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Abstract
Motivation: The concept of controllability within complex networks is pivotal in determining the minimal set of driver vertices required for the 
exertion of external signals, thereby enabling control over the entire network’s vertices. Target controllability further refines this concept by fo-
cusing on a subset of vertices within the network as the specific targets for control, both of which are known to be NP-hard problems. Crucially, 
the effectiveness of the driver set in achieving control of the network is contingent upon satisfying a specific rank condition, as introduced by 
Kalman. On the other hand, structural controllability provides a complementary approach to understanding network control, emphasizing the 
identification of driver vertices based on the network’s structural properties. However, in structural controllability approaches, the Kalman condi-
tion may not always be satisfied.
Results: In this study, we address the challenge of target controllability by proposing a feed-forward greedy algorithm designed to efficiently 
handle large networks while meeting the Kalman controllability rank condition. We further enhance our method’s efficacy by integrating it with 
Barabasi et al.’s structural controllability approach. This integration allows for a more comprehensive control strategy, leveraging both the dy-
namical requirements specified by Kalman’s rank condition and the structural properties of the network. Empirical evaluation across various net-
work topologies demonstrates the superior performance of our algorithms compared to existing methods, consistently requiring fewer driver 
vertices for effective control. Additionally, our method’s application to protein–protein interaction networks associated with breast cancer 
reveals potential drug repurposing candidates, underscoring its biomedical relevance. This study highlights the importance of addressing both 
structural and dynamical aspects of network controllability for advancing control strategies in complex systems.
Availability and implementation: The source code is available for free at:Https://github.com/fatemeKhezry/targetControllability.

1 Introduction
In recent years, one of the important challenges in the field of 
network science has been the feasibility of controlling com-
plex networks, where the desired system is represented by a 
set of vertices, and the connections between them are mani-
fested as network edges. In this context, the system is not lim-
ited to small technical systems and can contain thousands of 
variables. Control theory aims to find appropriate input sig-
nals for the system, which can, based on the connections be-
tween its components, change the state of all variables from 
unfavorable to favorable in finite time (Kalman 1963, Slotine 
and Li 1991). Neural networks, metabolic networks, gene ex-
pression regulatory networks, protein–protein interaction 
(PPI) networks, etc., are among the biological systems that 
are usually complex and large. Controlling their vertices to 
change their state from an undesirable condition (e.g. illness) 
to a desired one (e.g. health) is a critical goal, and many 
applications have been proposed for such changes (Liu and 
Pan 2014, Wuchty 2014, Wu et al. 2015, 2017, Li 
et al. 2019).

It is straightforward to control systems with a few variables 
where applying control signals to all the network’s vertices is 
feasible. However, as the number of network vertices 

increases, it becomes impractical to apply external signals to 
all vertices for network control. Therefore, identifying the 
smallest number of vertices in the network that, when affected 
by external signals, can control the entire network (known as 
controllability) or a subset of the network that needs to be con-
trolled (known as target controllability) is of great interest to 
researchers. For instance, network control methods are used to 
identify a small set of drug targets in biomolecular networks. In 
this view, drug targets act as driver vertices to control the net-
work. This implies that when driver vertices are influenced by 
external signals, such as drugs or other treatments, they can 
systematically influence all vertices within the network, or spe-
cifically those vertices associated with a particular disease that 
have been designated as control targets (Asgari et al. 2013, 
Setyawan et al. 2019, Guo et al. 2021).

Understanding the controllability of complex networks is 
paramount for effectively manipulating their behavior, par-
ticularly in dynamical systems. By identifying key driver verti-
ces and understanding how external inputs can influence the 
entire network or specific target vertices, we gain valuable 
insights into network behavior and control strategies. This 
understanding becomes especially important when consider-
ing real-world systems, where nonlinear dynamics are 
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prevalent. Despite the inherent complexity of these systems, 
controllability concepts often extend from linear to nonlinear 
systems, facilitating analysis and control. Thus, while real dy-
namical systems may exhibit nonlinear behavior, for simplic-
ity and analytical tractability, they are often modeled as 
linear time-invariant (LTI) systems (Kalman 1963, Yuan 
et al. 2013). Following this understanding, the evolution of a 
linear time-invariant system over time can be precisely de-
scribed by an equation governing its dynamics as: 

dxðtÞ
dt
¼ AxðtÞþBuðtÞ

y ¼ Cx:

8
<

:
(1) 

where x 2 Rn; u 2 Rp, y 2 Rm, A 2 Rn×n; B 2 Rn×p, and 
C 2 Rm×n represent the system’s state, input, and output vec-
tor, and the state, input, and output matrices, respectively.

