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With the resource development gradually into the deep, rock explosion phenomenon is more and 
more frequent. The suddenness and harmfulness of rockbursts threaten the safe development of 
underground resources. In order to more accurately predict the possible intensities of rockbursts 
in specific rock conditions and stress environments, the rock mechanical and stress parameters 
between different intensities of rockbursts are further explored, an AdaBoost model considering the 
differences in the hierarchy is established, and a Flash Hill-Climbing method is proposed to optimize 
the hyperparameters in the classification model. Finally, a misclassification difference index (MCDI) 
is defined to quantitatively characterize the severity of misclassification. The results show that the 
accuracy of the Improved AdaBoost model is about 2.3% higher than that of the Normal AdaBoost 
model, and the Misclassification Difference Index (MCDI) of the Normal AdaBoost model is 05, while 
the the Improved AdaBoost model is 00. The model can provide a theoretical reference for rockburst 
prediction.
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Rockbursts are generally defined as the sudden release of strain energy stored in the rock following an excavation 
disturbance, causing the rock to break apart and eject fragments1. The suddenness, hazardous nature, and 
unpredictability of rockbursts make them a major hazard that hinders the development of deep mining.

Domestic and international research on the impact and control of rockburst tendency to use theoretical 
analysis, indoor and outdoor tests and numerical simulation and other methods. Fu Y et al.1 conducted 
uniaxial compression tests on coal samples to investigate the effect of different filling holes on the strength and 
deformation resistance of the coal body.Zhao Tongbin et al.2 investigated the energy release characteristics of 
different fracture mechanisms in rocks by means of acoustic emission signals from the test output.Song Shikang 
et al.3 also utilised the acoustic emission principle to study crack extension and fracture patterns in brittle coal. 
It can be seen that the experiments focus more on specific qualitative descriptions to achieve predictive control 
of rockbursts from a mechanistic point of view.

Unlike the above mentioned, Li J. et al.4 used the coupled method of similar simulation test and discrete 
element simulation to study the destructive deformation process of coal seam roof.Deng Daixin et al.5 
established an integrated monitoring system covering the process of rockfall and obtained synergistic features 
that can be used as precursor information for rockbursts.Tan Yunliang et al.6 constructed a model with key 
control parameters to investigate the link between residual coal pillars and rock damage instability during multi-
seam mining. Liu Tingting et al.7 established a numerical model of biaxial Hopkinson rod test system by using 
the coupled finite element method-discrete element model to study the dynamic mechanical properties and 
damage characteristics of intersecting jointed rock bodies with different joint distributions under peripheral 
pressure.Zhenyu Han et al.8 developed a series of discrete element models to investigate the effect of orifice shape 
on dynamic mechanical properties and crack evolution. Numerical simulation methods can be more intuitive 
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through the software to simulate the process of energy aggregation, transfer and release of rock damage, and 
then predict the rock explosion, but due to the difficulty of describing the complex non-homogeneous nature 
of the rock, which limits the reliability of its prediction. Exploring more efficient and accurate rock explosion 
prediction methods is an important way to develop technology to control rock explosion disasters.

