )〉 = |ω〉, |ψ( 4π
3 )〉 = |ω2〉. By definition, the

three probability distributions

P(a|θ) = |〈ωa |ψ(θ)〉|2 (a = 0, 1, 2), (C32)

are in Q{0,1,2}
1 ⊂ R{0,1,2}

1 . Thus, according to Lemma 8, there is a measurement
{ea}a=0,1,2 on R1 such that

P(a|θ) = ea · ω(θ) (a = 0, 1, 2). (C33)

By construction, the measurement {ea}a=0,1,2 perfectly distinguishes the states
{ω(0), ω( 2π

3 ), ω( 4π
3 )} of R1,i.e.

ea · ω
(

b · 2π

3

)

= P

(

a

∣
∣
∣
∣b ·

2π

3

)

= δab (a, b = 0, 1, 2).

(b) If there are n jointly perfectly distinguishable states, then there are also n jointly
perfectly distinguishable pure states ω1, . . . , ωn . In particular, there is an effect
en with en · ω1 = . . . = en · ωn−1 = 0, but en · ωn = 1. Thus, ω1, . . . , ωn−1 are
n− 1 disjoint pure states in a proper face of �1. However, by Theorem 1 of [45],
there is no face with three or more pure states (aside from the whole state space),
since all proper faces are at most one-dimensional.

(ii) Consider the following states:

ω(0) =

⎛

⎜
⎜
⎜
⎝

1
1
0
1
0

⎞

⎟
⎟
⎟
⎠

, ω
(π

2

)
=

⎛

⎜
⎜
⎜
⎝

1
0
1
−1
0

⎞

⎟
⎟
⎟
⎠

, (C34)
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ω(π) =

⎛

⎜
⎜
⎜
⎝

1
−1
0
1
0

⎞

⎟
⎟
⎟
⎠

, ω

(
3π

2

)

=

⎛

⎜
⎜
⎜
⎝

1
0
−1
−1
0

⎞

⎟
⎟
⎟
⎠

. (C35)

We define the following effects:

e± π
2
= ( 1

2 0 0 1
2 0
)
, (C36)

e0,π =
(

1
2

1
2 0 0 0

)
, (C37)

e π
2 , 3π

2
= ( 1

2 0 1
2 0 0

)
, (C38)

One can straightforwadly check that these are indeed valid effects, i.e. they give
values in [0, 1] when evaluated on the orbit of pure states ω(θ) (and therefore on
the who convex set of states):

e± π
2
· ω(θ) = 1

2
+

cos(2θ)

2
∈ [0, 1], (C39)

e0,π · ω(θ) = 1

2
+

cos(θ)

2
∈ [0, 1], (C40)

e π
2 , 3π

2
· ω(θ) = 1

2
+

sin(θ)

2
∈ [0, 1] . (C41)

The unit effect is:

u = (1 0 0 0 0
)
. (C42)

In the following addition is defined mod 2π . The measurement {e± π
2
, u−e± π

2
} can

be used to perfectly distinguish the state ω(θ) for θ ∈ {0, π
2 , π, 3π

2 } from either of
the states ω(θ ± π

2 ):

e± π
2
· ω(θ) = 1 , θ ∈ {0, π}, (C43)

e± π
2
· ω(θ) = 0 , θ ∈

{
π

2
,

3π

2

}

. (C44)

The measurement {e0,π , u − e0,π } can be used to perfectly distinguish ω(0) from
ω(π):

e0,π · ω(0) = 1, (C45)

e0,π · ω(π) = 0. (C46)

The measurement {e π
2 , 3π

2
, u − e π

2 , 3π
2
} can be used to perfectly distinguish ω(π

2 )

from ω( 3π
2 ):

e π
2 , 3π

2
· ω
(π

2

)
= 1, (C47)

e π
2 , 3π

2
· ω
(

3π

2

)

= 0. (C48)

Thus, any pair of states in {ω(0), ω(π
2 ), ω(π), ω( 3π

2 )} can be perfectly distin-
guished.
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(iii) From the existence of four pure pairwise perfectly distinguishable states {ω(0), ω(π
2 ),

ω(π), ω( 3π
2 )}, violation of bit symmetry follows immediately for reversible trans-

formations T (θ) of the form in Equation (34). Take for example the pairs of perfectly
distinguishable states {ω(0), ω(π

2 )} and {ω(0), ω(π)}, then there is no reversible
transformation T (φ) mapping one pair to the other, i.e. such that T (φ)ω(0) = ω(0)

and T (φ)ω(π
2 ) = ω(π).

However, there exist other transformations T which are symmetries of �1 such
as T = diag(1, 1,−1, 1,−1). We now show that bit symmetry is violated for all
symmetries of �1, not just the SO(2) subgroup {T (θ) | θ ∈ [0, 2π)}.
Let us denote by G the group of all symmetries of �1. There exists a group invariant
inner product 〈·, ·〉 such that 〈Gx,Gy〉 = 〈x, y〉 for all G ∈ G and x, y ∈ R5. As for
every inner product, there is a positive definite symmetric matrix M > 0, M = M�,
such that 〈x, y〉 = x · My. Group invariance implies that M commutes with all
elements of G; in particular, [M, T (θ)] = 0 for all θ . A straightforward calculation
shows that this implies that M = diag(a, b, b, c, c) for some a, b, c > 0. If all
pairs of perfectly distinguishable pure states ω1, ω2 were related by a reversible
transformation, then their invariant inner products 〈ω1, ω2〉 would all be identical.
But the following are inner products between pairs of perfectly distinguishable pure
states:

〈

ω(0), ω

(
3π

2

)〉

= a − c,

〈ω(0), ω(π)〉 = a − b + c,
〈

ω(0), ω

(
2π

3

)〉

= a − 1

2
b − 1

2
c.

For these to be identical, we would need to have b = c = 0, which contradicts the
positive definiteness of M . Thus, bit symmetry cannot hold.

��

Appendix D. SDP-Based Algorithm to Explore the Correlations Set Boundaries

Here we outline an algorithm to numerically explore and compare the boundary of the
correlations sets QJ ,RJ which in Sect. 4.3 has led to the derivation of an inequality
proving QJ � RJ for J ≥ 3/2. The idea is to first choose a plane in some direction of
the trigonometric coefficients affine space, and then discretize a circle around its origin to
use the SDP-based methodologies in Sect. 3.3 to probe the boundary of the sets QJ ,RJ
for that particular plane. In other words, we numerically find a 2D projection of the sets
QJ ,RJ in the trigonometric coefficient space.

