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This study profiled global single cell-spatial-bulk transcriptome landscapes of hepatocellular
carcinoma (HCC) ecosystem from six HCC cases and a non-carcinoma liver control donor. We
discovered that intratumoral heterogeneity mainly derived from HCC cells diversity and pervaded the
genome-transcriptome-proteome-metabolome network. HCC cells are the core driving force of
taming tumor-associated macrophages (TAMs) with pro-tumorigenic phenotypes for favor its
dominant growth. Remarkably, M1-types TAMs had been characterized by disturbance of
metabolism, poor antigen-presentation and immune-killing abilities. Besides, we found simultaneous
cirrhotic and HCC lesions in an individual patient shared common origin and displayed parallel clone
evolution via driving disparate immune reprograms for better environmental adaptation. Moreover,
endothelial cells exhibited phenotypically conserved but executed differential functions in a space-
dependent manner. Further, the spatiotemporal traits of rapid recurrence niche genes were identified
and validated by immunohistochemistry. Our data unravels the great significance of HCC cells in
shaping vibrant tumor ecosystems corresponding to clinical scenarios.

Hepatocellular carcinoma (HCC) is the sixthmost common cancer and the
fourth major cause of cancer-related death worldwide. Multiple etiological
and pathogenic stimulation contribute to this lethal malignancy is char-
acterized by a high degree of intratumoral heterogeneity (ITH)1,2. It is
manifested not merely in the multi-omics traits including genomics, tran-
scriptomics, proteomics, metabolomics, but also in the diverse morpholo-
gical features and spatial distributions of cells, thereby forming various
ecosystems such as specific tumor microenvironments (TME) and tumor
immune microenvironments (TIME)3–6.

HCC carcinogenesis and progression are the result of dynamic evo-
lutionary processes. Despite inherent cellular heterogeneity had existed
within the tumor cell clusters, greater heterogeneity can be introduced
through environmental effects7, with HCC cells playing core roles in such
dynamic evolutionary networks. Persistent environmental stimulation

usually causes diverse stochastic genetic andnon-genetic alterations, leading
to the emergence of multiple HCC subclusters that possess dynamic plas-
ticity. These adaptive HCC subclusters selectively exhibit deterministic
tumor characteristics for the remodeling of the ecosystem to favor their
dominant growth bymanipulating the surrounding cells’ functions through
the intricate signaling networks, thus increasing the diversity of cellular
components and strengthening more signals that promote HCC
heterogeneity4,8,9. Further, an evolutionary game of these preponderant
HCC cell subclusters with the ecosystems distinctively drives the develop-
ment of ITH, ultimately manifesting as varied clinicopathological char-
acteristics and causing undesirable clinical outcomes of rapid disease
progression, poor therapeutic response, and frequent recurrences10,11.
Multitude of studies have elucidated highly cellular and biological hetero-
geneous, but the intrinsic relations and molecular mechanisms underlying
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the integration of ITH into specific clinical scenarios12 corresponding to
various pathological characteristics and clinical outcomes have not been
clearly unraveled.

Traditional high-throughput omics studies just focused on the mac-
roscopic analysis of the common features of mixed cell components.
Emerging single-cell RNA sequencing (scRNA-seq) and spatial tran-
scriptome sequencing (ST-seq) enable the acquisition of multilayer mole-
cular information with unprecedented resolutions. scRNA-seq profiles the
dynamic landscapes of cellular and genetic alterations in the temporal
dimension13, and effectively supplies the lack of single-cell resolution in ST
technology caused by the inclusion of dozens of cells within a single spot. In
contrast, ST-seq provides high-quality transcriptional data for visualization
of the spatial dynamic landscape14, breaking through the limitation of cell
location information lost by scRNA-seq. It has been reported that scRNA-
seq sheds light on the ITH, but spatial heterogeneity has rarely been
discussed.

Here, we constructed a single cell-spatial-bulk global heterogeneity
landscapes and spatiotemporal dynamic evolutionof the ecosystem inHCC.
We observed that ITH was mainly derived from the diversity of HCC cell
subclusters possessing specific markers, which consistently pervaded the
genome–transcriptome–proteome–metabolome network. Also, we
demonstrated most immune cell subpopulations were shared among all
patients but their proportionswere significant different, anddifferent spatial
distribution of immune cells subpopulations were specifically contributing
to the immune heterogeneity. In an individual patient, we identified the
common progenitor cells shared by simultaneous cirrhosis and HCC and
experienced parallel evolution, accompanying unique spatiotemporal
dynamic pathway activities during ultimately led to their different patho-
logical outcomes and immune reprogram by the lesions for the enhance-
ment of better environmental adaptation. Further, we found endothelial
cells (ENs) exhibited phenotypic conservatism but executive differential
functions in a space-dependent manner. Moreover, we characterized spe-
cific ecological niche genes of rapid HCC recurrence on a spatiotemporal
scale, and their prognostic value was validated in independent cohorts
beyond 7000 patients. Our data unprecedentedly revealed the spatio-
temporal dynamic landscape of HCC heterogeneity, and emphasized the
great importance of HCC cells in shaping vibrant tumor ecosystems.

Results
Construction of dynamic spatiotemporal landscape of the eco-
system in HCC by integrated analysis of single cell-spatial RNA-
Seq combined bulk multi-omics sequencing
Six HCC tissue and one cirrhotic tissue samples and preoperative blood
sampleswere collected fromsix patientswith pathological diagnosis. Anon-
carcinoma liver tissue and blood samples were obtained from one patient
underwent surgical resection for hepatic hemangiomawere used as control.
These samples were subjected to scRNA-seq, ST-seq, whole exome
sequencing, whole transcriptome sequencing, full-length transcriptome
sequencing, proteome sequencing, and non-targeted metabolomics
sequencing approaches (Fig. 1). Clinicopathological characteristics of all
HCCpatients and the control donorweredetailed inSupplementaryFig. 1a-
c. In particular, Patient#4 had simultaneous HCC (HCC4) and cirrhotic
(CIR4) lesions. Highly angiogenesis (Microvascular density, MVD ≥ 50
vessels/200× high power field, HPF) was confirmed in the HCC lesions of
Patients#3, #4, and #5 (HCC3, HCC4, and HCC5) by postoperative
pathological examinations. Early recurrence occurred in Patient#5 with
disease-free survival (DFS) of 9 months, and rapid recurrence occurred in
Patient#2 with a DFS of 2 months.

After standardizeddata processing andquality control, a total of 25,624
high-quality spatial resolution spots and 81,698 high-quality single-cell
transcriptional profiles were obtained. Fifty-five cell clusters were generated
(Fig. 2a, Supplementary Fig. 1d) comprising 11 cell types, including HCC
cells (glypican-3 (GPC3), alpha-fetoprotein (AFP)), epithelial cells (cluster of
differentiation 24 (CD24), epithelial cell adhesionmolecule (EpCAM)), and
vascular endothelial cells (von willebrand factor (VWF), cluster of

differentiation 34 (CD34)). Positive markers of each cell clusters are agreed
with the gene signatures identified in practice guidelines for standardized
pathological diagnosis of HCC and recent scRNA-seq studies, supporting
their phenotypeswere consistentwith themalignant features (Fig. 2b)15,16 By
integrating analysis of single cell-spatial RNA-Seq combined bulk multi-
omics sequencing, we constructed global heterogeneity landscapes and
spatiotemporal dynamic evolution pattern of the ecosystem in HCC cor-
responding to specific clinical scenarios of various pathological character-
istics and clinical outcomes.