Single-learner prediction, integrated-learner prediction, and deep-learning algorithms have proliferated in 
recent years, providing a data-driven means for rockburst prediction9. Man Singh Basnet et al.10 proposed that 
rockburst prediction is categorized into long-term prediction and short-term prediction. Long-term prediction 
relies on environmental factors such as the magnitude of ground stress, rock properties, etc., to determine 
the probability of rock bursts and the intensity of rock bursts at the beginning of the excavation; Short-term 
predictions to determine the probability and intensity of rockbursts are based on microseismic monitoring 
data, etc. In a comparison of the two types, long-term predictions are slightly more fruitful. Ghasemi et al.11 
used C5.0 decision tree to develop two predictive models, one to predict rockburst occurrence and the other to 
predict rockburst intensity. The results of the study showed an accuracy of 91.1% for intensity prediction and 
89.29% for probability of occurrence prediction. Li et al.12 and Xue et al.13 used an extreme learning machine 
to predict rockburst intensity and adopted an intelligent optimization algorithm to quickly find the optimal 
hyperparameters to achieve favorable prediction accuracies of 80.87% and 97%, respectively. The former was 
predicted using three parameters: rock brittleness coefficient (BCF), rock stress coefficient (SCF) and strain 
energy storage index; the latter was predicted using a total of six indices: uniaxial compressive strength (UCS), 
uniaxial tensile strength (UTS) and minimum tangential stress (MTS) in addition to the three indices mentioned 
above. Li et al.14 considered seven parameters affecting rockburst destruction and, in conjunction with the rock 
engineering systems paradigm and neural networks, proposed a Rockburst Damage Scale Index (RDSI) for 
rockburst assessment, achieving an accuracy of 71% across 24 test cases. Xie et al.15 used an XGBoost model 
based on genetic algorithm optimization to study the effect of different numbers of indicators on prediction 
accuracy, and the results showed that the best combination of indicators was to use all six indicators. Ma et al.16 
and Xu et al.17 used a feature selection algorithm to pre-process rockburst data to create feature variables for 
rockburst prediction. Probabilistic neural networks and random forest models, both with over 90% accuracy, 
were used to predict the processed data. Sun et al.18 used an oversampling technique to balance the dataset, 
followed by the generation of new data features using a polynomial feature function to filter the most important 
features based on a data dimensionality reduction algorithm. Finally, multiple prediction algorithms were used 
to make predictions. The results show that the accuracy of the dataset processed by data structure appears to 
be somewhat improved. Li et al.19 established four Naive Bayes statistical learning models with preset prior 
distributions for the assessment of rockburst hazards, and the results show that the Bayes statistical learning 
model based on Gaussian prior has the strongest performance.

All of the above studies used a single prediction model for prediction, and a large number of studies have 
shown that integrated prediction models tend to have better fitting accuracies. Xue et al.6 used Particle Swarm 
Optimization (PSO) to optimize the input weight matrices and hidden layer deviations of the ELM, using all 
six parameters for training. The model was then tested on a set of 15 typical rockburst cases from a hydropower 
plant on the Yangtze River in China, and showed superior performance. Saha et al.20 developed a classification 
model combining a deep learning neural network (DLNN) and a support vector machine (SVM) for rockburst 
prediction and compared the results with those of individual model predictions. The results demonstrated that 
the integrated model outperformed the individual models, achieving an accuracy of 91.44%. Cui et al.21 employed 
a stacking integration strategy, wherein three models-gradient boosting decision tree (GBDT), bagging tree, 
and XGBoost-were utilized in the initial layer. The second layer employed a GBDT model to learn the outputs 
derived from the initial layer, subsequently generating the final decision. This decision was then combined with 
the group intelligent optimisation algorithm to optimize the relevant hyperparameters. The results demonstrate 
that the model is capable of achieving high levels of prediction accuracy. Li et al.22 and Yan et al.23 employed a 
stacking integrated SVM model to classify and predict rock bursts, with the objective of identifying the optimal 
hyperparameters. To this end, Grid Search and K-fold cross-validation were employed to ascertain the most 
effective parameters. Lyu et al.24 developed an integrated classifier for two-layer support vector machines, which 
uses feature engineering to classify the collected data parameters into two groups, which are separately classified 
using SVM, and finally the classification results are synthesised to obtain the classification results. Wang et al.25 
proposed a layer-by-layer stacking model of AK-LS-SVM classifiers embedded with transfer learning, where the 
output of the previous layer of classifiers is used as the input of the next layer of classifiers, thus continuously 
refining more abstract data. Li et al.26 used three combination strategies of voting, packing and stacking to 
combine multiple integrated tree models and compared them with single integrated tree models. The results 
show that the best accuracy of a single integrated tree is 85.71%, while the model that combines XGBoost, 
ET and Random Forest (RF) by voting achieves the best accuracy of 88.89%. Qiu et al.27 used sandcat swarm 
optimisation and extreme gradient boosting to predict the damage level of rockbursts with a prediction accuracy 
of 88.46%. R. and M. et al.28 improved the updating rule of the sample weights for the cost-sensitive boosting 
algorithm proposed by Wang, so that the distance of each misclassified point relative to the center of its own 
group determines different weight values. The results showed that the strategy achieved better results.

Arsalan et al.29 used numerical modelling in the Abaqus software environment to generate 300 datasets 
to show the effect of faults on the rockburst phenomenon in tunnels, and the results showed that the risk of 
rockbursts is greatly increased if the location and strike of faults around deep tunnels cause high stresses. The 
commonly used rockburst prediction models are summarised in Table 1.

