Skip to main content
. 2024 Nov 15;14:28232. doi: 10.1038/s41598-024-79141-4

Table 1.

Common rockburst prediction models.

Construction method Model source Accuracy rate/%
C5.0 decision tree Ghasemi et al.11 89.29
extreme learning machine Li et al.12 and Xue et al.13 80.87
Probabilistic neural networks Ma et al.16 90
Random forest models Xu et al.17 90
DLNN/SVM Saha et al.20 91.44
Single integrated tree Li et al.26 85.71
XGBoost/ET/RF Li et al.26 88.89
sandcat swarm optimisation /extreme gradient boosting Qiu et al.27 88.46
RF/GBDT/XGB/PCC Zhang et al.30 75.08
AdaBoost Ma Ke31 93.8
t-SNE/ K-means clustering/XGBoost Ullah Barkat et al. 32 89
APSO/SVM Li Yuefeng et al.33 95
C4.5 decision tree algorithm Wang Yanbin et al.34 71.43