ITH was primarily derived from diverse types of HCC cells
The global spatiotemporal landscapes of the ecosystem in HCC revealed
that ITH primarily arose from diverse types of HCC cells, while most
immune and stromal cells (Neutrophils, CD4+ T, CD8+ T, monocyte-
deriveddendritic cells (MDDC),macrophage (Mas), andB cell)were shared
among all the HCC patients (Fig. 2c–e). The unsupervised clustering at a
high resolution ofHCC cells and cirrhotic cells shows that HCC subclusters
possessed specific positive markers in individuals (Fig. 3a–d), among which
the oncogenes neuropeptide w (NPW) and interferon alpha inducible
protein 27 (IFI27)were firstly discovered being novel markers for HCC17,18.
Besides, lectin galactoside-binding soluble 3 (LGALS4), regenerating islet-
derived protein 1-alpha (REG1A), and metallothionein 1G (MT1G)
exhibited consistency in the transcriptome and proteome at the bulk level,
implying the strong invasiveness of these HCC subclusters19–21. We then
identified specific genes with a high confidence in each patient by multi-
omics analysis approach (Fig. 3e). Intriguingly,metabolic heterogeneitywas
observed manifesting in HCC lesions and peripheral blood (Fig. 3f)3,22. In
Patient#4, specific metabolites (20-hydroxyecdysone, dehydroepian-
drosterone sulfate, cholesterol sulfate, etc.) were shared in cirrhotic nodule,
HCC lesion, paracancerous tissue, and peripheral blood (Supplementary
Table 1), implying a common pathophysiologicalmolecular basis shared by
cirrhosis and HCC. Overall, we demonstrated that ITH primarily derived
from diverse types of HCC cells and consistently pervaded the genome-
transcriptome-proteome-metabolome network.

A distinct tumor cells self-drive modulation of immune
ecosystem in HCC
We constructed high-resolution single cell-spatial landscape mapping the
immune ecology and identified eight types of immune cells (Fig. 4a, Sup-
plementary Fig. 2a-c), includingMacs (cluster of differentiation 68 (CD68),
cluster of differentiation 14 (CD14), and human leukocyte antigen-DRA
(HLA-DRA)), CD8+Tcells (cluster of differentiation 3delta (CD3D), cluster
of differentiation 274 (CD247), and cluster of differentiation 8 alpha
(CD8A), and B cells (cluster of differentiation 79 alpha (CD79A) and
membrane-spanning 4-domains a1 (MS4A1)). The Mac subpopulations
mainly included the M0, M1 (fc gamma receptor Ia (FCGR1A)), and M2
(macrophage scavenger receptor 1 (MSR1), cluster of differentiation 163
(CD163), and cluster of differentiation 209 (CD209) cells. The CD8+ T cells
included virgin, cytotoxic (granulysin (GNLY), interferon gamma (IFNG),
and granzyme b (GZMB)), and exhausted CD8+ T (cytotoxic t-lymphocyte
associated protein 4 (CTLA4), lymphocyte activating 3 (LAG3), and pro-
grammed cell death 1 (PDCD1)) cells (Fig. 4b, c, Supplementary Fig. 2d-f).
Notably, although most immune cell populations appeared to be shared
among patients, ST-seq precisely displayed the differential distribution of
the cellular activity signals in individual, which specifically contributed to
the immune heterogeneity (Fig. 2c, d, Fig. 4d–g, Supplementary Fig. 2a-c).

We found aberrant signals that enhance T cell differentiation, immu-
nity, and inflammation inMac andCD8+Tcells (Supplementary Fig. 2g-h).
M1-type tumor-associated macrophages (TAMs) were numerically domi-
nant and exhibited highmetabolic activities of canonical glycolytic (enolase
1 (ENO1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and
lactate dehydrogenase a (LDHA)) and amino acid metabolism, but inacti-
vated immune cytotoxicity and antigen presentation pathways were
observed. These aberrant metabolic signaling were accompanied by phe-
notypic changes in TAMs23 specifically led to impairment of the antitumor
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functions of M1-TAMs, and enhancement of signaling cascades for meta-
bolites lipids and amino acid of the M2-TAMs to promote immunosup-
pression (Supplementary Table 2)24–26. Although the cytotoxic T cells were
significantly outnumbered the exhausted T cells, but highly expressed key
immunosuppressive factors transforming growth factor beta 1 (TGF-β1),
c-cmotif chemokine ligand 4 (CCL4), andnuclear factor kappa-light-chain-
enhancer of activated b cells (NF-ĸB1) to activate the T cell receptor sig-
naling pathways, transcriptional misregulation in cancer pathways, apop-
tosis pathways, programmed cell death protein-ligand 1 (PD-L1) expression
and programmed cell death protein 1 (PD-1) checkpoint pathway in cancer
(Supplementary Table 3). It suggested that cytotoxic CD8+ T cells under
multiple pressures, such as continuous tumor antigens stimulation, have
actually degenerated into dysregulated transcription, immunosuppression,
and susceptibility to apoptosis, which is consistent with the findings of
Philip et al. 27 and Sun et al. 15. Overexpression of immune checkpoint genes
CTLA4,PDCD1, and t cell immunoreceptorwith immunoglobulin and itim
domains (TIGIT)were observed concentrated on exhausted CD8+T, CD4+

T, and Treg cells (Fig. 4h), indicating the environmental-mediated immu-
nosuppression. Next, HCC-immune cells communication network was
constructed (Fig. 4i–j), revealing widespread intracellular communications
initiated by HCC cells. Specifically, the most frequent intracellular com-
munication events were observed between HCC and Macs clusters,
underlying the core status of Macs in TIME28. In particular, we

demonstrated M2-TAMs interacted with Tregs through the cluster of dif-
ferentiation 86 (CD86) receptor-CTLA4 ligand axis and the colocalization
of CD86 andCTLA4was clearly corroborated by the spatial resolutionmap
(Fig. 4k). This foundlings impliedM2-TAMsmay serve as core regulators in
the modification of TIME driven by HCC. Meanwhile, macrophage-
dendritic cells (MMDCs) interacted with Tregs to promote CD8+ T cell
exhaustion.

Simultaneous cirrhotic and HCC lesions share progenitor cells
and evolve in parallel
In general, HCC occurs in the setting of liver cirrhosis29. In a single indi-
vidual Patient#4, we obtained valuable specimens of simultaneous cirrhotic
(CIR4) andHCC (HCC4) lesions (Fig. 5a) and explored the spatiotemporal
evolution patterns of lesions with a high risk for carcinogenesis (cirrhosis)
and HCC. We found CIR4 and HCC4 cells shared more copy number
variation (CNV) landscapes at the genomic level (Fig. 5b), indicating they
share a common evolutionary origin30. At the transcriptome level, HCC4
and CIR4 cells were extracted for unsupervised clustering and 15 cell sub-
clusters were captured (Fig. 5c). These subclusters underwent continuous
development processes (Fig. 5d) since C0 location, which is the earliest
origin of the developmental trajectory locate the commonprogenitor cells of
the two types of lesions (Supplementary Table 4). It significantly activated
the gene module 1 which was enriched with dual signals of hepatic disease

Fig. 1 | Single cell-spatial-bulk multi-omics analysis profiled the global heterogeneity landscapes and spatiotemporal dynamic evolution of the ecosystem in HCC.
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Fig. 2 | Spatiotemporal globe landscapes of the ecosystem in HCC, cirrhosis, and
non-carcinoma liver. aUniformManifold Approximation and Projection (UMAP)
plot showing the cell types in all the study samples, with different color codes
denoting different cell clusters (left) and subclusters (right). b Bubble chart showing
the specific markers of each cell cluster. cHeatmap representing the proportions of

different cell types of each study sample at the single-cell level. d Heatmap repre-
senting the proportions of different cell types of each study sample on the spatial
resolution. e Spatial feature plot showing the specific cell clusters of each HCC and
CIR lesion. See also Supplementary Fig. 1.
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Fig. 3 | Spatiotemporal intratumor heterogeneities in HCC and cirrhosis.
a UMAP plot showing the HCC and CIR cell types, with different color-codes denoting
lesions origin (left) and cell subclusters (right). b, cUMAP plot and spatial feature plots
showing the distribution of specific markers on the cell subclusters from Fig. 2A (right).
d Immunohistochemical validation of the expression of specific markers, the scale bars

represent 20 μm. eHeatmap representing the average expression of specific markers of
each cell subcluster at the full-length transcriptome, whole transcriptome, proteome, and
scRNA levels. fHeatmap representing the levels of metabolic changes in the tissues and
blood of HCC patients and control donor. See also Supplementary Table 1.
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and HCC (Fig. 5e, Supplementary Table 5). Transcriptional activation of
different downstream gene modules led to discrepant pathological out-
comes: activation of a series of hepatic disease signals in gene module 2
resulted in cirrhosis; whereas activation of carcinogenesis and malignant
proliferation signals in the genemodules 3, 4, and 5 promotedHCC. Spatial
resolutionmap showed significant differences in differentiation trajectories