An LTI system given in Equation (1) can be seen as a graph 
G(V, E), where V and E denote the set of vertices and the set 
of edges, respectively. In this context, the state vector xðtÞ ¼
ðx0ðtÞ;x1ðtÞ; . . . ;xn − 1ðtÞÞ denotes the state or condition asso-
ciated with each vertex at time t, and the matrix A represents 
the transpose of the adjacency matrix of the graph G. The el-
ement aij represents the weight of the directed edge from vj to 
vi. If D¼ fd0;d1; . . .;dp − 1g � V are the input vertices, the ma-
trix B is defined as follows: 

BD ¼ ½Iðd0Þ; Iðd1Þ; . . .; Iðdp − 1Þ� (2) 

where IðdiÞ denotes the ith column of the identity matrix of 
size n. In target controllability to control a target vertices 
T ¼ fc0; c1; . . . ;cm − 1g, the matrix C is defined as follow: 

CT ¼ ½Iðc0Þ; Iðc1Þ; . . .; Iðcm − 1Þ� (3) 

where IðciÞ denotes the ith row of the identity matrix of size 
n. In exact controllability, Kalman introduced a condition for 
LTI systems (Kalman 1963). According to this condition, a 
system described by Equation (1) is controllable by set D if 
and only if the control matrix MðA;BDÞ introduced in 
Equation (4) has full rank: 

MðA;BDÞ ¼ ½BDjABDjA2BDj. . .jAn − 1BD� (4) 

When the aim is to control the set of vertices T (indicates 
the target vertexs in G) by D, the condition is rewritten to say 
that the system described by Equation (1) is target controlla-
ble by set D if and only if the control matrix CMðA;BD;CTÞ

introduced in Equation (5) has full rank (Murota and 
Poljak 1990): 

CMðA;BD;CTÞ ¼ ½CTBDjCTABDjCTA2BDj. . .jCTAn − 1BD�

(5) 

Structural controllability, introduced by Lin, provides a 
more tractable condition for analyzing the controllability of 
complex networks compared to Kalman’s condition. In struc-
tural controllability, only directed networks with structural 
matrices are considered, where the presence or absence of 
edges is considered, and any additional parameters specifying 
the weight of the edges are ignored (Lin 1974). In this con-
text, Barabasi et al. introduced the minimum input theorem, 

which is centered on understanding how to control complex 
networks by employing a concept called “maximum 
matching.” Unmatched vertices are identified as “driver” ver-
tices. This theorem offers a method to pinpoint these driver 
vertices, providing valuable insights for managing large and 
intricate networks. Ultimately, it aids in identifying the small-
est set of vertices required to effectively control the network’s 
behavior (Liu et al. 2011).

Target controllability, which seeks to control a specific tar-
get in the network instead of its full control, is also a neces-
sary and useful challenge. The findings for full control of the 
network, both in exact control and structural control, reveal 
that in large networks, achieving controllability with a small 
number of inputs is not feasible. However, in various net-
works, such as biological networks, there is often no need to 
control all vertices within the network. Instead, the focus can 
be on controlling specific portions of the network that are 
crucial for achieving the desired target (Gao et al. 2014). On 
the other hand, target controllability is an NP-hard problem 
(Czeizler et al. 2016). To tackle this complexity, various solu-
tions have been proposed. It is evident that by considering all 
network vertices as the control target, any target controllabil-
ity algorithm can also check the full controllability of the net-
work. One notable approach is the application of multiple 
maximum matches, which involves a greedy algorithm based 
on the minimum input theorem (BAGA Algorithm) (Gao 
et al. 2014). GeneticAlg is also one of the well-known target 
controllability methods that determine the set of driver verti-
ces based on the genetic algorithm (Popescu et al. 2022). 
Another considered algorithm is the TCMM, a target con-
trollability method with minimal mediation based on the 
path length of pairs of vertices in the network (Ebrahimi 
et al. 2020b). Additionally, several other algorithms have 
been developed to identify the minimum number of driver 
vertices required to control the desired target within the net-
work (Monshizadeh et al. 2015, Czeizler et al. 2016, Czeizler 
et al. 2018, Ebrahimi et al. 2020b, Li et al. 2020, Hao et al. 
2022). Significant works such as Xue and Bogdan (2019), 
Ghorbani et al. (2018), Kyriakis et al. (2020), Reed et al. 
(2023), Ebrahimi et al. (2020a), Gupta et al. (2018), and 
Yang and Bogdan (2020) have been done on gene regulatory 
networks, long-term power-law memory, and the effects of 
memory and topology on the controllability of complex dy-
namical networks, which provide crucial insights into the be-
havior of biological systems. These studies emphasize the 
need for control strategies that consider the unique character-
istics of biological networks, such as their fractal nature and 
long-range dependencies.