In summary, integrated classification models have attracted a lot of attention in recent years due to their 
higher accuracy and wider applicability, and their potential is being fully exploited. For the rockburst prediction 
problem, the label of the rockburst implies the level difference, and this information is often ignored. Therefore, 
an AdaBoost model that takes into account the misclassification difference is developed to classify rockburst 
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data. A quantitative evaluation metric is proposed to characterize the misclassification difference of the model, 
providing a new methodological approach to rockburst prediction.

Previous machine learning models on the rockburst domain had no special treatment when performing 
weight updates for different misclassification results. Thus the machine learning domain of predicting 
rockburst intensity does not define the degree of misclassification. However, in actual predictions, different 
misclassification bring different levels of error. The same treatment of different classifications affects the accuracy 
of rockburst predictions. Therefore, this paper designs Improved AdaBoost model based on Normal AdaBoost 
model considering different error severity and proposes misclassification difference index (MCDI) to measure 
the severity of misclassification.

In Sect. 2, Data Information is presented, which contains information about the data source, classification 
and included data; Sect.  3 develops an optimisation algorithm and proposes the fundamentals of Improved 
AdaBoost model; Sect. 4 is showing and comparing the prediction results and the importance of the index; In 
Sect. 5 misclassification difference index (MCDI) is proposed in order to measure the misclassification and this 
is used to analyse the three prediction models; Sect. 6 is conclusion.

Data information
In this paper, the data for the rockburst intensity prediction study originate from 240 datasets of rockburst data 
shared by Xie et al. Some data are showed in Table 2. The data set contains six metrics to measure the probability 
of rockburst intensity: minimum tangential stress (MTS), uniaxial compressive strength (UCS), uniaxial tensile 
strength (UTS), stress ratio (SCF), brittleness coefficient (BCF) and elastic energy index (Wet).

The data size distribution range of each indicator is not consistent. In order to analyse the distribution of 
the data and to facilitate subsequent forecasting, each indicator is normalised separately. The distribution of the 
indicator data after normalisation is presented in Fig. 1.

In addition to the indicator data, the dataset contains a set of labels, namely rock burst intensity. The rockburst 
intensities were classified into four levels: None, Light, Moderate and Strong. The number and percentage of each 
rockburst intensity are shown in Fig. 2.

The varying intensities of rockbursts are contingent upon the disparate ranges of data distributions observed 
across the six indicators previously outlined, in addition to the interactions between them. As illustrated in 
Fig. 3, the distribution of the data pertaining to the six indicators across each intensity label for rock bursts. 
The horizontal axis represents the range of data sizes for this indicator, while the vertical axis represents the 
corresponding number density at a fixed value for a given category. As illustrated in the figure, MTS and Wet are 
able to distinguish between all four categories of rockburst intensity. UCS and SCF exhibit a clear characterisation 
of the no-rockburst scenario, while there is no clear differentiation between the other three categories. UTS can 
divide the dataset into two categories, one consisting of no rockbursts and minor rockbursts, and the other 
consisting of moderate rockbursts and intense rockbursts; whereas BCF does not make a clear distinction 
between the four categories.

The principle and construction of the model
Flash Hill-climbing method
The Hill-Climbing algorithm is an efficient optimisation algorithm that calculates the height of each “climber” in 
front of, behind and to the right of the climber in order to guide the climber to the summit of the mountain. The 
algorithm is straightforward and efficacious, although it does present a significant challenge: it tends to adhere 
to each mountain, making it difficult to identify the highest peak in the region. Upon reaching the summit of a 
mountain, the climber’s position is reset, initiating a new climb. This process greatly enhances the probability 
of identifying the highest peak, akin to a constantly blinking indicator. To prevent the re-climbing process from 
becoming circular, it is necessary to create a map that records the status of all paths across the entire map. Only 
when a location has not yet been explored should it be selected as a potential landing spot for the next step. 