of progenitor cells developed toHCC4 andCIR4 (Fig. 5f). Cirrhotic nodules
were rich in an abundance of hepatic disease signaling spatial blocks but
fewer carcinogenic signaling spatial blocks, while numerous chemical car-
cinogenic, metabolic, invasion, and immune signaling spatial blocks were
observed inHCC lesions (Fig. 5g). The antigen processing and presentation
signaling pathways were activated in both the cirrhotic and HCC spatial
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blocks, but exhausted immune signals were only present in theHCC spatial
blocks (Fig. 5g). A gene regulatory network (GRN) of HCC4 and
CIR4 subclusters was constructed and organized into six functional tran-
scription factors (TFs) modules, comprising runt-related transcription
factor 2 (RUNX2), retinoid x receptor alpha (RXRA), transcription factor ap-
4 (TFAP4), and nuclear receptor subfamily 2 group f member 2 (NR2F2)
served as the core specific TFs (Fig. 5h). These TFs exhibited stemness and
proliferative features that favored evolution31–34. Theyexpressed sequentially
at different spatiotemporal nodes of destiny selection and correspondingly
regulated the transcription of specific genes (Fig. 5i, j), providing guidance
for the transformation of cell state and ultimately mediating the formation
of the aforementioned cluster structures.

Dynamic reprogramming of the immune microenvironment
accompanying the evolution of HCC and cirrhosis
Disease progression is a complex and dynamic process driven by the
interaction between clonal evolution and immune reprogram35,36, as con-
firmed in previous analysis. We deeply analyzed the immune ecology in
Patient#4 (Fig. 6a) and particularly investigated the structure and differ-
entiation trajectories of TAMs and CD8+ T cells accompanying the
evolution.

Macs underwent a continuous development process, starting fromM0
cluster and differentiating into nine subpopulations (Fig. 6b, c) of each with
specific markers (Supplementary Fig. 3a). We observed that TAMs sur-
rounding HCC cells manifested high complexity of phenotypic plasticity
through the evolution process (Supplementary Table 6). M0-TAMs located
at the earliest origin of the developmental trajectory and comprised the
common progenitor cells shared by CIR4 and HCC4. Normally, the
mitochondrial pathway plays important roles in the M2-TAMs
polarization37,38, however, we found M0-TAMs had exhibited significant
upregulation of multiple mitochondrial family genes (MT-ND family,
mitochondrially encoded adenosine triphosphate synthase membrane
subunit 6 (MT-ATP6), mitochondrially encoded cytochrome b (MT-CYB),
and mitochondrially encoded cytochrome c oxidase (MT-CO)), suggesting
that mitochondrial energy metabolic reprogramming in this patient was
initiated in the early stage of evolution. Chronologically, M0-TAMs dif-
ferentiated into three types ofM1 subtypes (Fig. 6c, SupplementaryTable 6).
According to the pseudo time series, the first subtype of M1-TAMs was
positive for ribonuclease a family member 1, pancreatic (RNASE1) and
specific toHCC lesions, locating at the earliest stage of clonal evolution. This
RNASE1+M1-TAMs mediated the IL-17 signaling pathway, cholesterol
metabolism pathway, growth hormone synthesis, secretion and action
signaling pathways, T-helper (Th) 1 and Th2 cells differentiation pathways
through the oncogene FOS/JUN; but did not release pro-inflammatory
factors, immuneactivators, and chemokines.These results indicated that the
M1-TAMs surrounding the HCC lesion had lost the canonical glycolytic
phenotype, as well as pro-inflammatory39, immune-activating, and phago-
cytic functions start off with the early polarization. The second subtype of
M1-TAMs strongly expressed galectin 3 (LGALS3) and was shared by the
HCCandCIR lesions. TheseLGALS3+M1-TAMswere characterizedby the
activation of cholesterol metabolism pathway, oxidative phosphorylation
pathway, glycolysis pathway, hypoxia inducible factor 1 (HIF-1) signaling
pathway, suggesting these cells had manifested higher metabolic disorders.
Then it continuously differentiated along with the evolution with a split

pattern. Around the HCC lesion, the LGALS3+M1-TAMs were differ-
entiated into the LGALS3+MT1H+MT1G+M1-TAMs specifically over-
expressed multiple metallothionein family genes, which are closely
associated with the formation of M2 polarization that promote tumor
growth and immunosuppression40,41. Meanwhile, stronger metabolic dys-
regulation was observed in these M1-TAMs. In the other way, the
LGALS3+M1-TAMs were differentiated into the KRAS+LILRA2+M2-
TAMs shared by CIR and HCC lesions, which could activate phagosome
signaling pathway, endocytosis signaling pathway, NF-ĸB signaling path-
way, PD-L1 expression and PD-1 checkpoint pathway in cancer through
secretion of M2 polarizing cytokines (c-c motif chemokine ligand 20
(CCL20), c-type lectin domain containing 7a (CLEC7A), transforming
growth factor beta 1 (TGFB1), interleukin 1 receptor antagonist (IL1RN))
and anti-inflammatory factors (tumor necrosis factor receptor superfamily
member 1b (TNFRSF1B))42 for the exertion of phagocytosis, immunosup-
pression, and tissue remodeling liking as the functions ofM2-TAMs43,44. The
third subtypeofM1-TAMs strongly expressedc-cmotif chemokine ligand2
(CCL2) and was mainly distributed around the HCC lesion. These
CCL2+M1-TAMs differentiated into an intermediate state characterized by
CXCL1+M1-TAMswhichpromoted the secretionof substantial amounts of
cytokines and chemokines to increase tumor growth, metastasis, angio-
genesis, immune escape; and activated the cytokine-cytokine receptor
interaction signaling pathway, chemokine signaling pathway, transcrip-
tional misregulation in cancer signaling pathway, PD-L1 expression and
PD-1 checkpoint pathway in cancer, and apoptosis signaling pathway.
These findings suggested that the CCL2+M1-TAMs have exhibited onco-
genic and immunosuppressive phenotypes under the uncontrolled
inflammatory cytokine storms45. At the end of the pseudo time series tra-
jectory there were the EBI3+MARCO+M2-TAMs, which was mainly
around the CIR lesion, and retained partial phagocytotic and tissue remo-
deling functions as similar to the above-mentioned
KRAS+LILRA2+M2-TAMs.

We then described the spatiotemporal characteristics of CD8+ T cells
differentiation accompanying the evolution of CIR4 andHCC4 (Fig. 6d, e),
with alterations of key markers on CD8+ T cells during the evolution of the
lesion cells (Supplementary Fig. 3b, Supplementary Table 7).
GZMB+GNLY+TMPO+CD8+ T cells are present at the origin of pseudo
time series of both the lesions, and strongly express several proliferation-
related genes, such as ras homolog family member a (RHOA), actin beta
(ACTB), and cyclin a2 (CCNA2) etc., involved in the regulation of cell cycle
signaling pathway, mitosis signaling pathway, and actin cytoskeleton sig-
naling pathway46–48, indicating that these cells have high potential for pro-
liferation, cytotoxic and migration. Then CD8+ T cells in both HCC4 and
CIR4 lesions all experienced a cytotoxic state characterized by RGS1+CD8+

T cells, which significant downregulated the proliferation-related genes but
upregulated the antigen processing and presentation genes, and activated
the Th1 and Th2 cell differentiation signaling pathway and T cell receptor
signaling pathway, indicating acquired immunity was activated in the
cytotoxic RGS1+CD8+T cells. Subsequently, CD8+T cells around theHCC
lesion evolved into a cytotoxic state characterized byXCL1+CD8+T cells, in
particular, in which numerous pro-apoptotic molecules and immunosup-
pressive factors (including fc fragment of immunoglobulin e receptor
immunoglobulin (FCER1G),NF-ĸB1, c-cmotif chemokine ligand 3 (CCL3),
and c-c motif chemokine ligand 4 (CCL4)) were significantly