In this article, we introduce a novel algorithm called the 
Greedy Target Controllability Feed-forward Algorithm 
(GTCA), developed to tackle the problem of target controlla-
bility. The “feed-forward” aspect refers to its unidirectional 
processing of inputs through the network, without the use of 
feedback loops, which ensures efficient and accurate selection 
of driver vertices. GTCA stands out by meeting the stringent 
Kalman condition, ensuring that the driver vertices identified 
can effectively control the desired target. Furthermore, our 
approach demonstrates robust performance even in large and 
complex networks, showcasing its scalability and applicabil-
ity across diverse scenarios. We have extensively tested our 
method on various biological networks, including gene net-
works, signaling pathways, and PPI networks. Our case study 
focuses specifically on protein networks related to breast 
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cancer. In the remaining sections of the article, we present a 
comprehensive overview of our proposed method. Each step 
of the algorithm is elucidated in detail, providing readers 
with a clear understanding of its workings and implementa-
tion. Subsequently, we conduct an extensive evaluation of 
GTCA’s performance by comparing its results with those 
obtained from several state-of-the-art methods. These com-
parisons are carried out across various datasets to thoroughly 
assess the efficacy and robustness of the presented method. 
Additionally, in the case study section, we investigate the bio-
logical significance of the driver vertices identified by the new 
algorithm in breast cancer PPI networks.

2 Materials and methods
For any arbitrary graph G and any control target set T, the 
GTCA comprises three modules, each designed to identify the 
set of driver vertices (Fig. 1).

Module 1: The first module identifies a subset of vertices 
as the initial set of primary input vertices, or drivers. 

Each vertex in this subset individually satisfies Kalman’s 
rank-controllability condition for a fraction of the target set 
T. However, this subset may not necessarily satisfy Kalman’s 
rank-controllability condition for the entire target set.

Module 2: In the second module, additional vertices from 
the target set are added to the drivers set. This process contin-
ues until the expanded drivers set satisfies Kalman’s rank- 
controllability condition for the entire target set.

Module 3: In the third module, the algorithm refines the 
drivers set by removing any candidate drivers that do not im-
pact the rank of the control matrix. The goal is to minimize 
the driver set while ensuring that Kalman’s condition 
remains satisfied.

In the following, the steps of the GTCA method are 
explained in detail:

2.1 Algorithm
Let GðV;EÞ be a directed weighted graph with n vertices 
where V ¼ fv0;v1; . . .;vn− 1g be the set of vertices, and An×n 

be the transpose of adjacency matrix of G. Suppose T ¼

Figure 1. Flowchart of the proposed target controllability algorithm.
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ft0; t1; . . .; tm − 1g is a given target set. By the following steps, 
the algorithm finds a subset of V like D¼ fd0;d1; . . .;dp− 1g

to control T such that the size of D is minimal.
Part one of the algorithm:

1) Define D¼ ;
2) Find all the vertices in the targets set which have 

in_degree ¼ 0 in graph G and add them to set D. 
3) If D¼ ; go to step 9. Otherwise: 
4) Let CMðA;BD;CTÞ be the control matrix which is de-

fined in equation 4 that BD and CT are the matrices 
which are defined in equations 2 and 3 respectively. 

5) Find the maximum set of independents rows of the 
CMðA;BD;CTÞ. Each row correspond to one con-
trolled target vertex by set D. Let S be the set of all ver-
tices that are controlled by D. 

6) Let T ¼ T − S be the uncontrolled targets. 
7) Remove all rows and columns corresponding to the 

vertices in the set D from A. We rename the new ma-
trix as A again. 

8) If T ¼ ;, go to part two of algorithm. Otherwise: 
9) Calculate CTA;CTA2;CTA3; . . .;CTAn − 1 which the ma-

trix Ai is the i-th power of A. 
10) Calculate the rank of each matrix CTAi;

i 2 f1; . . .;n − 1g. Let MR¼ fCTAi1 ;CTAi2 ;CTAikg be 
the set of the matrices with minimum rank. 

11) Let Xj ¼ fbj1;bj2; . . .;bjrg be the set of vertices corre-
spond to the set of of maximum independent columns 
in CTAij 2MR. 

12) Let Y ¼ [j2f1;2;...;kgXj. For each y 2 Y, let R(y) denote 
the rank of the control matrix CMðA;Bfyg;CTÞ and de-
fine Rmax as follows: 

Rmax ¼ maxRðyÞ; y 2 Y:

Considered the vertex y 2 Y such that RðyÞ ¼ Rmax. If more 
than one y exists with this condition, select y which has the 
highest ordering between the vertices of the graph G. 
13) Let S be the all targets in T which are controlled by set 

fyg that are obtained by finding the maximum inde-
pendent rows of the control matrix CMðA;Bfyg;CTÞ. 