Construction method Model source Accuracy rate/%

C5.0 decision tree Ghasemi et al.11 89.29

extreme learning machine Li et al.12 and Xue et al.13 80.87

Probabilistic neural networks Ma et al.16 90

Random forest models Xu et al.17 90

DLNN/SVM Saha et al.20 91.44

Single integrated tree Li et al.26 85.71

XGBoost/ET/RF Li et al.26 88.89

sandcat swarm optimisation /extreme gradient boosting Qiu et al.27 88.46

RF/GBDT/XGB/PCC Zhang et al.30 75.08

AdaBoost Ma Ke31 93.8

t-SNE/ K-means clustering/XGBoost Ullah Barkat et al. 32 89

APSO/SVM Li Yuefeng et al.33 95

C4.5 decision tree algorithm Wang Yanbin et al.34 71.43

Table 1. Common rockburst prediction models.
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In this manner, by ascending and repositioning themselves, climbers can traverse as many routes as possible, 
thereby exploring the largest possible area and thus identifying the highest peak. The deployment of multiple 
climbers in concert enables the identification of the optimal position with greater efficiency.

The improved climbing algorithm possesses three key points:
①A climbing rule that only goes higher up;
②Reset its position when there is no way to climb;
③A map that saves all the position states.
The algorithm works as shown in Fig. 4. The flow of the algorithm is shown in Table 3.
In the table X, Y represent the search range, random (X, Y) means to generate a set of random numbers in the 

range of (X, Y), and G is a map that records the search status of all points in the range. The function f (x, y) is a 
fitness function, or an accuracy function, if it is set to an error rate function, the algorithm needs to be changed 
to a downward walk. By constantly climbing and constantly blinking, it is possible to walk over every peak in 
the range as far as possible.

Improvement of weight update algorithm for AdaBoost model
The AdaBoost (Adaptive Boosting) model is an integrated learning method that consists of a more powerful 
strong classifier, created by integrating multiple weak classifiers. The weak classifier h1(x) is initially trained 
using samples with equal sample weights. Based on the classification results of the weak classifier h1(x), the 
misclassified samples are given higher weights, while the correctly classified samples are given lower weights. 
This process draws attention to the misclassified samples at the next classifier h1(x), and a more specific classifier 
is subsequently trained. A weight is assigned to each classifier based on its error rate, indicating the importance 
of this classifier in determining the final classification result. Repeating these steps, multiple classifiers are 
trained, and these classifiers are accumulated according to the weights of the previously obtained classifiers to 
obtain the final desired strong classifier, as shown in the principle in Fig. 5.

However, the traditional AdaBoost model treats any misclassification result equally. During the process 
of updating the weights, only the determination of whether the current sample is correctly classified is made, 
while the degree of misclassification is not defined. However, in rockburst intensity prediction, the degree of 
absurdity brought by the misclassification of None category into Light category and misclassification into Strong 
category is not the same, which can cause serious misclassification of the real situation. Consequently, greater 
consideration should be given to this significant misclassification when sample weight updates are conducted, in 
order to ensure that the necessary attention is drawn to this issue.

The formula for calculating the weights of each subclassifier in the AdaBoost algorithm is:

 
αm = log

(
1− em
em

+ log (L− 1)

)
 (1)

No Project MTS UCS UTS SCF BCF Wet

Rockburst
Intensity

Rockburst
Code

1 Diversion Tunnels of Yuzixi Hydropower Station 90 170 11.3 0.53 15.04 9.00 Moderate 3.00

2 2# Sub Tunnel of Ertan Hydropower Station 90 220 7.4 0.41 29.73 7.3 Light 2.00

3 Underground Cavern of Taipingyi Hydropower
Station 62.6 165 9.4 0.38 17.53 9.00 Light 2.00

4
Underground powerhouse
of
Laxiwa Hydropower
Station

55.40 176.00 7.30 0.32 24.11 9.30 Moderate 3.00

5 Diversion Tunnels of Tianshengqiao -II Hydropower
Station 30.00 88.70 3.70 0.34 23.97 6.60 Moderate 3.00

6
Underground Powerhouse
of
Nor-wegian Sima Hydropower Station

48.75 180.00 8.30 0.27 21.69 5.00 Moderate 3.00

7 Diversion Tunnels of
Swedish VietasHydropower Station 80.00 180.00 6.70 0.44 26.87 5.50 Light 2.00

8 Japanese Guanyue Tunnel 89.00 236.00 8.30 0.38 28.43 5.00 Moderate 3.00

9 Diversion Tunnels of Jingping Hydropower
Station 98.60 120.00 6.50 0.82 18.46 3.80 Moderate 3.00

10 Italian Raibl Lead Zinc
Sulfide Working 108.40 140.00 8.00 0.77 17.50 5.00 Strong 4.00

11 Soviet Rasvumchorr
Workings 57.00 180.00 8.30 0.32 21.69 5.00 Moderate 3.00

……

240
Cooling Diversion Tunnels
of Swedish Forsmark
Nuclear
Power Station

50.00 130.00 6.00 0.38 21.67 5.00 Moderate 3.00

Table 2. Partial rockburst data.
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Where L is the number of categories and em is the training error of the m-th classifier on the training set, which 
is calculated as:

 
em =

N∑
i=1

wmisign (ŷi ̸= yi) (2)