Fig. 4 | Spatiotemporal characteristics of the immunemicroenvironment inHCC
and cirrhosis. a UMAP plot showing the immune cell clusters in all the study
samples, labeling in different colors. UMAP plot showing the subpopulations of
macrophages (b) and CD8+ T cells (c) in all the study samples, labeling in different
colors. UMAP plot and spatial feature plot showing the visualized distribution of
specific markers for M1-TAMs (d) and M2-TAMs (e). UMAP plot and spatial
feature plot showing the visualized distribution of specific markers for cytotoxic
CD8+ T cells (f) and exhausted CD8+ T cells (g). h Violin plot showing the
expression of immune checkpoints molecules on each immune cells. i Bubble plot

showing the intercellular communications among HCC cell, CIR cell, and immune
cell subpopulations, with each bubble denoting the cell identity and line thickness
denoting the strength of intercellular interactions. j Circos plot showing the Inter-
cellular communication network of HCC cell, CIR cell, and immune cell sub-
populations with a high confidence level, with each arrow denoting the interaction
between the source cell ligand and target cell receptor, and the arrow thickness
denoting the number of ligand-receptor interaction pairs. k Spatial feature plot
showing the distribution of the co-expression of CD86, CTLA4, and CD86+CTLA4.
See also Supplementary Fig. 2, Supplementary Table 2 and Supplementary Table 3.

https://doi.org/10.1038/s41698-024-00752-1 Article

npj Precision Oncology |           (2024) 8:262 7

www.nature.com/npjprecisiononcology


upregulated49–52, indicating that these cytotoxic XCL1+CD8+ T cells were
actually in a dysfunctional state with low clonal expansion and immuno-
suppression. At the end of the pseudo time series were abundant
GZMB+GNLY+CD8 + T cells and a few exhausted T cells. Furthermore,
apoptotic signaling was observed significantly inhibited in the
GZMB+GNLY+CD8+ T cells but was accompanied by an intense release of

immunosuppressive factors (LGALS1 and CD47)53–56, indicating these
CD8+ T cells actually maintaining the persistent immunosuppression.

The dynamic characteristics of the immunemicroenvironment driven
by HCC and CIR are distinct. The most frequent intermediate state in CIR
was characterized by exhausted RGS1+VCAM1+CRTAM+CD8+ T cells.
However, these cells reverted to the cytotoxic state characterized by

Fig. 5 | Parallel patterns of the evolution between
HCC and cirrhosis. a Contrast-enhanced CT ima-
ges of simultaneous HCC and CIR lesions in Patient
#4. b Heatmap profiling the chromosome copy
number variation (CNV) of HCC, CIR, and other
cells of Patient #4. c UMAP plot showing the sub-
clusters ofHCC4 andCIR4 cells, labeling in different
colors. d UMAP plot showing the pseudo-time
series evolutionary patterns of the subclusters of
HCC4 and CIR4. Pie chart showing the proportions
ofHCC4 andCIR4 cells in each subclusters. Pseudo-
time values (low to high) indicating the direction of
sub-clonal evolution. e Heatmap representing the
pseudo-time series of changes of differentially
expressed genes in HCC4 and CIR4 subclusters.
These genes were clustered into five modules, with
each module participating in significantly different
pathways. f Spatial feature plot showing the evolu-
tion patterns of HCC4 and CIR4 subclusters, with
arrows indicating the direction of evolution. gH&E
staining (left), and spatial cluster distribution of
section (middle) labeled by colors, and density plots
of specific gene sets of spatial cluster (right) for the
HCC4 and CIR4, defined into different spatial
blocks. (h) Heatmap representing the gene reg-
ulatory networks (GRNs) of HCC4 and
CIR4 subclusters. Left: Identification of regulon
modules based on the connection specificity index
(CSI) matrix of regulons; Middle: Representative
transcription factors (TFs) of modules and their
binding motifs; Right: Relationships of modules
with the HCC4 and CIR4 subclusters. i UMAP plot
identifying the TFs that regulate HCC4 and CIR4
cell subclusters. j Spatial feature plot showing the
distribution of TFs that regulate the HCC4 and
CIR4 subclusters. See also Supplementary Table 4
and Supplementary Table 5.
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IL7R+CCL20+CD8+T cells, whichmainly upregulated the T cell activation-
related genes (human leukocyte antigen a (HLA-A), cluster of differentiation
(CD28)) pathway57,58, and activated immune regulatory pathways such as
the T cell receptor signaling pathway59, antigen processing and presentation
pathway60, and Toll-like receptor signaling pathway61 (Supplementary
Fig. 3c, d).

TAMs remained displaying the highest frequency of communication
with HCC cells in this patient (Fig. 6f, g), corroborating our findings from
the global immune landscape (Fig. 4i). Notably, we constructed cellular
communications betweenHCCand immune cells and found thatHCCcells
directly tamed exhausted CD8+ T cells through the hepatitis a virus cellular
receptor 2 (HAVCR2)-galectinl 9 (GALS9) and CD86-CTLA4 axes. Colo-
calization of these receptor-ligand axes was clearly corroborated by the
spatial transcriptomic maps (Fig. 6h).

HCC drove epithelial cells reprogramming and regulated spatial
distribution of vascular ecology
HCC is distinctive in its hypervascular nature22. The postoperative histology
confirmed that angiogenesis was extremely strong in HCC3, HCC4, and
HCC5. Our spatial transcriptomic maps showed that the focal adhesion
signaling pathway was activated in all three HCC tissues (Fig. 5g, Fig. 7a, b).
In addition, an active epithelial-mesenchymal transition (EMT)-related
signal was found in HCC3 and HCC4, while strong HIF-1 signaling in
HCC5, indicating that the spatiotemporal characteristics of HCC

angiogenesiswere similar but not fully identical. Patient#5 experienced early
recurrence, whereas Patients#3 and #4 remained tumor-free until the end of
follow-up. These results shed light on the great significance of hypoxia-
related regulatorymechanismsaffectingHCCangiogenesis and enhance the
risk of early recurrence. Furthermore, among HCC3, HCC4, and HCC5
only four En sub-populations (Fig. 7c) with similar En activation-related
functional pathways (Supplementary Fig. 4a) were identified, and relevant
specific markers of each En sub-populations were mapped on the spatio-
temporal landscapes (Fig. 7d, e). In particular, among which cytochrome
p450 family 2 subfamily emember 1 (CYP2E1)was themost uniquemarker
of both the HCC and En cells sub-populations of Patient#4 (Fig. 3b). Thus,
we speculated there was a potential association of ectopic gene expression
between HCC and En cells (Supplementary Table 8). We then investigated
the expression of exosome marker genes cluster of differentiation 9 (CD9),
cluster of differentiation 63 (CD63), and cluster of differentiation 81 (CD81)
in HCC and En cell subpopulations and surprised that they were sig-
nificantly overexpressed (Supplementary Fig. 4b). These findings indicated
that HCC cells and En cells are highly likely to realize intercellular com-
munication through exosomes for the promotion of constructing the vas-
cular ecological niche; i.e., HCC cells promoted the specific reprogramming
of Ens in Patient#4. In addition, we demonstrated that the ligand-receptor
interactions in intercellular communication networks contributed to Ens
reprogramming shared among all the patients, in which HCC subclusters
served as the initiation todominateTAMsservedashub for arouse a cascade