In particular, the algorithm goes as follows:

1. Select two directions v1 := (c1, s1), v2 := (c2, s2) in the (4J + 1)-dimensional affine
space to define the plane.

2. Parametrize a direction in the plane p = cos(θ)v1 + sin(θ)v2, for some angle θ .
3. Use the SDP in Eq. (20) to find the boundary of RJ in the direction p and/or the

see-saw methodology presented in Sect. 3.3 to approximate the boundary of QJ in
the direction p.

4. Repeat step 3 for all values of θ ∈ {0, . . . , 2π} to complete a full circle discretized
up to desired numerical accuracy.
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In Fig. 6 of the main text, we present an example of the final result for J = 3/2 in the
plane given by the directions v1 = (c0, c1, c2, c3, s1, s2, s3) = (0, 0, 1, 0, 0, 0, 0) and
v2 = (0, 0, 0, 0, 0, 0, 1) (i.e., the c2-s3 plane).

Appendix E. Several Results and Proofs for Section 4.3

1. Proof of Lemma 19. In the following, we will denote the eigenvalues of any self-
adjoint n × n matrix A in decreasing order by λ1(A), λ2(A), . . . , λn(A) such that
λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

Lemma 50. Consider the 4× 4 block matrix

M =
(

0 B
B† 0

)

,

where B is a 2× 2 matrix. Then its eigenvalues are
(
λ1(M), λ2(M), λ3(M), λ4(M)

) =
(√

λ1(B†B),
√

λ2(B†B),−
√

λ2(B†B),−
√

λ1(B†B)
)

.

Proof. We have

M2 =
(
BB† 0

0 B†B

)

.

Thus, the squares of the eigenvalues of M are the eigenvalues of BB† and B†B, which
are known to agree. Up to a sign, this determines the eigenvalues of M , and the signs in
turn are determined by Tr(M) = 0 =∑i λi (M). ��

Applying this lemma to the matrix M[E], we obtain

λ1(M[E]) =
√

λ1(B[E]†B[E]),

where B[E] =
(
E20 −i E30
0 E31

)

. It is straightforward to compute the eigenvalues of the

matrix B[E]†B[E], and the result proves Lemma 19.

2. Proof that β = 1√
3
. The feasible set for the optimization problem in Eq. (38) is

given by a polytope R with vertices {(0, 0, 0), (0, 0, 1
4 ), (0, 1

4 , 0), ( 1
4 , 0, 0), ( 1

4 , 0, 1
4 )}

(see Fig. 7 for an illustration). Our goal is to compute the maximum of the function

f (x, y, z) := x + y + z +
√

(x + y + z)2 − 4xz

over all (x, y, z) ∈ R. We find that ∇ f = 0 has no solutions in the topological interior
of R, hence the maximum must be attained on one of the lower-dimensional faces of
this polytope.

There are five two-dimensional faces F1, . . . , F5, but f restricted to face Fi has no
stationary points in the relative interior of Fi , for all i . For example, if we define the
face F1 by the condition x = 0, it is parametrized by 0 ≤ y ≤ 1

4 and 0 ≤ z ≤ 1
4 . The
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Fig. 7. Region R, defined by the constraints x, y, z ≥ 0, x + y ≤ 1/4, y + z ≤ 1/4

function f becomes fF1(y, z) = 2(y + z), and (∂y fF1, ∂z fF1) = (2, 2) �= (0, 0) in the
relative interior (where 0 < y, z < 1

4 ) of F1, and so f cannot have any local maxima
there.

Thus, the global maximum must be attained on one of the eight edges E1, . . . , E8
(one-dimensional faces) or one of the five vertices V1, . . . , V5 (zero-dimensional faces).
For seven of the edges, E1, . . . , E7, f has no stationary points in their relative interior,
but on one of the edges it does: define E8 as the points in R with x + y = 1

4 and y+z = 1
4 ,

which we can parametrize via 0 ≤ x ≤ 1
4 and y = 1

4 − x , z = x , such that

fE8(x) = x +
1

4
+

√(

x +
1

4

)2

− 4x2.

Then f ′E8
(x) = 0 has a solution in the interior 0 < x < 1

4 , namely x = 1
6 , and

fE8(
1
6 ) = 2

3 . Indeed, this is the global maximum, since f attains only the values 0 and
1
2 on the vertices V1, . . . , V5.

We thus find max(x,y,z)∈R f (x, y, z) = f ( 1
6 , 1

12 , 1
6 ) = 2

3 ≥ 2β2. This gives the
bound β ≤ 1√

3
.

The bound can be attained by a POVM that satisfies |E02|2 = |E20|2 = 1
6 , |E03|2 =

|E30|2 = 1
12 and |E13|2 = |E31|2 = 1

6 . Using semidefinite programming, we found the
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following possible solution for E :

E =

⎛

⎜
⎜
⎜
⎜
⎝

1
2 0 1√

6
− i

2
√

3
0 1

2 − i
2
√

3
1√
6

1√
6

i
2
√

3
1
2 0

i
2
√

3
1√
6

0 1
2

⎞

⎟
⎟
⎟
⎟
⎠

,

for which the state ρ would be given by

ρ =

⎛

⎜
⎜
⎜
⎜
⎝

1
3

1
3
√

2
1

3
√

2
1
3

1
3
√

2
1
6

1
6

1
3
√

2
1

3
√

2
1
6

1
6

1
3
√

2
1
3

1
3
√

2
1

3
√

2
1
3

⎞

⎟
⎟
⎟
⎟
⎠

.

3. Proof that the quantum correlations satisfy c2J−1 + s2J ≤ β = 1√
3
.

Lemma 51. Let P ∈ QJ for J ≥ 3
2 , then its trigonometric coefficients as defined in

Lemma 5 satisfy

c2J−1 + s2J ≤ 1√
3
.

