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This research explores the design of an infrared (IR) photodetector using mercury cadmium 
telluride (Hg1–xCdxTe). It proposes two- and three-dimensional homojunction models based on p+-
Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te, focusing on applications in the long-wavelength infrared range. 
The photodetector’s performance is analyzed using Silvaco ATLAS TCAD software and compared 
with analytical calculations based on drift-diffusion, tunneling, and Chu’s approximation techniques. 
Optimized for operation at 10.6 μm wavelength under liquid nitrogen temperature, the proposed 
photodetector demonstrates promising optoelectronic characteristics including the dark current 
density of 0.20 mA/cm2, photocurrent density of 4.98 A/cm2, and photocurrent density-to-dark current 
density ratio of 2.46 × 104, a 3-dB cut-off frequency of 104 GHz, a rise time of 0.8 ps, quantum efficiency 
of 58.30 %, peak photocurrent responsivity of 4.98 A/W, specific detectivity of 3.96 × 1011 cmHz1/2/W, 
and noise equivalent power of 2.52 × 10–16 W/Hz1/2 indicating its potential for low-noise, high-
frequency and fast-switching applications. The study also incorporates machine learning regression 
models to validate simulation results and provide a predictive framework for performance 
optimization, evaluating these models using various statistical metrics. This comprehensive approach 
demonstrates the synergy between advanced materials science and computational techniques in 
developing next-generation optoelectronic devices. By combining theoretical modeling, simulation, 
and machine learning, the research highlights the potential to accelerate progress in IR detection 
technology and enhance device performance and efficiency. This multidisciplinary methodology 
could serve as a model for future studies in optoelectronics, illustrating how advanced materials and 
computational methods can be utilized to enhance device capabilities.
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The field of infrared (IR) sensing has made remarkable advancements, driven by the demand for photodetectors 
with enhanced sensitivity, wider spectral coverage, and enhanced operational efficiency. Among the various 
materials investigated for IR photodetection1–6, mercury cadmium telluride (Hg1–xCdxTe) has emerged as a 
leading candidate for next-generation high-performance IR photodetectors. Its prominence arises from a 
combination of favorable properties, including an adjustable bandgap, low leakage current, high photon 
absorption coefficient, improved stability, reduced thermal generation rate, moderate dielectric constant for 
minimal device capacitance, superior lattice matching for high-quality crystal growth, low thermal expansion 
coefficient for device stability, and advantageous optoelectronic characteristics7–14.

IR photodetectors have found widespread applications across various sectors. These include military uses, 
optical communications, civilian applications, thermal and biomedical imaging, remote sensing, missile 
guidance systems, fire detection, gas sensing, satellite-based remote sensing, motion detection, spectroscopy, 
surveillance, chemical analysis, telecommunication systems, and night vision technology15–19. The versatility and 
effectiveness of IR photodetectors in these diverse fields underscore their significance in modern technological 
advancements.