Fig. 6 | Dynamic reprogramming of the immune microenvironment accom-
panying the evolution ofHCC and cirrhosis. aUMAPplot showing the immune cell
clusters of HCC4 and CIR4, labeling in different colors. b UMAP plot showing the
subpopulations of macrophages of HCC4 and CIR4, labeling in different colors.
c Pseudo-time series of macrophages polarization in HCC4 and CIR4, Macrophages
subpopulations are labeled by colors. Pie chart showing the proportion of macrophage
subpopulations. d UMAP plot showing the CD8+ T cell subpopulations of HCC4 and
CIR4, labeling in different colors. ePseudo-time series of CD8+Tcell states inHCC4and
CIR4.CD8+Tcell subpopulations are labeledby colors. Pie chart showing theproportion
of CD8+T cells subpopulations. fBubble plot showing the intercellular communications

among the HCC cell, CIR cell, and immune cell subpopulations, with each bubble
denoting the cell identity and line thickness denoting the strength of intercellular inter-
actions. g Circos plot showing intercellular communication network of each HCC cell,
CIR cell, and immune cell subpopulations with a high confidence level, with each arrow
denoting the interaction between the source cell ligand and the target cell receptor, and
the arrow thickness denoting the number of ligand-receptor interaction pairs. h Spatial
feature plot showing the distribution of the co-expression of LGALS9, HAVCR2, and
LGALS9+HAVCR2 in HCC4 and CIR4. See also Supplementary Fig. 3, Supplementary
Table 6 and Supplementary Table 7.
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regulatory immunosuppression (Fig. 7f, g). Then, a GRN of En sub-
populations was constructed and organized into seven modules (Supple-
mentary Fig. 4c), comprising TFs human immunodeficiency virus type I
enhancer-binding protein 1 (HIVEP1), zinc finger protein 585A
(ZNF585A), homeobox protein hox-b5 (HOXB5), and sterol regulatory

element binding transcription factor 1 (SREBF1).HOXB5 and SREBF1have
already been reported to play important roles in promoting En cell migra-
tion and proliferation, and stimulating vascular remodeling62,63. HIVEP1
and ZNF585A are newly discovered tumor vascular endothelial TFs in this
study and observed clearly expressed in spatial blocks (Supplementary Fig.
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4d). Our analysis identified the angiogenesis niche genes were strongly
expressedat the transcriptome, proteome, single-cell, andbulk level (Fig. 7h,
Supplementary Fig. 4e).

We integrated the bulk transcriptome data into an independent cohort
of 7269 HCC patients from the databases of Cancer Genome Atlas Liver
Hepatocellular Carcinoma (TCGA-LIHC), International Cancer Genome
Consortium Liver Cancer-RIKEN, JP (ICGC-LIRI-JP) cohort and Gene
ExpressionOmnibus (GEO) to establish an angiogenesis score based on the
angiogenesis niche gene set (Supplementary Fig. 4f), which was validated
has predictive potential of undesirable overall survival (Supplementary
Fig. 4g).

Unique ecological niche of rapid HCC recurrence
Hepatectomy is themost effective treatment forHCCpatients,whereas high
recurrence rate (50–70% at 5 years) yields a poor long-term survival15. The
relevant spatiotemporal molecular patterns of recurrence are poorly
understood. At the cut-off time of this study, recurrence occurred in
Patients#2 and #5. In particular, Patient#2 experienced rapid recurrence
within 2 months after surgery. Therefore, this case aroused our strong
interest. Firstly, the main functional blocks on the spatial map of Patient#2
were identified, including tumor invasion and metastasis (EMT and focal
adhesion) and hypoxia (HIF-1 signaling) regions (Fig. 8a). Despite invasion
and metastasis-related regions were identified on the spatial maps from all
thepatients, Patient#2 andPatient#5notonlypossessed the aforementioned
characteristics but also shared an active functional region of hypoxia-related
pathways, suggesting a stronger potential for recurrence in these patients.
Notably, Patient#2 showed considerably lower angiogenesis activity than
Patient#5 (Supplementary Fig. 1a), but experienced recurrence earlier. To
further explore this phenomenon, we extracted cell subpopulations of
Patient#2, obtaining a total of 54 cell clusters (Fig. 8b) and identifying the
ecological niche genes of rapid HCC recurrence (i.e., genes expressed in
HCC cells and most other cells of Patient#2 but hardly expressed in other
patients) (Fig. 8c). The expression distribution of these genes in the single-
cell and spatial resolutions were uniformly and strongly expressed, and
exhibited the spatiotemporal consistency at the genome-transcriptome-
proteome level, suggesting a potential regulatory role in the rapid recurrence
ofHCC(Fig. 8d, e, Supplementary Fig. 5a). BasedonFig. 8b–d and literature
review, we discovered that keratin 8 (KRT8), keratin 18 (KRT18), and ker-
atin 20 (KRT20) genes are associated with high aggressiveness in the rapid
recurrence of HCC64–66. To further validate these specific rapid recurrence
niche genes, immunohistochemistry (IHC) was conducted to assess the
protein expression of KRT8, KRT18, and KRT20 in HCC tissues from 32
rapid recurrence patients and 9 recurrence-free patients and the results
revealed that the expression ofKRT8 (P = 0.0272),KRT18 (P = 0.0003), and
KRT20 (P = 0.0169)were significantly increased in rapid recurrencepatients
compared to those with recurrence-free (Fig. 8f). These findings suggested
that KRT8, KRT18, and KRT20 were potential markers of HCC rapid
recurrence.

External validation showed that the ecological niche genes of rapid
HCC recurrence were significantly enriched in an independent cohort of
patientswithHCC fromGEOcompared to the control (Supplementary Fig.
5b). In addition, these genes were integrated for the generation of a relapse
score, which was validated has predictive potential of undesirable overall
survival (Supplementary Fig. 5c).

Discussion
Multiple HCC clinical staging systems have been proposed, but the
accurate prediction of prognosis and guidance on treatment for HCC
patients remain difficult due to the high degree of ITH contributing to
the creation of complex tumor ecosystems67,68. Despite scRNA-seq is
capable to characterize the heterogeneity of HCC on the temporal, but
the research insights into the spatial heterogeneity remain limited69–71.
Here, we developed a single cell-spatial-bulk global heterogeneity
landscape and spatiotemporal dynamic evolution pattern of the eco-
system inHCC. ITH is the definite core driving force of tumor evolution
and results in vastly different therapeutic responses72,73. In our study,
molecular and functional heterogeneous HCC cell subclusters were
adequately manifested at the spatial-single cell-bulk level, and con-
sistently pervaded the genome–transcriptome–proteome–metabolome
networks. Specific metabolites were observed shared among cirrhotic
nodules, HCC lesions, paracancerous tissue, and peripheral blood in
Patient#4, suggesting a relatively conservative trait in the parallel evo-
lution of the cirrhotic nodules, HCC lesions in an individual. Our high-
resolution multi-omics data demonstrated that the high degree of ITH
was mainly attributed to genetic discrepancy among HCC cells.

We found most immune cell subpopulations were shared among all
patients but their proportions were significant different, which is consistent
with the findings of Sun et al. and Zhang et al. 72,73. Besides, differential
distributions of immune cells were clearly exhibited on the spatial maps.
These results demonstrated the composition ratio and spatial distribution of
immune cells specifically contributed to the immune heterogeneity, and
implied the great importance of local microenvironment influence on
tissue-specific remodeling of immune cells. In general, classically activated
M1-TAMs executives multiple antitumor functions74,75. However, in this
study, M1-TAMs were shown to have manifested high tumor-induced
metabolic activities (i.c. amino acid metabolism and glycolysis)23, with
partial loss the primitive anti-tumor functions. Further, metabolic activities
appeared to manifest higher diversification during the M2-TAMs polar-
ization. These results mean that M1-TAMs were highly likely to obtain
tumorigenic phenotypes through metabolic reprogramming in the context
of HCC23,76. In addition, our observations that exhausted CD8+ T, CD4+ T,
and Treg cell subpopulations exhibited consistent transcription signature of
overexpressed immune checkpoint genes CTLA4, PDCD1, and TIGIT is in
agreement with the findings of Fan et al.15, showing a preponderant
counting of cytotoxic CD8+ T cells but the majority had degenerated into
dysfunctional states of immunosuppression and apoptosis. This supports
the generally poor anti-tumor response of different types of tumor-
infiltrating lymphocytes (immuneeffector cells and regulatory cells), leading
to the relatively limited therapeutic efficacy of immune checkpoint inhibi-
tors for HCC77,78.