Proof. The proof follows closely the lines of the J = 3/2 case, proven in Sect. 4.3. Here
we briefly describe the relevant adaptations. First, we have

(c2J−1 + s2J )[p] = 2 Re(a2J−1[p])− 2 Im(a2J [p])
= 2 Re(Q0,2J−1 + Q1,2J )− 2 Im(Q0,2J )

= 2 Re(E0,2J−1ρ0,2J−1 + E1,2Jρ1,2J )

− 2 Im(E0,2Jρ0,2J )

= Tr(M[E]ρ), (E1)

where now the matrix M[E] is given, in block-matrix notation,

M[E] =
⎛

⎝
02×2 02×(2J−3) B[E]

0(2J−3)×2 0(2J−3)×(2J−3) 0(2J−3)×2
B(E)† 02×(2J−3) 02×2

⎞

⎠ ,

and B[E] =
(
E2J−1,0 −i E2J,0

0 E2J,1

)

. Maximizing Eq. (E1) over all quantum states ρ will

again give us the maximal eigenvalue of M[E]. Since

M[E]2 =
⎛

⎝
B[E]B[E]† 02×(2J−3) 02×2
0(2J−3)×2 0(2J−3)×(2J−3) 0(2J−3)×2

02×2 02×(2J−3) B[E]†B[E]

⎞

⎠ ,
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we obtain again λ1(M[E]) = λ1(B[E]†B[E]), and this eigenvalue can be bounded
exactly as in the (J = 3/2)-case by using that

|E2J−1,0|2 + |E2J,0|2 ≤ 1

4
, |E2J,0|2 + |E2J,1|2 ≤ 1

4
.

We hence obtain exactly the same upper bound of 1/
√

3. ��

4. Examples of correlations inRJ\QJ for J ≥ 2. We begin with the case J ≥ 7/2.

Lemma 52. For every J ≥ 7/2, we have QJ � RJ .

Proof. For β ≥ 0 and J ≥ 1, consider the following trigonometric polynomial

pJ,β(θ) := 1

2
+

1

4
β sin(2Jθ)− 3

4
β

2J−1∑

k=1

(
1

2

)2J−k
sin
[
k
(π

2
+ θ
)
− Jπ

]
. (E2)

This is a trigonometric polynomial (in θ ) of degree 2J with s2J = 1
4β and c2J−1 = 3

8β,
coming from an educated guess based on numerical results. If we can show that it
satisfies 0 ≤ pJ,β(θ) ≤ 1 for all θ , for some β that is sufficiently close to 1, we have
a non-quantum rotation box, since 1

4 + 3
8 = 0.625. The polynomial has the following

closed-form expression

pJ,β(θ) = 1

2
+

1

2
β

(−3) · 4−J (cos θ + 2 sin(Jπ)) + f J (θ)

5 + 4 sin θ
,

where

f J (θ) = 4 cos(θ − 2Jθ)− cos(θ + 2Jθ) + 4 sin(2Jθ)

= 3 cos θ cos2(Jθ) + (8 + 10 sin θ) cos(Jθ) sin(Jθ)− 3 cos θ sin2(Jθ)

=
(

cos(Jθ)

sin(Jθ)

)

·
(

3 cos θ 4 + 5 sin θ

4 + 5 sin θ −3 cos θ

)

·
(

cos(Jθ)

sin(Jθ)

)

.

The result must be between the smallest and largest eigenvalues of this matrix, and those
eigenvalues turn out to be −5− 4 sin θ and 5 + 4 sin θ . Thus,

−5− 4 sin θ ≤ f J (θ) ≤ 5 + 4 sin θ.

Since f J (θ) is by far the dominant term in the numerator (the other part goes to zero
exponentially in J ), we have almost shown that pJ,β=1 is a valid rotation box. Now let
us be more careful and scale a bit with β < 1. Clearly, pJ,β ∈ RJ if and only if

∣
∣
∣
∣β

(−3) · 4−J (cos θ + 2 sin(Jπ)) + f J (θ)

5 + 4 sin θ

∣
∣
∣
∣ ≤ 1 for all θ.

But, due to what we have just shown, the left-hand side is upper-bounded by β(3·4−J (1+
2) + 1), and hence pJ,β=1/(1+9·4−J ) ∈ RJ . This establishes a gap if

c2J−1 + s2J = 0.625β >
1√
3
,

which is the case for all J ≥ 7/2. ��
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In what follows we treat the remaining cases J = 3/2, 2, 5/2, 3 on a case-by-case
basis.

The way we proceed is by finding explicit counterexamples for each remaining J .
These counterexamples have been found numerically via the following SDP based on
Eq. (20):

max
Q,S,a

c2J−1 + s2J

s.t. • ak =
∑

0≤ j, j+k≤2J

Q j, j+k for all k,

• ak = −
∑

0≤ j, j+k≤2J

S j, j+k for all k �= 0,

• 1− a0 = Tr(S),

• Q, S ≥ 0.

(E3)

When the SDP is feasible, it finds some (2J + 1) × (2J + 1) matrices Q, S and some
complex variables ak with k ∈ {0, . . . , 2J } thus obtaining a valid rotation box correlation
(c.f. Lemma 10). Then, if these values lead to c2J−1 + s2J > 1√

3
then the correlation

goes beyond the quantum bound and we have the counterexample.
As an example, let us take the case J = 3/2 with the coefficients c0 = 2/5, c1 =

0, c2 = 48/125, c3 = 0, s0 = 0, s1 = 6/25, s2 = 0, s3 = 32/125. Then, one can check
that this forms a valid spin-3/2 correlation since one can define matrices Q, S ≥ 0
fulfilling Lemma 10 such as

Q3/2 := 1

125

⎛

⎜
⎝

16 −12i 12 −16i
12i 9 9i 12
12 −9i 9 −12i
16i 12 12i 16

⎞

⎟
⎠ ≥ 0,

S3/2 := 1

125

⎛

⎜
⎝

24 2i −12 16i
−2i 27/2 11i −12
−12 −11i 27/2 2i
−16i −12 −2i 24

⎞

⎟
⎠ ≥ 0.

Finally, observe that for this case we have (c2J−1 + s2J )[p∗] = 78
125 = 0.624 > 1√

3
and thus the point lies outside of Q3/2. The same follows for the remaining cases J =
2, 5/2, 3, for which for the sake of completion we proceed to provide some numerically
found examples and their corresponding QJ , SJ certificates.