Where N is the number of samples, ŷi is the predicted value of the i-th sample and is the true value of the i-th 
sample, sign (ŷi ̸= yi) generates True or False, i.e. a value of 0 or 1, based on the judgement result. wmi is the 
weight corresponding to the i-th sample on the m-th classifier. The update formula for the weights is:

 wm+1,i = wm,ie
αmwm,isign(ŷi ̸=yi) (3)

The weight update formula above is the way commonly used in multi-classification tasks and the way 
implemented in the sklearn library. However, this update method does not treat each misclassification type 
differently, as described above. The samples with the worst misclassification type are given a higher weight to 
reflect their absurdity. Therefore, some changes are made to Eq. 3:

 
wm+1,i =

wm,i

Zm
eαmwm,i

√
(ŷi−yi)

2

 (4)

The formula Zm =
N∑
i=1

wm,i serves to keep the sum of the weights equal to 1. The Euclidean distance is used 

to define the gap between two categories, and ensures both the positive qualitative nature of the results. The 
differences between the categories are sufficiently differentiated by the Eq. 4.

Fig. 1. Distribution of indicator data.
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The construction of AdaBoost models
AdaBoost is an integrated model consisting of several identical weak classifiers combined. Improved AdaBoost 
(IAB) and Normal AdaBoost (NAB) models are built, consisting of 10 SVM models, where the sample weight 
formula for IAB is defined by Eq. 4 and the sample weight formula for NAB is the standard form, (i.e. Equation 3). 
Meanwhile, to compare the effect of the integrated model, another SVM model is built to perform the same 
training and classification tasks. Five metrics, MTS, Wet, UCS, SCF and UTS are used in the dataset.

The hyperparameters of the IAB, NAB and SVM models are C and γ. The number of classifiers of the 
integrated model is fixed to 10, and all the internal weak classifiers use the same hyperparameters. The two 
parameters are optimised using the proposed Flash Hill-Climbing algorithm, and the 5-fold cross-validation 
results are used as the target accuracy, as shown in Fig. 6.

The comparison of forecast results and model features
The comparison of model predictions
In order to perform the model training, both IAB and NAB use a combination of 10 SVMs. The accuracies 
achieved by the respective training sets of the 10 classifiers are presented in Fig. 7. As illustrated in the Fig. 7, the 
initial classifiers exhibit a relatively low degree of accuracy, with the accuracy of subsequent classifiers reaching 
a level of approximately 90% as the weights of misclassified samples continue to increase. When considered 
collectively, the accuracy of the classifiers within the NAB is slightly inferior to that of the IAB. The suggests that 
the improvements to the weighting formulae have a positive impact.

Figure 8 illustrates the performance of IAB, NAB and SVM on the test samples. When the sign of the model is 
in alignment with the true label, it can be inferred that the sample has been correctly predicted. Table 4 presents 
the statistical analysis of the accuracy of each model on the test set. From the figure and table, it can be seen that 
IAB performs slightly better than NAB, and SVM performs generally on the test set, which is a limitation of the 
weak classifier itself. Therefore, the integrated classifier can effectively improve the classification accuracy. And 
the accuracy is also improved, after updating the sample weight formula for rockburst data which has a level 
difference of labels.

Fig. 2. Data intensity classification percentage chart.
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The comparison of model features
The radar chart of feature importance for IAB, NAB and SVM is shown in Fig. 9. From the figure it can be seen 
that for IAB the most important metric is Wet followed by MTS with importance values of 0.301 and 0.282 
respectively.For NAB the importance level of Wet and UTS is higher with values of 0.322 and 0.224 respectively.
The SVM model has a higher degree of importance for UTS at 0.288, followed by Wet with a value of 0.233, 
which is significantly different from the other two models.The UCS indicator simultaneously possesses the lowest 
importance in all three models.The order of importance of IAB and NAB is also in line with the findings of the 
previous data distribution information.The higher importance of UTS and SCF in SVM may be misleadingly 
related to the high density of data without rockbursts.