14) T ¼ T −S 
15) Remove the row and column corresponding to the ver-

tex y from A and update A. 
16) D¼D[ fyg
17) Go to Step 8. 

Part two of the algorithm:
Let T be the original target set. Despite that each vertex in 

T is control by at least one vertex in D, it is possible that the 
Kalman’s rank-controllability condition may not be satisfied 
for the control matrix CMðA;BD;CTÞ. To tackle this issue, 
we do the following steps:

1) Let set W be the set of controlled target vertices corre-
sponding to the maximum set of independent rows of 
the control matrix CMðA;BD;CTÞ. Let TC¼ T −W. 

2) If TC¼ ;, go to the part three of algorithm. Otherwise: 
3) For each pi 2 TC; compute the rank of control matrix 

CMðA;BDpi
;CTÞ such that: Dpi ¼D[ fpig. Let 

RðpiÞ ¼ rankðCMðA;BDpi
;CTÞÞ. Let p0 be a vertex in TC 

such that Rðp0Þ be the maximum among 
all RðpiÞ; pi 2 TC. 

4) D¼D[ fp0g. 
5) Go to the step 1. 

Part three of the algorithm:
To obtained the minimal set of driver vertices we removed 

some of the vertices from D such that by removing them the 
Kalman condition is still valid. Let D¼ fd0;d1; . . .;dp − 1g.

1) For i¼ 0;1; . . .;p −1 
2) Dtemp ¼D −fdig

3) If matrix CMðA;BDtemp ;CTÞÞ is full rank, D¼D −fdig. 
Go to step 1 

4) Return the set D. 

To demonstrate the process of identifying driver vertices 
using the proposed GTCA algorithm, We analyzed a network 
G(V, E) with 8 vertices f1;2;3;4;5;6;7;8g and 7 edges 
E¼ fð1;2Þ; ð4;3Þ; ð4;5Þ; ð6;3Þ; ð6;5Þ; ð7;4Þ; ð8;6Þg, as shown 
in Supplementary Fig. S.1. The target set T ¼ f1;2;3;4;5;6g
was selected for control. In this example, the set f1;3;7;8g
satisfies both Kalman’s controllability rank condition and the 
exact controllability requirements for the target set. In con-
trast, the set f1, 7, 8g can structurally control the target set 
but does not meet Kalman’s rank condition. Thus, to achieve 
exact controllability, four driver vertices are required.

2.2 Time complexity of GTCA
The computational complexity of our method is analyzed in 
detail in the supplementary file. The overall time complexity 
of the proposed algorithm is determined to be 
maxfOðM2N3Þ;OðM3pNÞ;OðM2p2NÞg. Also to illustrate 
the algorithm’s computational performance, Supplementary 
Table S1 presents the execution times of the GTCA algorithm 
on well-known and widely used real-world networks.

3 Results
To evaluate the performance of the proposed GTCA algo-
rithm, we compared it against three existing target controlla-
bility methods: BAGA, GeneticAlg, and TCMM. We applied 
these methods to various networks across different domains. 
To ensure a fair comparison, we focus on structural networks 
where both exact and structural control approaches can be 
applied, allowing us to clearly contrast the results and meth-
odologies. We will address this by concentrating on cases 
where all edges have a weight of one. The networks analyzed 
fall into three categories:

3.1 Real networks
This category includes well-known and widely used networks 
from various sectors, such as: Social Networks (e.g. Prison 
network (Van Duijn et al. 2003)), Neuronal Networks (C. 
Elegans (Watts and Strogatz 1998)), Food Webs (Silwood 
(Montoya and Sol 2002), Mangrove (Ulanowicz and 
DeAngelis 1999)), Electronic Circuits (S208 (Milo et al. 
2002), S420 (Milo et al. 2002)), Transcription Networks 
(Ecoli (Shen-Orr et al. 2002)).

3.2 Breast cancer-related networks
These networks are extracted from aggregated signaling 
pathways related to breast cancer from the KEGG database, 
in two different sizes.
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3.3 Directed PPI networks
This category includes networks corresponding to three types 
of cancer: Breast Cancer (DEF, HCC-1428, and MDA-MB- 
361), Ovarian Cancer (DEF, OVCA8, and O19468), 
Pancreatic Cancer (DEF, Kp-3, AsPC) (Popescu et al. 2022).