Mounting evidence indicated that tumor cells possess the ability to
shape environment for favors their growth79,80. In this study, we found that
HCCcells are the core driving force for tumor evolution and actively release
signals to reprogram various immune and stromal cells, especially taming
TAMs as the most important hub cells of the network. In particular, M2-
typeTAMspromoted thedevelopmentof exhaustedCD8+Tcells andTregs
through CD86-CTLA4 receptor/ligand interactions, which further accel-
erated the immunosuppression within the TME. This indicated that HCC
cells drive the synergistic effects with surrounding immune cells to support

Fig. 7 | Ecological niche of angiogenesis in HCC. H&E staining(left), and spatial
cluster distribution of section (middle) labeled by colors, and density plots of specific
gene sets of spatial cluster (right) for HCC3 (a) andHCC5 (b), defined into different
spatial blocks. c UMAP plot showing the endothelial cells for HCC3, HCC4 and
HCC5, with different colors-codes denoting lesions origin (upper) and cell clusters
(down). d UMAP plot showing the distribution of specific markers of each endo-
thelial cell subclusters. e Spatial feature plots showing the expression of selected
markers of each endothelial cell subclusters for HCC3, HCC4, and HCC5. f Bubble
plot showing the intercellular communications among HCC cell, endothelial cell,

and immune cell subpopulations, with each bubble denoting the cell identity and line
thickness denoting the strength of intercellular interactions. g Circos plot showing
intercellular communication network of each HCC cell, endothelial cell, and
immune cell subpopulations with a high confidence level, with each arrow denoting
the interaction between the source cell ligand and target cell receptor, and the arrow
thickness denoting the number of ligand-receptor interaction pairs. h Heatmap
representing the average expression of ecological niche genes of angiogenesis at the
single-cell level. See also Supplementary Fig. 4 and Supplementary Table 8.
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Fig. 8 | Ecological niche of early HCC recurrence. aH&E staining(left), and spatial
cluster distribution of section (middle) labeled by colors, and density plots of specific
gene sets of spatial cluster (right) for HCC2, defined into different spatial blocks.
bUMAPplot showing the cell subclusters ofHCC2 (top) and other tissues (bottom),
labeling in different colors. c Heatmap representing the expression of ecological
niche genes of HCC recurrence at the full-length transcriptome, whole tran-
scriptome, proteome, and single-cell RNA levels. d UMAP plot showing the

distribution of ecological niche genes of HCC recurrence. e Spatial feature plots
showing the distribution of the ecological niche genes of HCC recurrence in HCC2.
f Immunohistochemical staining showing increased KRT8, KRT18, and KRT20
expressions in the resected tumors originated from the rapid recurrence HCC
patients compared to the recurrence-free HCC patients, original magnification,
×200. See also Supplementary Fig. 5.
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tumor development. In most cases, liver cirrhotic lesions usually develop
into dysplastic precancerous nodules through multistep molecular altera-
tion and ultimately progress to early HCC81,82. We obtained valuable spe-
cimens of simultaneous cirrhosis and HCC in individual Patient#4 and
showed the pattern of parallel evolution of these two types of lesions at the
spatial and single-cell resolution for the first time. We identified the com-
mon progenitor cells of cirrhosis andHCC, and observed abundant hepatic
disease signals and HCC signals were activated. This implied a molecular
basis of the onset of HCC that genetic abnormalities had been accumulated
before themalignant transformation. The immune cell types inHCC4were
extremely complex, with Mac and CD8+ T cells possessing 9 and 11 phe-
notypes of each, respectively. Numerous studies have reported that hepatic
Mac cells play important roles in the development and progression of
hepatic diseases83,84. Consistent with the findings obtained from the global
immune maps as described above, Macs still occupy the most important
position in TIME of Patient#4. Development and differentiation of TAMs
were far more complex in HCC lesions than in cirrhotic lesions: HCC4 was
dominated by M1-TAMs, while they exhibited various metabolic repro-
gram activities and oncogenic phenotypes76,85. In contrast, the differentia-
tion of TAMs around cirrhosis was relatively simple: CIR4 was dominated
by M2-TAMs, but they maintained the tissue repair phenotype86,87. These
resultshighlighted the great importanceofdifferent lesion cells in subverting
macrophage function and eliciting discrepant transformation of the
immune microenvironment. In this study, the primitive CD8+ T cells were
progressively positive for GZMB, GNLY, and thymopoietin (TMPO), thus
possessing cytotoxic effects. However, chronic viral infection and cancer are
long-term diseases under the persistent antigen load27,88, which ultimately
forced cytotoxic CD8+ T cells to gradually differentiate into CD8+ T cells
without immune killing, and meanwhile significantly up-regulated its
inhibitory receptors (HAVCR2, CTLA4). The TCR signal pathways were
observed significantly activated, which further demonstrates that persistent
antigen involvement is a predominant factors affectingT cell exhaustion89,90.

The spatial-temporal differentiation trajectory of CD8+ T cells illu-
strated the dynamic game between pathological cells and immune cells.
CD8+ T cells around the two lesions had already manifested the char-
acteristics with strong proliferation, cytotoxicity, and migration since the
evolution origin, suggesting a barrier role of host immunity91,92; but that
around HCC gradually transformed into more lasting and stronger
immunosuppressive effect at the intermediate and later stages of evolution.
Exhausted CD8+ T cells in cirrhotic lesions reverted to cytotoxic
IL7R+CD8+ T cells during the late stages of differentiation; however,
recovery from exhaustion was not observed in HCC lesions. These phe-
nomena once again strongly suggest that different types of lesions exert
different effects on the surrounding immune environment. Most cytotoxic
CD8+ T cells surrounding HCC cells had been weakening their effective
immune response, but through the fine-tuning of the effects to promote the
evolution of the lesions at different stages instead91,92. Notably, we found that
HCC cells directly tamed exhausted CD8+ T cells through strong co-
inhibitory signals provided by the HAVCR2-LGALS9 and CD86-CTLA4
axes. This was validated on spatial transcriptomic maps, indicating the
prominent contributions of these receptor-ligand axes in shaping the
immunosuppressive maps of HCC. Our findings suggest that the interac-
tions between lesion cells and immune cells during the evolution process of
CIR and HCC favor the transformation process towards better survival
fitness through the continuous modification of immune cells, thereby
providing a “safe haven” for lesion cells.

Angiogenesis serves as a vital pathological basis for carcinogenesis and
progression93,94. In this study, only four En subpopulations were identified
from all the patients, among them pathway enrichment analysis revealed a
high similarity of the functional pathways, indicating the existence of a
certain level of phenotypic conservatism in the endothelium among HCC
patients. Furthermore, we observed En subpopulations were subjected to
cascade regulation, with HCC acting as the emitter and TAMs as the
amplifier, indicating that the greater heterogeneity of Ens stemmed from
reprogramming by HCC cells.

High recurrence is themain factor that affects theunfavorable outcome
of HCC patients who have undergone curative surgery82,95. Although
Patients#5 possessed high-risk factors for recurrence such as higher
angiogenic activity and larger tumor size, Patients#2 experienced earlier
recurrence, indicating the presence of heterogeneity in the ecology of HCC
recurrence. We identified a series of ecological niche genes of rapid HCC
recurrence with prognostic significance. These genes were unique to
Patient#2 and characterized by the high level of consistency in expressionon
the spatiotemporal scale, manifesting an abundance of proliferative and
invasive functions. In particular, numerous members of the keratin protein
family genes (KRT8,KRT18,KRT20)were overexpressed, reflecting thehigh
aggressiveness of HCC cells in this patient65,66,96. Subsequently, we validated
the expression of these specific rapid recurrence niche genes inHCCpatient
samples by IHC. The results showed that KRT8, KRT18, and KRT20 were
significantly overexpressed in patients with rapid recurrences of HCC
compared with recurrences-free (all P < 0.05). Therefore, these genes may
serve asmarker genes ofHCC rapid recurrence. In essence, we preliminarily
depicted a potential molecular landscape of HCC rapid recurrence. This
malignant trait is mainly dominated by the natural selection of HCC cells,
once again demonstrating the fact that the ITH is primarily determined by
HCC cells.

In the present study, we constructed single cell-spatial-bulk global
heterogeneity landscapes and spatiotemporal dynamic evolution of the
ecosystem in HCC, indicating that HCC cells possessing morphological
diversity and flexible phenotypic plasticity, are the core driving force for
generating ITH and shaping the tumor environment. Also, we deeply
explored the parallel evolution of cirrhosis and HCC, the unique vascular
ecology, and rapid recurrence ecology. Our data are valuable resource in
further in-depth analysis of the intricate relationships between the spatio-
temporal heterogeneity of HCC and various clinical scenarios, and the
development of individualized precision diagnostic and treatment strategies
for HCC patients in clinical practice.