The compound Hg1–xCdxTe can be epitaxially grown by combining HgTe and CdTe. HgTe is semi-metallic 
with zero bandgap and low resistivity, while CdTe is a semiconductor featuring a bandgap of 1.6 eV. Their similar 
lattice constants allow defect-free growth of Hg1–xCdxTe at any cadmium (Cd) composition. The minimal lattice 
constant variation with Cd composition enables high-quality layers and heterostructures. This combination offers 
bandgaps ranging from 0 to 1.6 eV. Hg1–xCdxTe maintains a zinc blende structure across all Cd compositions, 
like its constituents8. The tunable bandgap of Hg1–xCdxTe through Cd composition has led to various high-
performance IR photodetectors, including p-n9,18,20–24, p-i-n23,25, avalanche26, barrier11–13,27–29, and dual-band 
configurations10,16, operating at both cryogenic and room temperatures. However, cryogenic cooling increases 
power consumption, cost, and weight. Hg1–xCdxTe technology primarily serves military-related applications, 
particularly in specific conditions or object detection. Despite its advantages, Hg1–xCdxTe has drawbacks such as 
weak Hg-Te bonding, causing instability in bulk, surface, and interfaces. Yield and uniformity concerns persist, 
especially in the long-wavelength IR (LWIR: 8–12  μm) region30. The LWIR spectral region shows promise 
for applications in free-space optical communication systems, offering several advantages over traditional 
communication methods18,24,32–34. The LWIR region contains two strategically important atmospheric windows 
at 9.6 and 10.6  μm, which have attracted significant research attention for developing free-space optical 
communication systems. The 10.6 μm window is particularly noteworthy for its resistance to adverse weather 
conditions such as haze and fog. This characteristic makes the 10.6  μm wavelength within the LWIR range 
especially valuable for applications requiring reliable performance in challenging atmospheric environments24. 
LWIR detectors based on intersubband transitions in III–V semiconductor heterostructures34–37 offer minimal 
dark current but fall short in overall performance compared to competing technologies. Hg1–xCdxTe remains the 
dominant material for IR photodetectors, outperforming alternatives in sensitivity and quantum efficiency in the 
LWIR region when used as the absorber/active layer. However, its primary limitation is the high dark current 
caused by Auger recombination, necessitating low-temperature operation38,39. To address this, researchers are 
exploring strategies such as band structure engineering using Type-II superlattices29, which aim to suppress Auger 
recombination by modifying energy levels, particularly at cryogenic temperatures. Other approaches include the 
complex graded gap and doping multilayer devices12, the integration of two-dimensional (2D) materials such as 
graphene19,22,23,40 and black phosphorus41 with HgCdTe, as well as the nBn and pBp device architectures, which 
incorporate a wide-bandgap HgCdTe barrier layer between narrow-bandgap layers to reduce dark current and 
enable higher temperature operation22,28,42. Additionally, the pBp-avalanche photodiode43 is being explored for 
its potential to further enhance performance, particularly in high-sensitivity and high-temperature detection 
applications. These techniques focus on enhancing Hg1–xCdxTe-based photodetectors to deliver improved 
performance at or near room temperature while maintaining their superior characteristics in the LWIR region.

A significant challenge in advancing Hg1–xCdxTe technology lies in its integration with CMOS process 
technology, primarily due to its incompatibility with silicon-based manufacturing processes. This incompatibility 
presents a major obstacle to seamless integration with existing semiconductor fabrication techniques. 
Nevertheless, despite this limitation in silicon-based CMOS compatibility, researchers and engineers continue 
to show considerable interest in the Hg1–xCdxTe/CdZnTe interface24. This interest stems from the excellent 
lattice matching between these materials, which offers potential photodetector performance and fabrication 
advantages. The exploration of this interface could potentially lead to novel device architectures and improved 
performance characteristics, making it a key area of interest for ongoing research and development efforts in the 
field of IR photodetector technology.

The development of high-performance photodetectors, including those based on Hg1–xCdxTe, presents 
significant challenges, largely due to the complex interaction of numerous device parameters. This process 
necessitates extensive experimentation with various aspects such as device geometry, material composition, 
and doping profiles. Each of these parameters requires thorough validation and optimization, contributing to 
the complexity of the design process. Accurate performance estimation of photodetectors demands advanced 
modeling techniques due to the sophisticated relationships between the device’s structural components, material 
properties, and optoelectronic characteristics. The dependency on these factors creates a diverse design space, 
where changes in one parameter can have significant effects on others. This complexity underscores the need for 
robust simulation tools and comprehensive analytical approaches to navigate the design process effectively and 
predict device performance with high accuracy.
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Although Hg1–xCdxTe-based photodetectors have seen substantial performance enhancements, particularly 
in the LWIR spectrum, the incorporation of machine learning approaches offers the potential to expedite their 
development further. These computational techniques can offer predictive capabilities and minimize dependence 
on expensive and time-consuming experimental procedures, thereby streamlining the overall design process.