J = 2. Consider now c0 = 1/2, c1 = −17/250, c2 = 0, c3 = 19/50, c4 = 0, s0 =
0, s1 = 0, s2 = 87/500, s3 = 0, s4 = 6/25 such that (c2J−1 + s2J )[p∗] = 0.62 > 1√

3
and to fulfill Lemma 10 define the following matrices:

Q2 :=

⎛

⎜
⎜
⎜
⎜
⎝

377/2400 −35/2438− 95/2314i 11/782− 31/743i 19/200 −3/25i
−35/2438 + 95/2314i 62/811 −4/1513 + 95/2314i −273/9704− 3/844i 19/200

11/782 + 31/743i −4/1513− 95/2314i 243/7378 −4/1513 + 95/2314i 11/782− 31/743i
19/200 −273/9704 + 3/844i −4/1513− 95/2314i 62/811 −35/2438− 95/2314i
3/25i 19/200 11/782 + 31/743i −35/2438 + 95/2314i 377/2400

⎞

⎟
⎟
⎟
⎟
⎠

,

S2 :=

⎛

⎜
⎜
⎜
⎜
⎝

377/2400 35/2438− 95/2314i 11/782 + 31/743i −19/200 3/25i
35/2438 + 95/2314i 62/811 4/1513 + 95/2314i −273/9704 + 3/844i −19/200
11/782− 31/743i 4/1513− 95/2314i 243/7378 4/1513 + 95/2314i 11/782 + 31/743i

−19/200 −273/9704− 3/844i 4/1513− 95/2314i 62/811 35/2438− 95/2314i
−3/25i −19/200 11/782− 31/743i 35/2438 + 95/2314i 377/2400

⎞

⎟
⎟
⎟
⎟
⎠

.
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J = 5/2. In this case one can take c0 = 0.5261, c1 = 0, c2 = −0.1044, c3 = 0, c4 =
0.3695, c5 = 0, s0 = 0, s1 = −0.0639, s2 = 0, s3 = 0.1926, s4 = 0, s5 = 0.2564 such

that (c2J−1 + s2J )[p∗] = 0.626 > 1√
3

and to fulfill Lemma 10 define the following

matrices

Q5/2 :=

⎛

⎜
⎜
⎜
⎝

0.1665 −0.0320i −0.0022 −0.0374i 0.0924 −0.1282i
0.0320i 0.0739 +0.0387i −0.0239 −0.0214i 0.0924
−0.0022−0.0387i 0.0227 +0.0185i −0.0239 −0.0374i
0.0374i −0.0239 −0.0185i 0.0227 0.0387i −0.0022
0.0924 0.0214i −0.0239 −0.0387i 0.0739 −0.0320i
0.1282i 0.0924 0.0374i −0.0022 0.0320i 0.1665

⎞

⎟
⎟
⎟
⎠

,

S5/2 :=

⎛

⎜
⎜
⎜
⎝

0.1465 −0.0664i 0.0541 0.0618i −0.0924 0.1282i
0.0664i 0.0644 0.0390i −0.0280 −0.0274i −0.0924
0.0541 −0.0390i 0.0261 0.0228i −0.0280 0.0618i
−0.0618i −0.0280 −0.0228i 0.0261 +0.0390i 0.0541
−0.0924 0.0274i −0.0280 −0.0390i 0.0644 −0.0664i
−0.1282i −0.0924 −0.0618i 0.0541 0.0664i 0.1465

⎞

⎟
⎟
⎟
⎠

.

J = 3. Finally, in this case one can take c0 = 1/2, c1 = 0.0173, c2 = 0, c3 =−0.0915, c4 = 0, c5 = 0.3763, c6 = 0, s0 = 0, s1 = 0, s2 = −0.0433, s3 = 0, s4 =
0.1864, s5 = 0, s6 = 0.2485 such that (c2J−1 + s2J )[p∗] = 0.6248 > 1√

3
and to fulfill

Lemma 10 define the following matrices

Q3 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.1564 0.0032− 0.0459i 0.0220 + 0.0097i −0.0221 + 0.0097i −0.0032− 0.0461i 0.0941 −0.1242i
0.0032 + 0.0459i 0.0711 0.0008 + 0.0355i −0.0180 + 0.0009i −0.0008− 0.0097i 0.0064− 0.0010i 0.0940
0.0220− 0.0097i 0.0008− 0.0355i 0.0183 0.0003 + 0.0105i −0.0080 + 0.0004i −0.0008− 0.0097i −0.0032− 0.0461i
−0.0221− 0.0097i −0.0180− 0.0009i 0.0003− 0.0105i 0.0083 0.0003 + 0.0105i −0.0180 + 0.0009i −0.0220 + 0.0097i
−0.0032 + 0.0461i −0.0008 + 0.0097i −0.0080− 0.0004i 0.0003− 0.0105i 0.0183 0.0008 + 0.0355i 0.0220 + 0.0097i

0.0941 0.0064 + 0.0010i −0.0008 + 0.0097i −0.0180− 0.0009i 0.0008− 0.0355i 0.0712 0.0032− 0.0460i
0.1242i 0.0940 −0.0032 + 0.0461i −0.0220− 0.0097i 0.0220− 0.0097i 0.0032 + 0.0460i 0.1563

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

S3 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0.1563 −0.0032− 0.0460i 0.0220− 0.0097i 0.0220 + 0.0097i −0.0032 + 0.0461i −0.0940 0.1242i
−0.0032 + 0.0460i 0.0712 −0.0008 + 0.0355i −0.0180− 0.0009i 0.0008− 0.0097i 0.0064 + 0.0010i −0.0941
0.0220 + 0.0097i −0.0008− 0.0355i 0.0183 −0.0003 + 0.0105i −0.0080− 0.0004i 0.0008− 0.0097i −0.0032 + 0.0461i
0.0220− 0.0097i −0.0180 + 0.0009i −0.0003− 0.0105i 0.0083 −0.0003 + 0.0105i −0.0180− 0.0009i 0.0220 + 0.0097i
−0.0032− 0.0461i 0.0008 + 0.0097i −0.0080 + 0.0004i −0.0003− 0.0105i 0.0183 −0.0008 + 0.0355i 0.0220− 0.0097i

−0.0940 0.0064− 0.0010i 0.0008 + 0.0097i −0.0180 + 0.0009i −0.0008− 0.0355i 0.0712 −0.0032− 0.0459i
0.1242i −0.0941 −0.0032− 0.0461i 0.0220− 0.0097i 0.0220 + 0.0097i −0.0032 + 0.0459i 0.1564

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Appendix F. Proofs for Section 4.4: J → ∞
Here we will present the details of the proof of Theorem 8. The first step of the proof
in the main text is given by Lemma 53, the second step by Lemma 54 and the final and
third step is presented right after the proof of Lemma 54. We will consider the Hilbert
space L2(SO(2)), with inner product

〈 f, g〉 = 1

2π

∫ 2π

0
f (θ)g(θ) dθ.