Methods
Human subject
In this study, seven lesion tissue samples (six HCC tissue samples and one
cirrhotic tissue sample) andpreoperative blood sampleswere collected from
six patients with pathological diagnosis of HCC at different clinical stages
from the Guangxi Medical University Cancer Hospital. A non-carcinoma
liver tissue and blood samples were obtained from one patient (control
donor) who underwent surgical resection for hepatic hemangioma were
used as control. The studywas conductedunder the approval (ApprovalNo.
LW2022040) of the ethics review committee of the Guangxi Medical Uni-
versity Cancer Hospital and has complied with all relevant ethical regula-
tions including the Declaration of Helsinki. All included patients gave their
informed consent to participate. Consent for publicationwas obtained from
all participants.

Hematoxylin-eosin staining and immunohistochemical staining
The tissues of the patients were collected and immediately fixed with 10%
formaldehyde for 12 h. After dehydration, transparency, paraffin embed-
ding, and sectioning (4 µm), they were used for H&E and IHC. All the
staining process was carried out following the manufacturer’s instruction.
H&E stained sections were made under an optical microscope (OLYMPUS
BX43) using an eyepiece ×10 and objective lens ×40 imaging and capturing
images on ImageView 4.15 (Pooher) software. Immunohistochemical sec-
tions were scanned with a Pannoramic Digital Slide Scanner (3DHIS-
TECH). All sections were evaluated by two pathologists without knowing
patient’s clinical characteristics and outcomes.

The following primary antibodies were used to bind specific IHC
proteins: CRP (Bioss, bs-0155R), LGALS4 (Abways, CY7043), NPW(Bioss,
bs-11531R), IFI27 (Affinity, DF8989), CYP2E1 (Bioss, bs-4562R), SAA1
(Bioss, bs-19359R), CA4 (R&D Systems, MAB2186-SP), CYP2E1 (Bioss,
bs-4562R), IDO1(Bioss, bs-15493R), HOXD9 (Bioss, bs-8603R), ANGPT2
(Bioss, bs-0677R) and FLT1 (Bioss, bs-0170R), KRT8 (Bioss, bsm-52419R),
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KRT18 (Bioss, bs-2043R), KRT20 (Bioss, bsm-52060R), and secondary
antibody was Horse Anti-Mouse/Rabbit IgG (Vector, ZF1028). The raw
data from 32 rapid recurrence patients and 9 recurrence-free patients of
HCC has been uploaded (Supplementary file 1).

Multi-omics sequencing
All sequencing of this study was carried out by the BMKcloud (Biomarker
Technologies Corporation, Beijing, China).

Spatial transcriptome sequencing
We performed RNA extraction on frozen embedded tissues stored at
−80 °C to get the RNA and subsequently test its quality. RNA integrity
number (RIN) value ≥ 7, 28S/18S is 1.8–2.0, which indicates that the
extractedRNAhas good integrity and basically no degradation. Then, tissue
optimization was carried out to test whether the samples were suitable for
spatial transcription experiments to explore the optimal penetration time.
Tissue permeabilization and mRNA reverse transcription were carried out
in order to create cDNA, which was then followed by the synthesis and
denaturation of the second strand of cDNA in accordance with the per-
meabilization time established by tissue optimization. By using the qPCR
method, the cycle numberof the cDNAamplificationwas identified, and the
cDNA was then purified and quality checked. The gene expression library
was constructed. The Illumina NovaSeq 6000 was used to sequence the
Visium spatial gene expression library once it passed the quality check. The
original image file obtained offline is converted into Sequenced Reads by
CASAVA through Base Calling, stored in fastq format, and the official 10×
Genomics software SpaceRanger is used for data comparison, gene quan-
tification, and site identification.

Single-cell RNA sequencing
Following the guidelines of the 10× Genomics Single Cell 3’v3.1 kit (Cat#
PN-1000269, 10× Genomics), we prepared the samples and created the
cDNA library. In short, through microfluidic technology, single cells and
reagents required for reaction are wrapped in GEM droplets together with
glue beads with cell tag sequence (cell Barcode) on the chip, collect the
GEMs droplets containing cells. In the GEM droplets, the cells lyse and
releasemRNA,which combines with the cell Barcode primer on the bead to
complete the reverse transcription reaction. Then GEMs were broken,
cDNA was recovered and enriched by PCR amplification, and a cDNA
library was constructed. The insert fragment size of the cDNA library was
detected byQseq400 biological analyzer to confirm that the insert fragment
size was qualified, the peak type was single, there was no heteropeak, no
splice, and no primer dimer. The cDNA product and library concentration
were detected based onQubit 4.0 fluorescence quantitative instrument. The
Illumina NovaSeq 6000 platform was then used to sequence the sample
library. The original picturefiles acquired offline are converted byCASAVA
through Base Calling into sequenced reads and stored in fastq format. The
sequencing results are then compared and quantified using CellRanger, the
official 10× Genomics software.

Full exon sequencing
According to the instructions of Nimblegen Seqcap Ez Exome Enrichment
KitV3 a library of 180–220 bp inserted fragmentswas constructed.After the
construction of the library is completed, Qubit 3.0 was utilized for its pre-
liminary quantification, and for the detection of its insert size, we used
Agilent 2100. Then, qPCRwas performed for accurate quantification of the
effective library concentration (which wasmore than 3 nm), and the library
inspection was completed. After the library inspection is qualified, the two-
terminal sequencing of the Illumina HiSeq platform is carried out based on
the effective library concentration and the amount of target offline output
data. The original image file obtained from off-line is transformed into the
original sequencing sequence (SequencedReads) and stored in fastq format.
Then, data filtering is carried out, including removing the sequence of
adapter, removing the readswithN content greater than 10% and removing
the reads with a base quality value lower than 10more than 50%, and finally

obtaining Clean Reads. The filtered high-quality reads were compared with
the human reference genome sequence (UCSC hg19) using BWA
software97, and then used for subsequent information analysis.

Whole transcriptome sequencing
Each sample’s total RNA was isolated using Trizol (Thermo Fisher Scien-
tific). The Ribo-Zero rRNA Removal Kit (Cat# RZH1046, Epicentre) was
used to remove rRNA from 1.5 μg of total RNA from each sample. The
NEBNextR UltraTM-directed RNA library preparation kit for IlluminaR
(NEB)was used to generate the sequencing library as per themanufacturer’s
instructions and each sample’s attribute sequence had the index code added
to it. As per the manufacturer’s recommendations, the TruSeq PE Cluster
Kitv3-cBot-HS (Illumia) was used on the acBot Cluster Generation System
to cluster the index-coded sample data. We sequenced the library pre-
parations on an Illumina Hiseq platform after cluster creation, and paired-
end reads were produced. Internal Perl scripts were used to initially handle
raw reads in fastq format. In the meanwhile, the clean data’s Q20, Q30, GC
content, and sequence repeat levelwere determined.Asper the readings that
were mapped to the reference genome, the transcriptome was then put
together using StringTie98. Utilizing the gffcompare program99, the assem-
bled transcripts were annotated. CPC2/CNCI/Pfam/CPAT, which can
identify protein-coding genes, was utilized for additional screening on
transcripts longer than 200 nt and having more than two exons.

Full-length transcriptome sequencing
The cDNAPCR sequencing kit (SQK-PCS109) (Cat# SQK-PCS109, Oxford
Nanopore) produced by Oxford nanopore (ONT) technologies was used to
prepare the total RNA for the cDNA library. Simply put, the reverse tran-
scriptase’s template conversion activity enhanced the full-length cDNA and
appended the designated PCR adapter to both ends of the initial strand of
cDNA. Using LongAmp labeling from NEB, fourteen cycles of cDNA-PCR
were run. T4 DNA ligase (NEB) was then used to splice the PCR results.
Agencourt XP beads are employed for DNA purification in accordance with
the ONT procedure. On the PromethION platform, the last cDNA library
was added to FLO-MIN109 flowcells. In the MinKNOW2.2 software
package, base calling is used to transform fast5 format data into fastq format
for storage. The reference genome was then compared to the full-length
sequence using the minimap2 program100. After clustering by comparison
information, the consistent sequencewasobtainedbypinfish software.Using
minimap2, the consistent sequences from each sample were combined and
matched to the reference genome. The findings were de redundant. The
sequenceswith identity andcoverage less than0.9 and0.85, respectively,were
screened, and the comparisons with only 5 ‘exon differences were merged.