Traditional mathematical approaches often may prove inadequate when dealing with extensive and complex 
datasets typical in advanced photodetector research. This limitation has led to the increasing use of machine 
learning (ML) methods, a branch of artificial intelligence, which are well-known for their adaptability in 
evaluating and predicting material characteristics and device performance across a wide range of conditions 
and configurations44,45. Reproducing the experimental design of complex systems typically demands the 
development of sophisticated frameworks, which can be time-consuming and resource-intensive. ML 
techniques offer a solution to these challenges by efficiently identifying key parameters and determining 
unknown parameter values, substantially decreasing the time and effort needed for analysis and prediction 
in photodetector research. ML algorithms can process large datasets to develop and refine predictive models, 
thereby improving decision-making and forecasting accuracy in device performance. Regression analysis, a key 
ML technique, is particularly useful in quantifying relationships between variables in photodetector design, 
such as how changes in applied voltage or incident light wavelength influence the device’s electrical and optical 
responses. ML regression models have rapidly emerged as essential tools in nanomaterials and materials 
science46,47 demonstrating remarkable proficiency in making accurate predictions from complex device and 
material data. A ML algorithm was proposed to improve quadrant photodetectors’ measurement range and 
accuracy48. By applying the Ridge regression technique, the algorithm significantly enhanced measurement 
precision, showing a substantial improvement in accuracy compared to traditional methods. Likewise, the ML 
model has been utilized to predict the responsivity and detectivity of 2D metal halide perovskite photodetector. 
The model was confirmed through actual experimental data, demonstrating minimal residual error and offering 
valuable insights into the application of ML for a more rational understanding of photodetector performance49. 
These advancements reflect the broader trend in utilizing machine learning for optimizing device performance. 
Recent studies highlight this trend across various contexts, including near-IR organic semiconductors50, the 
structural optimization of silicon-based devices using algorithms like light gradient boosting machine (LGBM) 
and extreme gradient boosting (XGBoost)51, and methodologies that employ artificial neural networks 
(ANN) to predict the responsivity of challenging materials such as borophene52. Additionally, ML regression 
models’ ability to rapidly and accurately predict bandgaps has become crucial for designing high-performance 
photodetectors, enabling efficient screening of polymers and other materials before experimental synthesis53. 
These ML models can uncover deeper insights into optoelectronic device behavior and underlying patterns 
that may not be immediately apparent through conventional methods, effectively revealing the relationships 
governing photodetector properties and performance metrics. Consequently, ML proves to be an ideal tool for 
exploring and refining photodetector designs, simplifying the process of predicting device properties without 
the need for computationally demanding theoretical calculations.

This paper presents a comprehensive 2D and three-dimensional (3D) architecture model of a p+-
Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te homojunction photodetector for the LWIR spectral region. The 
proposed LWIR photodetector is designed to operate at a wavelength of 10.6  μm under cryogenic or liquid 
nitrogen temperature (77 K). The numerical simulation of the photodetector is analyzed using Silvaco ATLAS 
TCAD software, with results compared to analytical models based on drift-diffusion, tunneling, and Chu’s 
approximation techniques. The simulation incorporates all relevant recombination processes and examines 
various electrical and optical parameters. Electrical characterization includes energy bandgap, electric field 
profile, current densities, resistance-area product, frequency response, and photoswitching response. Optical 
characterization focuses on quantum efficiency, photocurrent responsivity, specific detectivity, and noise 
equivalent power. This comprehensive approach aims to thoroughly understand the photodetector’s behavior and 
performance characteristics, validating the simulation results against analytical expressions and exploring the 
photodetector’s potential for optical communication applications. To demonstrate the performance limitations 
of the HgCdTe-based LWIR photodetector, current density under dark and illumination conditions is evaluated 
at 300 K using 2D and 3D simulations.

Further, applying ML regression models for data prediction represents a key novelty in this study, as they 
uncover deeper relationships between factors influencing the proposed photodetector’s performance. This 
research addresses a significant gap in the literature by providing a thorough assessment and comparative analysis 
of diverse ML regression models applied to the photodetector. The most efficient approach for enhancing both 
design optimization and predictive modeling is identified through the use of decision trees (DT), random forest 
(RF), extra trees (ET), and gradient boosting machine (GBM) regression models, which create predictive models 
capable of estimating critical photodetector electrical and optical parameters based on design and material 
composition. These models are specifically chosen for their ability to handle complex, non-linear relationships 
often found in semiconductor device characteristics. Ultimately, they could aid in optimizing the design 
and fabrication of photodetectors for specific applications, potentially accelerating the development of high-
performance devices This approach offers a powerful tool for exploring the parameter space of photodetector 
design through these ML techniques, potentially revealing insights that might go undetected by traditional 
analytical methods.