In the first category, 50% of the network’s vertices were 
considered control targets, selected using two methods: 
Random target selection and local target selection. The 
results were calculated 20 times independently. In breast can-
cer signaling pathways, four sets of genes with different p-val-
ues were considered control targets. In directed PPIs, the set 
of essential proteins was considered the control targets. The 
results for the four algorithms are shown in Table 1. For each 
network, the table lists its type, number of nodes (jVj), num-
ber of edges (jEj), average degree (<k> ), size of the target 
set (jTj), and the method of target selection. The ratio of driv-
ers to target nodes is presented for each algorithm, with the 
best result highlighted in bold. Also, the results are illustrated 
in boxplots in Supplementary Figs S2–S5. Across all net-
works, the GTCA algorithm consistently demonstrates a 
lower ratio of driver nodes to target nodes compared to 
TCMM, despite both methods accounting for Kalman’s con-
trollability condition. This shows that GTCA achieves target 
controllability with fewer driver nodes while maintaining ro-
bustness against network dynamics. While BAGA and 
GeneticAlg focus solely on structural controllability without 
considering the Kalman condition, GTCA often performs 
better or comparably. Notably, GTCA consistently outper-
forms GeneticAlg across almost all network types, showing a 
lower ratio of driver nodes to target nodes. When comparing 
GTCA to BAGA, the performance varies depending on the 
network type. In cancer PPI networks, GTCA outperforms 

BAGA by achieving a lower driver-to-target ratio, whereas in 
the Erdos-Renyi network, BAGA performs better with a 
more favorable ratio than GTCA. In other networks, the 
results are mixed, with GTCA occasionally outperforming 
BAGA, although the differences are generally small. Overall, 
GTCA shows greater robustness in handling complex net-
work dynamics, particularly in scenarios where exact con-
trollability is crucial.

Network topology also affects the efficacy of the control 
algorithm. The execution time of GTCA tends to be longer in 
dense networks compared to sparse ones. Additionally,  
Table 1 shows that the ratio of the number of drivers to the 
number of targets increases as the network’s density 
decreases. This means that controlling sparse networks 
requires more driver vertices compared to dense networks. 
For example, in the dense Mangrove network, the ratio of 
drivers is much lower than in the sparse Silwood network. 
Furthermore, networks with a larger scale-free coefficient 
also require more driver vertices, in contrast to networks that 
fit the Erdos-Renyi model. In the scale-free Ecoli network, 
the ratio of drivers is significantly higher than in the Erdos- 
Renyi S420 network. To better analyze the influence of net-
work topology, we compared the average degree, average 
closeness, average betweenness, and average eigenvector cen-
trality of different networks with the corresponding averages 
for the driver vertices identified by GTCA (Supplementary 
Table S3). This table shows that, in general, these metrics are 
quite similar, although the averages for the set of driver verti-
ces are usually slightly lower compared to the averages for 
the whole network. For a more comprehensive understanding 
of how the algorithms perform under varying conditions, we 
also evaluated the four algorithms by considering target sets 

Table 1. The ratio of driver nodes to target nodes is presented for each algorithm, with the best result highlighted in bold.

Network features Target details Algorithm

Name —V— —E— <k> —T— Targets_selection BaGA GeneticAlg TCMM GTCA

Random 0.10 0.21 0.28 0.10
Real_network S.N prison 67 182 5.43 33 Local 0.04 0.20 0.34 0.13

Random 0.17 0.23 0.31 0.19
N.N C.Elegans 306 2345 15.33 153 Local 0.12 0.33 0.29 0.21

Random 0.81 0.78 0.82 0.82
Silwood 154 370 4.81 77 Local 0.8 0.79 0.82 0.81

Random 0.24 0.18 0.60 0.14
F.W Mangrove 97 1492 30.76 48 Local 0.15 0.22 0.72 0.21

Random 0.22 0.30 0.30 0.27
S208 122 189 3.10 61 Local 0.15 0.30 0.24 0.24

Random 0.19 0.39 0.29 0.30
E.C S420 252 399 3.17 126 Local 0.15 0.27 0.28 0.22

Random 0.67 0.68 0.81 0.72
Tr EColi 423 578 2.73 211 Local 0.62 0.65 0.71 0.80

BC_Gene Breast_956 956 6213 6.4 58 0.05 0.03 0.02 0.03 0.02
157 0.01 0.15 0.19 0.19 0.18
119 0.005 0.11 0.14 0.13 0.13

Breast_478 478 2055 4.2 50 0.001 0.04 0.03 0.04 0.03
DEF 1415 2435 3.44 112 0.68 0.53 0.68 0.63

Cancer_PPI HCC-1428 1495 2650 3.54 126 0.67 0.51 0.66 0.48
Breast MDA-MB-361 1478 2590 3.50 124 0.69 0.51 0.67 0.49