Proteome sequencing
According to the experimental requirements, protein extraction, digestion,
and TMT labeling were performed. The obtained peptide fractions were
then divided into 20 μL buffer A (0.1% FA, 2% ACN) and were suspended
and centrifuged at 12,000 rpm for 10min. Nanoflow HPLC system
(Thermo Scientific) and Orbitrap Fusion Lumos mass spectrometer
(Thermo Scientific) were used to inject the 10 μL supernatant. Separate the
sample using the EASY-SprayC18 column after loading it onto theAcclaim
PepMap100 C18 column. In Orbitrap, the mass spectrometer conducts
completeMS scanning in the 300–1500m/z rangewith a 120,000 resolution
while operating in positive ion mode (source voltage 2.1 kV). For MS/MS
scanning, after a full MS scanning, the 20most prevalent ions with different
charge states are chosen for higher energy collision dissociation fragmen-
tation. The database used in this experiment is the Uniprot HUMAN
database (downloaded on April 20, 2019). Proteome Discoverer 1.4 was
used to process MS/MS data.

Metabolome sequencing
From patient tissue and blood samples, metabolites were isolated, and
supernatants were separated for sequencing. The liquid chromatography-
mass spectrometry system for metabolomics analysis is composed of ultra-
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high performance liquid chromatography Acquity I-Class PLUS in series
with Waters high-resolution mass spectrometer Xevo G2-XS QTOF. The
Acquity UPLC HSS T3 chromatographic column (1.8 μm 2.1*100mm)
(Cat # 186003538) used is purchased from Waters. Waters Xevo G2-XS
QTOF high-resolution mass spectrometer collects primary and secondary
mass spectrometry data in MSe mode under the direction of acquisition
software (MassLynx V4.2, Waters). The Progenesis QI program then pro-
cesses the original data for peak extraction, peak calibration, and other data
processing operations.On the basis of the onlineMETLINdatabase101 of the
Progenesis QI software and the self-built database of BmK, the original data
is then recognized. The mass number variation of the parent ion is within
100 ppm,while the fragment ion’smass number deviation iswithin 50 ppm,
according to theoretical fragment identification. Follow-up analysis is per-
formed after adjusting the initial peak area data to the overall peak area.

Generation of the single-cell map and cell-type annotation
The construction of single-cell profiles was performed using the R language
“Seurat” package102. Double cells were first filtered with “DoubletFinder”
(based on the official 10x Assuming 7.5% doublet formation rate) nFea-
ture_RNA> 400 and percent.mt < 20. Next, all single cell data were inte-
grated using the “IntegrateData” function, and the “FindNeighbors” and
“FindClusters” functions for cell clustering and identification of cell clusters.
The clustering results were uniformly downscaled and visualized using a
consistent stream approximation and projection for dimensionality
reduction (UMAP) algorithm103 to generate single-cell profiles. In addition,
marker genes for each cell cluster were identified using the “FindAllMar-
kers” function. Ultimately, cell cluster types were defined and annotated to
the single-cell atlas based on the classical markers of cells identified by
single-cell sequencing, in the laboratory and in the clinic.

Generation of spatial transcriptional profiles
For the spot gene expression matrix generated by “Space Ranger”, we first
performed a conventional statistical analysis, i.e., we calculated the number
of uniquemolecular identifiers (UMIs) and genes detected in each spot. On
this basis, the datawerenormalized by “SCTransform”104 aswell as detecting
highly variable features, and stored in the SCT assay. Subsequently, the data
were downscaled and clustered using the same workflow as for the scRNA-
seq analysis. Ultimately, the results of the clustering were visualised using
“DimPlot” in UMAP space or using “SpatialDimPlot”.

Estimation of copy number variation in single cells
Single-cell CNV was estimated by copy number karyotype analysis
(CopyKAT) of aneuploid tumors105. By integrating the Bayesian technique
with hierarchical clustering, CopyKAT determines the subclonal structure
and estimates the genome copy number distribution of a CellRanger.

Pathway enrichment analysis of Kyoto Encyclopedia of Genes
and Genomes
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was carried out by using the R software package
“clusterProfiler”106. The pathway with P < 0.05 was considered significant.

Gene set enrichment analysis
Gene set enrichment analysis was carried out on the identified recurrent
niche genes using the ClusterProfiler package. P < 0.05was considered to be
significant.

Quasi temporal analysis
The quasi-temporal analysis is carried out by using the R language package
“Monocle 3”107. Through quasi-temporal analysis, the differentiation and
development trajectories of immune cell subpopulations in HCC patients
and the evolutionary trajectories of HCC and CIR cell subclones were
constructed, and the results were visualized by the UMAP method. In
addition, based on the graph test function of Monocle 3, pseudo-time-
related genes, i.e. genes whose expression changes with the clonal evolution

of HCC, were identified, and pseudo-time related genes with a false dis-
covery rate less than 0.05 were chosen for cluster heat map visualization.

Spatial trajectory inference
Spatial trajectory inference is based on stlearn’s pseudo-space-time (PST)
trajectory analysis algorithm108. PST is a development of the widely known
pseudo-time concept commonly used in the analysis of scRNA-seq data. It
aims to identify biological processes based on the gradient changes in tissue
transcription status. Firstly, PAGA35, which is based on the whole tissue
SpatialMorphological gene Expression normalization, gene expression data
was used for trajectory analysis to find the connections within the cluster.
Next, the pseudo time is calculated by the diffusion pseudo time method109.
In this study, the subclones of hepatic progenitor cells based on pseudo-
temporal analysis were defined as roots, and then the pseudo-space-time
distance (PSTD) was calculated. In order to determine the shortest, rooted
tree and branch (trajectory) of the nodes in the connection graph, we built a
directed graph using the adjusted PSTD matrix and optimized it using the
directed minimum spanning tree algorithm.

Gene regulatory network
The GRN with transcription factors as the core was implemented using
Python module tool pySCENIC110.The workflow of the tool begins with a
counting matrix that describes the cells’ gene abundance, including three
stages. The coexpression module is first inferred using each objective
regression method (GRNBoost2). Next, utilizing cis-regulatory motif dis-
covery (cisTarget), indirect targets are removed from these modules. The
enrichment fraction of the regulator target gene (AUCell)wasfinally used to
measure the activity of these regulators. The nonlinear projection approach
may be used to represent the visual grouping of cells on the basis of the cell
activity patterns of these regulators.

Cell communication analysis
Cell communication analysis was performed using the R language iTALK
package111. In order to uncover significant intercellular communication
events, ITALK identifies highly expressed or differentially expressed genes
in cell clusters, and matches and pairs these genes through the ligand-
receptor database.

Gene set score estimation and survival analysis
The scores of the angiogenic niche gene set and recurrent niche gene set of
HCCpatientswere calculatedby using theAddModuleScore function of the
Seurat package. Subsequently, in order to evaluate the prognostic efficacy of
gene set scores for HCC, survminer112 an R language package, was used for
survival analysis.

Data analysis and statistics
All Bioinformation analysis in our research is based on the Bioinforcloud
platform (http://www.bioinforcloud.org.cn).

Data availability
The accession number for the processed expression data of scRNA-seq, ST-
seq, whole exome sequencing, whole transcriptome sequencing, full-length
transcriptome sequencing, proteome sequencing, and non-targeted meta-
bolomics sequencing reported in this paper is HRA002748 (https://ngdc.
cncb.ac.cn/gsa-human/browse/HRA002748). Further information and
requests for reagents should be directed to and will be fulfilled by the Lead
Contact, Rong Liang (email: liangrong@gxmu.edu.cn).
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