Parameters of Hg1–xCdxTe
The compound semiconductor Hg1–xCdxTe serves as an excellent material for IR photodetectors, owing to its 
adjustable energy bandgap that can be tuned across the 1–30 μm wavelength range. Numerical simulations are 
conducted to theoretically characterize the proposed photodetector operating at 77 K. The Cd mole fraction 
(x) in the Hg1–xCdxTe material is set to 0.2217, yielding an energy bandgap corresponding to the LWIR cut-off 
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wavelength of 10.6 μm. Table 1 presents the characteristic parameters of the proposed photodetector, calculated 
using empirical formulas that depend on Cd composition and temperature (T)8,22.

Proposed p+-n– LWIR photodetector design
The p+–n– LWIR photodetector proposed in Fig. 1 consists of 3D and 2D schematics of two layers of Hg1–xCdxTe: 
a 4.5 μm thick, heavily doped p+ layer serving as the cladding layer, and a 10.25 μm thick, lightly doped n– layer 
functioning as the active layer. A broader active region allows for increased photon absorption, resulting in 
enhanced photodetection performance. This structure can be epitaxially grown on a CdZnTe substrate. This 
research, however, excludes analysis of the substrate’s influence, as it is considered to have minimal impact on 
the photodetector’s overall functionality. The LWIR operational range of the photodetector is defined by the 
active layer’s Cd composition, which is set at 0.2217. The same Cd composition is applied to both the cladding 
and active layers to create a homojunction structure. The photodetector is designed with incident light of 1 W/

Parameter Values

Energy bandgap (Eg) (eV) −0.302 + 5.35× 10−4
(

T 3−1822
T 2 + 255.2

)
(1− 2x) +1.93x− 0.810x2+0.832x3

Cut-off wavelength (λc) (µm)
1.24

Eg(eV)

Effective mass of the electron ( m∗
n) (kg)

m0[
1+2F+Ep

3

(
1

Eg+∆+ 2
Eg

)] ; where m0 = 9.1 × 10–31 kg; F = − 0.8; Ep = 19 eV; and Δ = 1 eV

Effective mass of hole 
(
m∗

p

)
 (kg) 0.55m0

Intrinsic carrier density (ni) (cm–3)

(−5.77046x2 − 3.57290x + 1.25942× 10−2xT

−4.74019× 10−4T − 4.24123× 10−6T 2 + 5.24256)

×1014Eg
0.75T 1.5e

(−qEg
2kBT

)

Electron mobility (µn) (cm2/Vs)
9× 108S

T 2r ; where S =
(
0.2
x

)7.5 and r =
(
0.2
x

)0.6

Hole mobility (µp) (cm2/Vs) 440

[
1 +

(
p

1.8× 1017

)2
]−1/4

, where p is hole density in cm-3

Electron affinity (χ) (eV) −0.813 (Eg − 0.083)+4.23
Static dielectric constant (εs) 20.5− 15.6x + 5.7x2

High-frequency dielectric constant (ε∞) 15.2− 15.6x + 8.2x2

Optical absorption coefficient α(λ) (m–1)

{
α 0e

(δ /kBT )(Ep−E0) Ep < Eg

α ge
β (Ep−Eg) Ep > Eg

;

where Ep is photon energy; α0=e(− 18.5+45.68x ); E0=1.77x− 0.355;  

δ
kBT

=
lnα g−lnα 0

Eg−E0
; αg= − 65+1.88T+ (8694 − 10.314T ) x; and 

β = − 1+0.083T+(21 − 0.13T )x

Refractive index (n)