Fig. 3. Distribution of data for different indicators.
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Figure 10 illustrates the path diagrams of the five points in Flash Hill-Climbing algorithm. From the figure, 
it can be observed that the five points have a large number of continuous paths in the lower region, while in the 
middle region they are all just intermittent steps, indicating that in the middle region there are just some bumpy 
hills. The paths travelled by the 5 points are evenly spread throughout the region, enabling the search for each 
peak as far as possible, which effectively avoids locally optimal solutions and thus searches for globally optimal 
solutions. This method is comparatively straightforward and efficacious in comparison to other optimisation 
algorithms. Upon examining the color coverage area, it can be postulated that extending the search in a downward 
direction may prove to be a more fruitful endeavor. Nevertheless, the outcomes of numerous experiments have 
indicated that continuing the search downward will likely result in a significant degree of overfitting.

Indicators of the degree of variation in projected results
Construction of indicators of the degree of variability of the projected results
The confusion matrix is a frequently employed tool for illustrating the precision of the classification outcomes. 
The confusion matrices for IAB, NAB, and SVM model are presented in Fig.  11, and Table  5 displays the 
corresponding accuracies for these three models. In order to provide a more detailed description of the 
misclassification difference, it is defined that when the predicted label and the true label are separated by x labels, 
it is defined (x + 1)-order classification error. By analogy, the misclassification of a None label as a Strong label 
is referred to as the third-order classification error. Similarly, the correctly classified case can be referred to as 
the 0-order classification error. From the data in Table 5, it can be found that the classification accuracy of IAB 
has slightly increased. From the Fig. 11, the IAB misclassifies samples close to the diagonal and produces only 
first-order classification errors; second-order classification errors occur in both the NAB and the SVM model; 
third-order classification errors occur only in the SVM model.

In order to quantitatively measure the degree of misclassification variance, it is necessary to define a 
misclassification difference index (MCDI) in the form of a sum of squares.

Flash Hill-Climbing algorithm

1. Initialise multiple climbers positions
x1, y1 = random(X, Y); x2, y2 = random(X, Y);…; xn, yn =random(X, Y)
2. Find locations around each point that can be moved:
if G(temp_x, temp_y) = = 0 and 0 ≤ temp_x ≤ X and 0 ≤ temp_y ≤ Y
3. Calculate the highest position among the movable points around the climber and move over it

xn, yn = arg max(f(xn, yn), f(temp_x, temp_y))
G(xn, yn) = 1
4. If there are no moving points in the vicinity, or if there are no higher points, the position of the point is reset.
xn, yn = random(X, Y) and G(xn, yn) = = 0
5. Repeat 2 ~ 4 steps to a certain number of steps or to reach the set accuracy

Table 3. Flash Hill-climbing algorithm.

 

Fig. 4. Schematic of Flash Hill-Climbing algorithm.
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MCDI =

1

N

N∑
i=1

(ŷ − y)2 (5)

As in Eq. 5, the squared form is employed to artificially widen the gap between classes. In the event of a first-
order classification errors, the MCDI is equal to 1. In the case of a second-order classification errors, the MCDI 
widens to a factor of 4. In the most extreme case, where a third-order classification errors has been produced, a 

Fig. 6. 5-fold cross-validation schematic.

 

Fig. 5. Principle of AdaBoost model.
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factor of 9-times gap is produced. However, in terms of the consequences of classification errors, it is important 
to note that a single serious classification error does not equate to numerous minor errors. If thousands, or even 
millions, of classifications of rockburst samples were performed, the 4-times and the 9-times difference would 
be rapidly diluted by the sample size. Consequently, this method of defining the metric is not sufficiently robust.