It carries the regular representation of SO(2), defined by (U (θ) f )(θ ′) := f (θ ′ + θ). As
usual, we will pick a representative f of [ f ] ∈ L2(SO(2)) whenever we do concrete
calculations. All angle additions (like θ + θ ′ or θ0 − 1/n) are understood modulo (2π).
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Lemma 53. Let P ∈ R∞, then we can write it as a limit of a convergent sequence
P(+|θ0 + θ ′) = limn→∞〈U †(θ ′) fθ0,n|P̂U †(θ ′) fθ0,n〉, where fθ0,n ∈ L2(SO(2)) for all
n ∈ N and θ0, while 0 ≤ P̂ ≤ 1.

Proof. For the choice of P ∈ R∞, we begin by defining an associated operator on
L2(SO(2))

(P̂ψ)(θ) := P(θ)ψ(θ).

It is easy to see that P̂ is a bounded, self-adjoint operator. Furthermore,

〈ψ |P̂|ψ〉 = 1

2π

∫ 2π

0
ψ(θ)P(θ)ψ(θ) dθ ∈ [0, 〈ψ,ψ〉],

and so 0 ≤ P̂ ≤ 1, i.e. P̂ defines a valid POVM element.
We define

fθ0,n :=
√

π

n
χ[θ0− 1

n ,θ0+ 1
n ], (F1)

where

χ[θ0− 1
n ,θ0+ 1

n ](θ) =
{

1 if θ0 − 1
n ≤ θ ≤ θ0 + 1

n
0 else

, (F2)

and it is clear that fθ0,n ∈ L2(SO(2)). Furthermore, it is easy to show that ‖ fθ0,n‖ = 1
for all θ, n.

Now, for 0 < θ0 < 2π and n large enough, we calculate

‖(P̂ − P(θ0)1) fθ0,n‖2 = 1

2π

∫ θ0− 1
n

θ0− 1
n

(P(θ)− P(θ0))
2 f 2

θ0,n(θ)dθ

≤ (P(
max(n))− P(θ0))
2‖ fθ0,n‖2

= (P(
max(n))− P(θ0))
2,

where θ0 − 1/n ≤ 
max(n) ≤ θ0 + 1/n is chosen such that (P(
max(n)) − P(θ0))
2 is

maximal. Since P is continuous, it follows that ‖(P̂− P(θ0)1)) fθ0,n‖ → 0 for n →∞.
Now we use the Cauchy-Schwarz inequality to show

‖(P̂ − P(θ0)1) fθ0,n‖ =‖ fθ0,n‖ · ‖(P̂ − P(θ0)1) fθ0,n‖
≥
∣
∣
∣〈 fθ0,n|(P(θ̂ − P(θ0)1)) fθ0,n〉

∣
∣
∣ .

Hence,

lim
n→∞〈 fθ0,n|(P̂ − P(θ0)1) fθ0,n〉 = 0. (F3)

We can rewrite this as

lim
n→∞〈 fθ0,n|P̂ fθ0,n〉 = P(θ0).
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The above is also true for θ = 0 if all angles are understood modulo 2π . In a final step,
we consider the transformation of fθ0,n under the regular representation U of SO(2):

U (θ ′) fθ0,n(θ) = fθ0,n(θ + θ ′) = fθ0−θ ′,n(θ). (F4)

Hence we can write

P(+|θ0 + θ ′) = lim
n→∞〈U

†(θ ′) fθ0,n|P̂U †(θ ′) fθ0,n〉
=P(θ0 + θ ′). (F5)

The claim follows. ��
Lemma 53 implies that given any P ∈ R∞, we can approximate it arbitrarily well

by

Pn(+|θ0 + θ ′) = 〈U †(θ ′) fθ0,n|P̂U †(θ ′) fθ0,n〉. (F6)

The following standard definitions can be found, for example, in Ref. [53].

Definition 5. For two probability distributions {px } and {qx } we define the classical
trace distance by

D̃(px , qx ) = 1

2

∑

x

|px − qx |.

We observe that for x ∈ {±}, we have

D̃(px , qx ) = 1

2
(|p+ − q+| + |p− − q−|) = |p+ − q+|.

Definition 6. Let A ∈ T (H), we define the norm

‖A‖1 = Tr(|A|),
where |A| = √A∗A.

Definition 7. Let A, B ∈ T (H),we define the trace distance

D(A, B) = 1

2
‖A − B‖1. (F7)

We will write

σθ0,n = | fθ0,n〉〈 fθ0,n| . (F8)

From the Peter-Weyl Theorem [69], we know that L2(SO(2)) =⊕ j∈ZH j , where

H j = span{φ j | φ j (α) = ei jα}.
In the orthonormal basis {φ j } j∈Z, we can write

U (θ) =
∞∑

j=−∞
ei jθ |φ j 〉〈φ j | . (F9)
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Furthermore, we define the projector �J onto the finite-dimensional subspace H≤J =⊕J
j=−J H j by

�J =
J∑

j=−J

|φ j 〉〈φ j | .