√
P + Q(

1−(Rλ )
2
) + Sλ 2

,where P = 13.173 + 10−3(300− T )− 9.852x

+2.909x2, Q = 0.838× 10−4(300− T )− 0.246x

−0.0961x2, R = 6.706 + 7× 10−4(300− T )− 14.437x

+8.531x2, S = 1.953× 10−4 − 0.00128x + 1.853× 10−4x2

Extinction coefficient (k)
λ α (λ )
4π ; where λ is the incident wavelength

Table 1.  Parameters of Hg1–xCdxTe as a function of x and T.
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cm2 intensity on the p+ layer to ensure sufficient radiation absorption. Both p+- and n–-regions absorb the LWIR 
radiation. The photodetector operates under reverse bias, with most of the voltage drop occurring across the 
lightly doped active layer (Fig. 1). The p+-region has an acceptor concentration of 1017 cm–3, while the n–-region 
has a donor concentration of 1015 cm–3.

The active region of the photodetector features a strong electric field, which rapidly sweeps photogenerated 
carriers to their respective electrodes, thereby enhancing operational speed. The photodetector is optimized to 
maximize the absorption of incident radiation within the active region. This design strategy eliminates the need 
for photogenerated carriers to diffuse from neutral regions, further enhancing the photodetector’s efficiency and 
speed.

Numerical simulation of photodetector
The design and simulation of the p+–n– homojunction photodetector is conducted using Silvaco’s ATLAS device 
simulator platform. The 2D and 3D device structure is carefully simulated in ATLAS to evaluate and analyze the 
performance parameters of the proposed photodetector. ATLAS employs a finite element method to determine 
the optoelectronic characteristics of the photodetector. The proposed photodetector’s electrical characteristics 
are analyzed by solving fundamental semiconductor equations. These include the continuity equations and 
Poisson’s equation for both electrons and holes, which can be approximated as follows54

	
∂ n

∂ t
=

1

q
∇ .Jn +Gn −Rn� (1)

	
∂ p

∂ t
= −1

q
∇ .Jp +Gp −Rp� (2)

	
∇ 2V = −ρ

ϵ
� (3)

In these equations, q represents the electronic charge, while n and p denote the equilibrium concentrations of 
electrons and holes. Jn and Jp represent the current densities for electrons and holes, respectively. Gn and Gp 
represent the generation rates for electrons and holes, respectively, while Rn and Rp indicate their respective 
recombination rates, respectively. The electrostatic potential is denoted by V, ρ represents the space charge 
density, and ε stands for the material’s permittivity. The Silvaco ATLAS device simulator typically solves both 
continuity equations but can be configured to solve for either electrons or holes individually using a method 
statement. For simulating carrier transport in semiconductors, the drift-diffusion model is most commonly 
employed. This model approximates current density equations using Boltzmann transport theory, expressing 
them as functions of electric field (E = −∇ V ) and carrier concentrations (n and p). The resulting expressions 
include both drift and diffusion components54

Fig. 1.  The schematic representation of p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te-based LWIR homojunction 
photodetector. (a) 3D view and (b) 2D view. t+p  and d is the thickness of p+- and n–-regions, respectively. The 
depletion region width across p+- and n–-regions is represented by x+p  and x−n , respectively. Here V is the 
applied voltage and w is the width of the depletion region.
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	 Jn = qµ nnE + qDn∇ n� (4)

	 Jp = qµ ppE − qDp∇ p� (5)

The diffusion coefficients for electrons (Dn) and holes (Dp) are estimated using the following approximations

	
Dn =

µ nkBT

q
cm2/s� (6)

	
Dp =

µ pkBT

q
cm2/s� (7)

where kB denotes the Boltzmann’s constant.
To analyze the optoelectronic properties, the carrier transport diffusion, Poisson, and continuity equations 

based on Boltzmann’s transport model are solved with suitable boundary conditions by using Newton’s iterative 
numerical method. The carrier lifetime and dark current density in the proposed photodetector are characterized 
by incorporating Shockley–Read–Hall (SRH), Auger, and optical (band-to-band) recombination rates. These 
rates are expressed as follows54

	
RSRH =

pn− n2
i

τ p [n + niexp (Et/kBT )] + τ n [p + niexp (−Et/kBT )]
� (8)

	 RAuger = Cn
(
pn2 − nn2

i
)
+ Cp

(
p2n− pn2

i
)

� (9)

	 ROptical
np = COPT

c
(
pn− n2

i
)

� (10)

 where τp and τn depict the SRH lifetimes of holes and electrons, respectively. Et denotes the energy level of traps 
within the bandgap. Cn and Cp are the Auger coefficient of electrons and holes, respectively, and COPT

c  denotes 
the capture rate of carriers.