DEF 1047 1579 3.01 140 0.75 0.66 0.75 0.63
OVCA8 1157 1781 3.07 161 Essential proteins 0.73 0.63 0.72 0.60

Ovarian O19468 1047 1579 3.01 159 0.70 0.66 0.74 0.62
DEF 991 1484 2.99 168 0.74 0.67 0.69 0.62
KP-3 1134 1757 3.09 167 0.74 0.64 0.70 0.62

Pancreatic AsPC 1022 1534 3.0 125 0.75 0.63 0.67 0.60
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comprising 5% and 10% of the vertices in the analyzed real 
networks, as presented in Supplementary Table S2. In these 
scenarios, the results obtained by the GTCA algorithm were 
even better than those of the other methods, particularly 
when compared to the 50% target vertex scenario. These 
findings demonstrate the superior performance and adapt-
ability of GTCA across different conditions and net-
work types.

Although it is generally not possible to compare the results 
of structural and exact control approaches, in structural net-
works, the number of driver vertices required for exact con-
trollability is at least equal to, and often greater than, that 
required for structural controllability. On the other hand, in-
tegrating a method that achieves exact controllability with 
one that achieves structural controllability has the potential 
to outperform both methods individually. With this in mind, 
we combined the GTCA and BAGA approaches to enhance 
their overall performance. In this combined framework, the 
driver vertices identified by the GTCA method serve as the 
control target vertices for the BAGA method. The results of 
this two-step target control process, applied to real-world 
networks, are compared with the outcomes of the original 
BAGA method in Table 2. These results confirm a substantial 
improvement compared to using BAGA alone. Notably, the 
set of driver vertices identified by GTCA ensures exact con-
trollability, and when utilized as the target control in BAGA, 
the driver vertices identified by BAGA ensure structural con-
trollability. Table 2 showcases the outcomes of applying this 
scenario to seven real-world networks. The columns NBAGA 
and N2stepCtrl represent the ratio of the number of obtained 
driver vertices to the network size for BAGA alone and the 
combination of GTCA and BAGA methods, respectively, un-
der both random and local target selection protocols. In most 
cases, the integrated GTCA-BAGA algorithm exhibited 
markedly improved results compared to using BAGA alone. 
Thus, this two-step method can be deemed a viable solution 
for acquiring fewer driver vertices in the target con-
trol problem.

4 Case study
In this section, we focus on the biological analysis of driver 
proteins identified using the GTCA method. We examined 
three directed PPI networks associated with breast cancer: 
Breast-DEF, Breast-HCC1428, and Breast-MDA-MB-361. 
The identification of control targets within these networks 

was facilitated by referencing the COLT-Cancer database, 
which provides essential genes across various human cancer 
cell lines (Koh et al. 2012). These networks contain 1415, 
1495, and 1478 vertices, respectively, with 112, 126, and 
124 target vertices identified within them.

Given the stochastic nature of the GTCA algorithm, we 
ran it ten times on each network. To ensure the reliability of 
the results, we considered only those driver proteins that 
appeared in at least nine out of ten iterations. The proteins 
that consistently emerged as drivers in these runs are listed in 
Supplementary Table S4. Across the repeated GTCA runs, 
49, 46, and 46 proteins were identified as drivers for control-
ling essential genes in the Breast-DEF, Breast-HCC1428, and 
Breast-MDA-MB-361 networks, respectively. By identifying 
common proteins across all three networks, we narrowed our 
focus to 68 unique proteins for further analysis.

To further understand the role of these driver proteins and 
their network connectivity, we conducted a hub centrality 
analysis. We constructed a PPI network comprising the 68 
unique proteins using data from the STRING database, con-
sidering only physical and functional connections with a con-
fidence score of at least 0.7. The resulting network, shown in 
Supplementary Fig. S6, exhibits a modular structure, with 
several isolated proteins and a cohesive largest connected 
component due to the stringent edge selection criteria. Within 
this network, several driver proteins emerged as central hubs, 
demonstrating high connectivity. Notably, the NCBP1 pro-
tein exhibited the highest degree with nine connections, fol-
lowed by HSP90AA1 with seven connections, RPL5 with six, 
and both RPS3 and RPL11 with five connections each. These 
findings highlight the central roles these proteins play in me-
diating interactions within the network. Following the identi-
fication of these central hub proteins, we examined their 
biological significance. These hub proteins, characterized by 
their high connectivity, are critical to various cellular pro-
cesses and may serve as potential therapeutic targets in cancer 
treatment. To explore potential therapeutic interventions tar-
geting these hub proteins, we consulted the Drug–Gene 
Interaction Database. We identified the most relevant drug 
for each hub protein and elucidated its mechanism of action 
using data from the MedChemExpress database (see 
Supplementary Table S5).