A developed misclassification difference index
As illustrated in Fig. 12, the numbers in the black circles represent the 0-th order classification errors, designated 
as DL0, the orange circles represent the first-order classification errors, designated as DL1, and so on. The primary 
objective of establishing the MCDI is to quantify the proportion of second-order and third-order classification 
errors. The following definitions are provided:

 
MCDI = ceil

(
DL2

DL1 +DL2 +DL3
× 10

)
+ ceil

(
DL3

DL1 +DL2 +DL3
× 10

)
× 10 (6)

The Equation ceil(·) is the upward rounding function. In general, the MCDI calculation produces a two-digit 
number, with the single-digit number and the ten-digit number consisting of two parts, which are separated by 
a plus sign on the right side of the equals sign of Eq. 6, respectively. The left part is the ratio of the second-order 
classification error to the total, multiplied by 10, and then rounded to produce a single-digit number. The right 
part is the ratio of the third-order classification error to the total, and ultimately multiplied by 10 to form the 
ten-digit number of the MCDI. The advantage of this approach is that there is no longer an order of magnitude 
equivalence between the misclassification difference. If DL2 or DL3 is 0, the corresponding value is also set to 0. 
However, when the percentage of DL2 or DL3 reaches 0.9 or above, this indicator is no longer effective, and it is 
therefore necessary to examine the classifier in order to identify the cause of the numerous classification errors 
that it is generating. Table 5 presents the MCDI for the IAB, NAB and SVM.

Fig. 7. Comparison of the prediction accuracy of individual classifiers in the IAB model and the NAB model.
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Table  6 demonstrates that the IAB does not generate second-order classification errors or third-order 
classification errors, whereas the SVM model produces third-order classification errors. Furthermore, the 
percentage of second-order classification errors is less than that of the NAB. By combining the MCDI with the 
accuracy rate, it is possible to gain a comprehensive understanding of the classification effect of a classifier.

Conclusions
For data such as rockbursts, where labels have obvious hierarchical relationships and level difference, a regularized 
weighting formula based on the AdaBoost model that takes into account the disparity of label is proposed. An 
optimization algorithm named Flash Hill-Climbing algorithm is used to find the optimal hyperparameters, and 
the results of 5-fold cross-validation are used as the objective of the optimization algorithm to avoid overfitting 
phenomenon as much as possible. Finally, a quantitative characterization of the misclassification difference 
of the model is proposed to reflect the performance effect of the classifier in level difference data. The main 
conclusions are as follows:

(1) A total of 240 sets of rockburst data were collected, and the percentages of rockburst cases in the four 
intensities were 18.3%, 29.6%, 37.5%, and 14.6%, respectively. Of the six parameters, MTS and Wet are the most 
effective at differentiating between the four categories of rockburst intensity; UCS and SCF distinguish between 
no rockbursts; UTS can distinguish between one category consisting of no rockbursts and minor rockbursts, and 
another category consisting of moderate rockbursts and intense rockbursts; BCF does not distinguish clearly 
between the four categories.

(2) The weight update formula in the AdaBoost model has been modified, and two new algorithms have 
been proposed: the Flash Hill-Climbing algorithm for optimising hyperparameters and the improved integrated 
classification model considering the level difference. The classification accuracies of the test set for the IAB, NAB, 
and SVM are 88.9%, 86.1%, and 56.9%, respectively. The results demonstrate the improved classification of the 
IAB.

Model Correct Number Error Number Accuracy

Improved AdaBoost 64 8 88.9%

Normal AdaBoost 62 10 86.1%

SVM 41 31 56.9%

Table 4. Correctness of each model on the test set.

 

Fig. 8. Performance of IAB, NAB and SVM on test samples.
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(3) In order to quantitatively characterize the misclassification difference, an MCDI parameter is proposed to 
reflect the classification effect of the classifier on the level difference data. It consists of two digits, the first digit 
characterises the proportion of second-order classification error, the tenth digit characterises the proportion of 
third-order classification error, and there is no equivalence between the classification errors of the three levels, 
so that the classification effect can be independently represented.

Limitations
Compared with the results of these previous studies, our model achieves good results. However, the best results 
may not be achieved due to the differences in the performance of the model itself and the quality of the training 
data, which is also our future work plan.

Fig. 9. Radar chart of the importance of the five indicators.
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Fig. 10. Path diagram of 5 points in the scintillating mountaineering algorithm.
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Model Correct Number Error Number Accuracy

Improved AdaBoost 151 17 89.8%

Normal AdaBoost 148 20 88.1%

SVM 102 66 60.7%

Table 5. Accuracy of the training set.

 

Fig. 11. Classification error plots for the three models.
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