We write

σ J
θ0,n =

�Jσθ0,n�J

Tr(�Jσθ0,n)
, (F10)

P̂ J = �J P̂�J , (F11)

U J (θ) = �JU (θ)�J , (F12)

where σ J
θ0,n ∈ S(H≤J ), P J (θ̂) ∈ E(H≤J ),U J (θ) ∈ U(H≤J ) and U J : SO(2) →

U(H≤J ) defined by θ �→ U J (θ) is a representation of SO(2), because U J (θ) =
diag(e−i Jθ , e−i(J−1)θ , . . . , ei(J−1)θ , ei Jθ ). We denote

P J
n (+|θ0 + θ ′) = Tr(P̂ J (U J )†(θ ′)σ J

θ0,nU
J (θ ′)). (F13)

By observing that U (θ)�J = �JU (θ), we find

P J
n (+|θ0 + θ ′) = Tr(P̂ J (U J )†(θ ′)σ J

θ0,nU
J (θ ′))

= Tr(�J P̂�2
JU

†(θ ′)�Jσ
J
θ0,n�JU (θ ′)�J )

= Tr(P̂�JU
†(θ ′)σ J

θ0,nU (θ ′)�2
J )

= Tr(P̂U †(θ ′)�Jσ
J
θ0,n�JU (θ ′))

= Tr(P̂U †(θ ′)σ J
θ0,nU (θ ′)), (F14)

where we have used in the third line that the trace is cyclic.

Lemma 54. Suppose thatTr(�Jσθ0,n) ≥ 1−ε then
√

ε ≥ |Pn(+|θ0+θ ′)−P J
n (+|θ0+θ ′)|.

Proof. The Gentle Measurement Lemma [52] states that if Tr(�Jσθ0,n) ≥ 1− ε then

‖σθ0,n − σ J
θ0,n‖1 ≤ 2

√
ε

holds. Furthermore, we will use Theorem 9.1 from [53], which states

D(�, σ ) = max{Em }
D̃(pm, qm), (F15)

where the maximization is over all POVMs {Em}, pm = Tr(�Em)) and qm = Tr(σ Em).
We show

√
ε ≥ D(σθ0,n, σ

J
θ0,n)

= max
Em

D̃(Tr(σθ0,n Em), Tr(σ J
θ0,n Em))

≥ D̃(Pn(θ0 + θ ′), P J
n (θ0 + θ ′))

= |Pn(+|θ0 + θ ′)− P J
n (+|θ0 + θ ′)|, (F16)

where P J
n (θ0 +θ ′) denotes the probability distribution {(P J

n (+|θ0 +θ ′), (P J
n (−|θ0 +θ ′) =

1−(P J
n (+|θ0 +θ ′)}, and in the third line we have used that {P+

θ ′ = U (θ ′)P̂U †(θ ′), P−
θ ′ =

1− P+
θ ′ } is a POVM. ��
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Let us check that �J → 1 for J →∞ strongly. From the Peter-Weyl Theorem, we
know that {φ j }∞j=−∞ defines an orthonormal basis of L2(SO(2)) and hence

‖(�J − 1)ψ‖2 =
∥
∥
∥
∥
∥
∥

J∑

j=−J

〈φ j |ψ〉φ j − ψ

∥
∥
∥
∥
∥
∥

2

=
∑

| j |>J

|〈φ j |ψ〉|2 = 1−
J∑

j=−J

|〈φ j |ψ〉|2

J→∞−→ 0,

which is true for every ψ ∈ L2(SO(2)), and thus the claim follows. The last observation
implies that we can make ε arbitrarily small by making J larger and larger.

Everything said so far in this section can be easily generalized to more than two (say,
N ) measurement outcomes. Let us define an N -outcome rotational box as N continuous
non-negative real functions Pk on the unit circle such that

∑N
k=1 Pk(θ) = 1 for every

θ ∈ [0, 2π). Similarly as above, we have associated operators P̂k , defining a POVM,
and we can project those into the subspaces H≤J via P̂ J

k := �J P̂k�J . The approxi-

mating measurement on this spin-J system will have POVM elements P̂ J
1 , . . . , P̂ J

N−1,

1− P̂ J
1 − . . .− P̂ J

N−1. Adaption of all further proof steps from above is straightforward
and proves the analogous result for N -outcome rotation boxes.

Appendix G. Proofs for Section 5

1. Proof of Theorem 9. First note that

P(−a, b|α + π, β) = PA
b,β(−a|α + π)PB(b|β)

= PA
b,β(a|α)PB(b|β) = P(a, b|α, β),

and similarly, P(a,−b|α, β + π) = P(a, b|α, β). Therefore, P(a, b|α, β) can be deter-
mined from the values of a cos α, a sin α, b cos β and b sin β. In particular, we can find
a function f , defined on two copies of the circle {(1, x, y) | x2 + y2 = 1}, such that

P(a, b|α, β) = f
(
(1, a cos α, a sin α), (1, b cos β, b sin β)

)
.

Let a = 1 and α1 = 0, α2 = π/4 and α4 := π/2, and ei := (1, a cos αi , a sin αi )

for i = 1, 2, 3, then these three vectors are linearly independent and span R3. Let g :
R3×R3 → R be the bilinear form that satisfies g(ei , e j ) = f (ei , e j ) for i, j = 1, 2, 3.

Now suppose we fix some value of b and of β, then

P(a, b|α, β) = PA
b,β(a|α)PB(b|β)

=
(

1

2
+ c1a cos α + s1a sin α

)

PB(b|β),

where c1 and s1 may depend on b and β. For every fixed b and β, this is a linear functional
of the vector (1, a cos α, a sin α). Similar argumentation applies to the roles of A and B
exchanged. Thus, f and g must agree on f ’s domain of definition, and so

P(a, b|α, β) = g
(
(1, a cos α, a sin α), (1, b cos β, b sin β)

)
.
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Now, every 2× 2 Hermitian matrix M ∈ LH(C2) can be parameterized in the form

M = 1

2

(
r0 + r3 r1 − ir2
r1 + ir2 r0 − r3

)

(for r0 = 1, this is the well-known Bloch representation of quantum states). Define the
linear map r(M) := (r0, r1, r2), dropping the r3-component. Finally, define the bilinear
form ω : LH(C2)× LH(C2)→ R via

ω(M, N ) := g (r(M), r(N )) .

This bilinear form is unital:

ω(1, 1) = g
(
(2, 0, 0), (2, 0, 0)

)

= g
(
(1, 1, 0), (2, 0, 0)

)
+ g
(
(1,−1, 0), (2, 0, 0)

)

= g
(
(1, 1, 0), (1, 1, 0)

)
+ g
(
(1, 1, 0), (1,−1, 0)

)

+ g
(
(1,−1, 0), (1, 1, 0)

)
+ g
(
(1,−1, 0), (1,−1, 0)

)

= P(+1, +1|0, 0) + P(+1,−1|0, 0)

+ P(−1, +1|0, 0) + P(−1,−1|0, 0) = 1.