This analysis identified four drugs, three of which— 
Doxorubicin hydrochloride, Dorlimomab aritox, and 
Exaluren—are already established in cancer treatment. These 
drugs target pathways associated with the identified hub pro-
teins, offering potential therapeutic interventions in cancer 
management. Additionally, Obefazimod, which targets the 
NCBP1 protein, presents a promising candidate for drug 
repurposing in cancer therapy, offering new therapeutic pos-
sibilities beyond its original indication. This network-based 
approach to drug selection provides valuable insights into po-
tential therapeutic strategies for cancer and underscores the 
significance of pharmacological interventions that target key 
proteins in disease management.

5 Discussion
In recent years, network theory has become an indispensable 
tool for modeling complex systems across various scientific 
disciplines, especially in the biological sciences. Complex net-
works represent system variables as vertices and their interac-
tions as edges, offering a powerful framework for analyzing 

Table 2. Results comparing the implementation of the combined GTCA 
and BAGA methods (N2stepCtrl column) with BAGA alone (NBAGA 
column) for controlling 50% of nodes in real networks under both random 
and local target selection protocols.

Network Random selection Local selection

name NBAGA N2stepCtrl NBAGA N2stepCtrl

Prison 0.06 0.02 0.03 0.03
c-elegans 0.09 0.07 0.03 0.03
E.Coli 0.33 0.26 0.31 0.21
mangrove 0.12 0.03 0.10 0.02
Silwood 0.41 0.39 0.39 0.39
S208a 0.13 0.04 0.09 0.02
S420a 0.14 0.04 0.11 0.03

The table presents the ratio of driver nodes to target nodes for 
each network.
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intricate systems. This approach, grounded in graph theory, 
enables deep exploration of network structures, allowing for 
detailed comparisons across states, sub-network analyses, 
module identification, and the pinpointing of critical vertices 
and edges. Unlike traditional methods, network-based 
approaches effectively capture both linear and non-linear 
relationships, providing richer insights into the dynamics and 
interactions within complex systems. The integration of con-
trol theory with network analysis has expanded the applica-
tions of network science, particularly in managing systems 
with many variables. Network controllability focuses on 
identifying key variables that can influence target variables, 
enabling the steering of the system towards desired states. 
Initially applied in bioinformatics for drug target identifica-
tion, network controllability is now used in engineering, so-
cial sciences, and economics. In cases where controlling all 
variables is impractical, identifying driver vertices that can 
control target vertices with minimal energy is critical for effi-
cient control strategies in complex systems. In practical cases, 
full control of all system variables is often unnecessary, giving 
rise to the target control problem, where only a subset of var-
iables (target vertices) needs to be controlled. The GTCA al-
gorithm was designed to address this challenge by providing 
precise control in complex networks, leveraging Kalman’s 
controllability rank condition to ensure exact control. 
Structural controllability is based on the network’s topology 
and considers only the presence or absence of edges. While 
structural controllability offers a qualitative solution by 
assessing connectivity, it does not guarantee precise control 
of the network’s dynamics. In contrast, Kalman’s Rank 
Condition provides a more rigorous framework by incorpo-
rating both structural and dynamic properties of the network. 
For example, while structural controllability might suggest 
that a complete network can be controlled with one driver 
vertex, Kalman’s condition may require signals to be applied 
to all vertices except one of them, for exact control. In this 
study, we used unweighted networks to align with previous 
methods, ensuring consistency for comparison. In such cases, 
assuming no changes in edge weights, driver vertices identi-
fied through exact controllability can control the network to 
any desired point in the change space, encompassing all verti-
ces. While driver vertices identified through structural control 
can manage nearly all points in the state space, there may still 
be certain points that cannot be reached.

On the other hand, by using the driver vertices identified 
by the GTCA algorithm as inputs for structural controllabil-
ity algorithms like BAGA, we can further refine the control 
strategy. This hybrid approach not only minimizes the impact 
on non-target vertices but also optimizes the overall control 
process, resulting in shorter control paths, fewer steps, and 
reduced costs. Combining GTCA with structural control 
methods creates a synergistic effect, significantly reducing the 
number of driver vertices needed for effective control. This 
integrated approach enhances both the robustness and scal-
ability of control strategies across diverse network configura-
tions, making it especially valuable in areas like network 
biology and communication systems, where precision and ef-
ficiency are essential. Building on this foundation, we ex-
tended the GTCA algorithm’s application to drug 
repurposing, a crucial area in modern medicine that offers 
cost-effective alternatives to developing new drugs. Network- 
based analysis, driven by the GTCA algorithm, facilitates the 