Let us now show that ω(M, N ) ≥ 0 if M and N are positive semidefinite. If M ≥ 0,
then r0 = Tr(M) ≥ 0, and non-negativity of the eigenvalues enforces r2

1 + r2
2 + r2

3 ≤ r2
0 ,

hence r2
1 + r2

2 ≤ r2
0 . Hence r(M) lies in the disc of radius r0, and can thus be written

as a convex combination of points on the circle. Since g is bilinear, this will give the
corresponding convex combination of values, and it is thus sufficient to restrict our
attention to the case that r2

1 + r2
2 = r2

0 . In this case, there will be some angle α such that
(r1, r2) = (r0 cos α, r0 sin α). Similar reasoning for the matrix N ≥ 0 (denoting the first
component of r(N ) by s0) yields

ω(M, N ) = g
(
(r0, r0 cos α, r0 sin α), (s0, s0 cos β, s0 sin β)

)

= r0s0g
(
(1, cos α, sin α), (1, cos β, sin β)

)

= r0s0P(+1, +1|α, β) ≥ 0.

Set M±(α) := e−iαZ |±〉〈±|eiαZ , where |±〉 := 1√
2
(|0〉±|1〉), and similarly for M±(β),

then

ω(Ma(α), Nb(β)) = g
(
(1, a cos α, a sin α), (1, b cos β, b sin β)

)

= P(a, b|α, β).

It follows from the results of Barnum et al. [61] (see also Acín et al. [62] for a simplified
proof, and Kleinmann et al. [70]) that there is a quantum state ρAB on the two qubits
and a positive unital linear map τ : LH(C2)→ LH(C2) such that

ω(M, N ) = Tr (ρABM ⊗ τ(N )) .

This completes the proof. ��
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Appendix H. Proofs for Section 6: Connections to Other Topics

1. Background on transitive GPTs. We briefly introduce some necessary background
on transitive GPT systems and refer the reader to [35] for a more complete introduction.

A finite-dimensional transitive GPT system is one with pure states X and dynamical
group G which is compact (this includes the possibility of finite groups). The space of
pure states X is isomorphic to G/H with H the stabilizer subgroup.

To each transitive GPT system is associated a representation of G which we denote
ρ : G → GL(V ). Let us denote its decomposition into irreps by

V �
⊕

i∈I
Vi , (H1)

ρ(g) �
⊕

i∈I
ρi (g), (H2)

where I may contain repeated entries.
By transitivity, the state space can be obtained by applying the representation ρ(g)

to a reference pure state ωx ∈ V :

ωgx = ρ(g)ωx , (H3)

which is necessarily invariant under ρ(h) for h ∈ Hx , the stabilizer of x . The state ωx
has support in every irrep Vi for i ∈ I (this is in fact not an assumption but follows from
what it means for the representations ρ(g) to be associated to the system).

It follows from Theorem 2 of [35] that when (G, H) form a Gelfand pair, any two
transitive GPT systems with associated representations I and J which are equal as sets
(i.e. contain the same irreducible representations ignoring repetitions) are equivalent as
GPT systems (assuming that they are effect unrestricted). Two GPT systems (�1, E1, �1)

and (�2, E2, �2) with associated vector spaces V1 and V2 and with dynamical group G
are equivalent if there exists an invertible linear transformation L : V1 → V2 relating
them:

L(�1) = �2, (H4)

E1 ◦ L−1 = E2, (H5)

L�1L
−1 = �2. (H6)

2. Proof of Theorem 11. We will make use of the following lemma:

Lemma 55. The symmetric product states |ψ〉〈ψ |⊗d ∈ D(Symd(R2)) have full support
in Sym2d(R2) and therefore have support in one copy of every irrep in {0, ..., d}.
Proof. The rebit pure states |ψ〉 transform under the real projective irreducible repre-
sentation 1

2 of SO(2); a generic rebit state can be written as:

|ψ〉 = cos
θ

2
|+〉 + sin

θ

2
|−〉 . (H7)

If we complexify the vector space this is equal to:

|ψ〉 = 1√
2
(ei

θ
2 |0〉 + e−i

θ
2 |1〉). (H8)
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Hence the symmetric product states of d rebits |ψ〉〈ψ |⊗d ∈ D(Symd(R2)) are isomor-
phic (there exists an equivariant invertible linear map) to the product states |ψ(θ)〉〈ψ(θ)|⊗d
∈ D(Symd(C2)) where |ψ(θ)〉 = 1√

2
(ei

θ
2 |0〉 + e−i θ

2 |1〉). Using the isomorphism

L(Symd(C2)) � Symd(C2) ⊗ Symd(C2) and Symd(C2)) � Symd(C2) (by Corol-
lary 3), we have the following isomorphism: L(Symd(C2)) � Symd(C2)⊗Symd(C2),

|ψ(θ)〉〈ψ(θ)|⊗d �→ |ψ(θ)〉⊗2d . (H9)

Expanding |ψ(θ)〉⊗2d gives:

|ψ(θ)〉⊗2d = 1

2d
(eidθ |0〉⊗2d + ei(d−1)θ (|0〉⊗2d−1 |1〉 + |0〉⊗2d−2 |1〉 |0〉

+ ... + |1〉 |0〉⊗2d−1) + ... + e−idθ |1〉⊗2d)

=
(

1√
2

)2d 2d∑

j=0

ei(d− j)θ PSym |0〉2d− j |1〉 j (H10)

= 1

2d

2d∑

j=0

∑

x∈{0,1}2d |H(x)= j

ei(d− j)θ |x〉 , (H11)

where PSym |v1〉1⊗ ...⊗|vd〉d =
∑

σ∈�d
|v1〉σ−1(1)⊗ ...⊗|vd〉σ−1(d), �d the symmetric

group on d elements and H(x) the Hamming weight of the bit string x .
Each |k = d − j〉 =∑x∈{0,1}2d |H(x)= j |x〉 belongs to a subspace carrying a projec-

tive representation k of SO(2). Thus, |ψ(θ)〉⊗2d has support on a copy of every complex
irrep {d,−d + 1, ..., d}. The projection of |ψ(θ)〉⊗2d on the subspace carrying the rep-
resentation {−k, k} is:

1

2d
(eikθ |k〉 + e−ikθ |−k〉) = 1

2d

(

cos(kθ)
|k〉 + |−k〉

2
+ sin(kθ)

|k〉 + |−k〉
2

)

, (H12)

implying that |ψ(θ)〉⊗2d it has support in every real irrep {0, ..., d}. This implies
|ψ(θ)〉〈ψ(θ)|⊗d has suport in every real irrep {0, ..., d}, and so |ψ〉〈ψ |⊗d does also. ��

Hence,

�d
Sym := conv{(|ψ〉〈ψ |)⊗d | |ψ〉 ∈ PR2}, (H13)

where PR2 is the set of rebit pure states, is the state space of a transitive GPT system
with pure states SO(2) and dynamical group SO(2). It has associated to it the real
representation {0, .., d}. The stabilizer subgroup is just the trivial group I = {1}.

The set of unrestricted effects on �d
Sym is given by

Ed
Sym := {E |E ∈ LS(Symd(R2), 0 ≤ Tr(E |ψ〉〈ψ |⊗d) ≤ 1}. (H14)

Since (SO(2), I) forms a Gelfand pair, it follows from [35, Theorem 2 (iii)] that all
unrestricted GPT systems generated by applying a real representation {0, .., d} of SO(2)

to a reference vector with support in each irrep are equivalent.
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Hence the GPT systems (�d
Sym, Ed

Sym) and (� d
2
, E d

2
) are equivalent as GPT systems

and generate the same SO(2) correlations.
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64. Šupić, I., Bowles, J.: Self-testing of quantum systems: a review. Quantum 4, 337 (2020)
65. Hall, B.C.: Quantum Theory for Mathematicians. Graduate Texts in Mathematics. Springer, New York

(2013)
66. Itzkowitz, G., Rothman, S., Strassberg, H.: A note on the real representations of SU (2, C). J. Pure Appl.

Algebra 69, 3 (1991)

http://arxiv.org/abs/2306.11637
http://arxiv.org/abs/quant-ph/0107093
http://arxiv.org/abs/quant-ph/0512100
http://arxiv.org/abs/quant-ph/0611001
http://arxiv.org/abs/2307.02551


  292 Page 88 of 88 A. Aloy, T. D. Galley, C. L. Jones, S. L. Ludescher, M. P. Müller

67. Bröcker, T., Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics. Springer,
Berlin (2003)

68. Navascués, M.: Correlations and symmetries, unpublished note (2021)
69. Robert, A.: Introduction to the Representation Theory of Compact and Locally Compact Groups, vol. 80.

Cambridge University Press, Cambridge (1983)
70. Kleinmann, M., Osborne, T.J., Scholz, V.B., Werner, A.H.: Typical local measurements in generalized

probabilistic theories: emergence of quantum bipartite correlations. Phys. Rev. Lett. 110, 040403 (2013)

Communicated by G. Chiribella


	Spin-Bounded Correlations: Rotation Boxes Within  and Beyond Quantum Theory
	Abstract:
	1 Introduction
	2 Invitation: A Spin-Bounded Metrological Task
	3 Rotation Boxes Framework
	3.1 Quantum spin-J correlations mathcalQJ
	3.2 General spin-J correlations mathcalRJ
	3.3 General spin-J correlations as a relaxation of the quantum set

	4 Rotation Boxes in the Prepare-and-Measure Scenario
	4.1 mathcalQ0mathcalA=mathcalR0mathcalA and mathcalQ1/2mathcalA=mathcalR1/2mathcalA
	4.2 The convex structure of mathcalR1 and mathcalQ1=mathcalR1
	4.2.1 Characterizing the facial structure of mathcalR1
	4.2.2 Quantum realizability of mathcalR1
	4.2.3 Inequivalence of spin-1 rotation box system and quantum system

	4.3 mathcalQJmathcalRJ for J3/2
	4.3.1 mathcalQ3/2mathcalR3/2
	4.3.2 mathcalQJmathcalRJ for J2

	4.4 mathcalQJ approximates all correlations for Jtoinfty
	4.5 Two settings: mathcalQJ,α=mathcalRJ,α and a theory-independent randomness generator
	4.6 What are classical rotation boxes?

	5 Rotation Boxes in the Bell Scenario
	5.1 Two parties: exact characterization of the quantum (2,2,2)-behaviors
	5.2 Many parties: witnessing Bell nonlocality

	6 Connection to Other Topics
	6.1 Almost quantum correlations
	6.2 Orbitopes and spectrahedra
	6.3 Symmetric entanglement witnesses for rebits

	7 Conclusions and Outlook
	Appendices
	Appendix A. Background Material
	1. Finite-dimensional projective representations of SO(2)
	2. Real projective representations of SO(2)
	3. Representation-theoretic background
	4. Relevant vector space isomorphisms
	5. Relevant SO(2) group representation isomorphisms

	Appendix B. Proofs for Section3
	1. Proof of Theorem 1
	2. Generalization of the rotation boxes SDP in Eq. (20) to arbitrary number of outcomes
	3. Proof of Lemma 2
	4. Proof of Lemma 3
	5. Proof of Lemma 4
	6. Proof of Lemma 10
	Appendix C. Proofs for Section4.2
	1. Proof of Lemma 13
	2. Proof of Lemma 14
	3. Proof of Theorem 6
	4. Proof of Lemma 17

	Appendix D. SDP-Based Algorithm to Explore the Correlations Set Boundaries
	Appendix E. Several Results and Proofs for Section4.3
	1. Proof of Lemma 19
	2. Proof that β= 1sqrt3
	3. Proof that the quantum correlations satisfy c2J-1+s2Jleqβ= 1sqrt3
	4. Examples of correlations in mathcalRJmathcalQJ for J2

	Appendix F. Proofs for Section4.4: Jrightarrowinfty
	Appendix G. Proofs for Section5
	1. Proof of Theorem 9
	Appendix H. Proofs for Section6: Connections to Other Topics
	1. Background on transitive GPTs
	2. Proof of Theorem 11

	References