identification of driver proteins that can influence disease- 
related proteins toward a healthier state. In a breast cancer 
case study, we applied the GTCA algorithm to identify driver 
proteins within protein-protein interaction (PPI) networks. 
These driver proteins were then targeted to modulate essen-
tial proteins within the network. Using this network-based 
approach, we constructed a secondary PPI network linking 
driver proteins with highly connected proteins, effectively 
mapping potential drug targets. This allowed us to identify 
drugs that target proteins connected to the driver proteins, 
highlighting their potential as novel therapeutic agents. These 
findings emphasize the significant potential of integrating 
network control strategies with drug discovery, offering new 
paths for treating complex diseases like breast cancer. 
Throughout this study, we demonstrated the robust capabili-
ties of the GTCA algorithm in achieving precise control over 
target vertices within complex networks. Our comparative 
analysis shows that GTCA consistently outperforms existing 
algorithms, requiring fewer driver vertices and thereby im-
proving control efficiency. Different controllability algo-
rithms, including both structural and exact controllability 
approaches, tend to perform better in dense networks com-
pared to sparse ones, and generally show better results in ran-
dom networks than in scale-free networks. Our algorithm 
follows this trend but stands out in sparse networks with a 
high scale-free coefficient. This advantage arises because 
structural controllability algorithms rely on maximum 
matching and greedy selection, focusing solely on the net-
work’s structural properties without considering dynamic be-
havior. In sparse and scale-free networks, where connectivity 
varies significantly, structural controllability often selects 
high-degree nodes, leading to suboptimal control configura-
tions. In contrast, the GTCA algorithm incorporates 
Kalman’s exact controllability condition, ensuring that driver 
vertices are selected based on both structural and dynamic 
properties, which is particularly important in networks with 
heterogeneous node distributions, such as biological systems. 
Despite the strengths of our approach, it is important to ac-
knowledge that target control in complex networks remains 
an NP-hard problem, requiring efficient solution strategies. 
Future research should focus on enhancing this approach by 
developing meta-heuristic methods and identifying smaller, 
manageable network subsets capable of effectively control-
ling desired targets, ensuring the continued evolution of net-
work control strategies across various domains.

6 Conclusion
In many dynamical systems, it is often impractical to apply 
control signals to every component, making it crucial to iden-
tify the smallest set of vertices capable of exerting hierarchical 
control based on the network’s topology. While exact con-
trollability, as defined by Kalman’s controllability rank con-
dition, poses significant challenges in large networks, 
solutions from structural controllability frequently fail 
to meet these demands. As a result, no existing method 
effectively pinpoints the necessary driver vertices for exact 
controllability across such complex networks. Target con-
trol—whether exact or structural—constitutes an NP-hard 
problem, presenting a significant challenge in network con-
trollability. To address this, we introduced the GTCA algo-
rithm, which leverages matrix rules and linear algebra to 
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efficiently identify the minimal set of driver vertices necessary 
for control. By meeting Kalman’s controllability rank condi-
tion, GTCA offers a robust solution that significantly enhan-
ces performance compared to existing algorithms, 
particularly in controlling desired targets with fewer driver 
vertices. For target controllability, no deterministic 
polynomial-time solution exists. All methods discussed in this 
paper are heuristic in nature, aiming to find optimal solutions 
without guaranteeing them. These methods typically reach a 
local optimum rather than a global one. Given that obtaining 
a global optimum for the driver set in large networks is infea-
sible, comparing results across different methods becomes es-
sential. Our comparisons indicate that GTCA produces 
promising results even if it achieves only a local optimum. In 
many cases, this local optimum is superior to those obtained 
by other methods. Specifically, GTCA leverages matrix analy-
sis and linear algebra to achieve promising results across net-
works of varying sizes, including large networks. 
Additionally, when comparing GTCA to the BAGA method, 
which structurally controls networks, the effectiveness of 
GTCA is evident. The application of GTCA in identifying 
key driver proteins in biological networks, especially in the 
context of breast cancer, underscores its potential for real- 
world applications. By applying network-based analysis and 
leveraging controllability principles, GTCA not only identi-
fies critical nodes within these networks but also facilitates 
the exploration of therapeutic interventions, including drug 
repurposing, for disease management. Looking ahead, further 
advancements in network controllability algorithms like 
GTCA hold great promise for tackling complex control chal-
lenges in large networks. By continuing to integrate innova-
tive approaches with established principles, we can deepen 
our understanding and improve our ability to manipulate 
complex systems across a wide range of scientific disciplines, 
from biology to engineering and beyond.
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