The optical characterization is performed using LUMINOUS, an integrated component of the ATLAS tool, 
which calculates photogeneration at each mesh point in the structure. LUMINOUS employs a ray tracing 
method, conducting two simultaneous calculations to determine optical intensity using n and k. This procedure 
calculates the absorption at every mesh point, producing a photogeneration profile in the photodetector that 
varies with wavelength.

LUMINOUS does not directly compute optical characteristics such as quantum efficiency, photocurrent 
responsivity, specific detectivity, and noise equivalent power. Instead, it utilizes the currents obtained from the 
simulation to derive these optical properties. The simulation employs a monochromatic light source, with the 
source photocurrent (IS) and available photocurrent (IA) expressed as54

	
IS =

qBnλ

hc
Wt� (11)

	
IA =

qBnλ

hc

∑
NR
i=1WR

∫ Yi

0

Piα ie
−α iydy� (12)

 where Bn denotes the intensity of beam number n. The beam width is represented by Wt, while WR stands for 
the ray width. Planck’s constant is symbolized by h, and c represents the speed of light. The material’s absorption 
coefficient is denoted by αi, while NR indicates the number of rays traced. Pi represents the attenuation before the 
ray’s starting point, and Yi signifies the ray’s length.

In this context, IS denotes the rate of photons incident on the device, while IA represents the rate of photons 
absorbed by the device. Generally, IA is lower than IS because some of the incident illumination is reflected off 
the device surface or transmitted through it without being absorbed22,54.

Carrier lifetime modeling
To accurately estimate the dark current density, it is necessary to calculate both the drift and diffusion 
components precisely. The modeling of the lifetime of minority carriers must be done by considering all possible 
recombination mechanisms, including radiative recombination, SRH recombination, and Auger recombination. 
Advancements in fabrication techniques lead to a reduction in SRH recombination. For photodetectors 
constructed from narrow bandgap materials, Auger and radiative mechanisms predominate. The radiative 
process occurs when a free electron recombines with a hole, emitting the excess energy as a photon.

Radiative recombination mechanism
This process is an inherent characteristic of the material, determined by its electronic band structure. The rate of 
recombination can be described by the following equation55

	
GR =

8π

h3c3

∫ ∞

0

ϵ (E)α (E)E2dE

e

(
E

kBT

)
− 1

� (13)
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 where E represents the electric field across the junction, ε(E) denotes the relative dielectric constant, and α(E) is 
the absorption coefficient and is given as55

	
α (E) =

2
2/
3m0

3
√
ϵ ∞

( q

ℏ

)2
(

m∗
pm

∗
n

m0

(
m∗

p +m∗
n
)
)3/2(

1 +
m0

(
m∗

p +m∗
n
)

m∗
pm

∗
n

)√
E − Eg

m0c2
� (14)

 where ℏ = h
2π  denotes the reduced Planck’s constant and

	
E =

[
2q

ϵ 0ϵ s

(
Eg

q
± V

)
n0p0

n0 + p0

]
� (15)

 where ε0 is permittivity in vacuum and V is the applied bias voltage. p0 and n0 represent the thermal-equilibrium 
concentration of holes and electrons, respectively.

The carrier lifetime resulting from the radiative recombination process can be calculated using the high-
frequency dielectric constant ε∞ and ignoring the dispersion in the dielectric constant. It is expressed as55

	
τ R =

n2
i

GR (p0 + n0)
� (16)

Assuming that Eg> kBT and neglecting the dispersion in the dielectric constant, the rate of recombination can 
be rewritten as follows55

	
GR = 5.8× 10−13n2

i
√
ϵ ∞

(
300

kBT

)3/2(
1 +

m0

m∗
n

)(
m0

m∗
p +m∗

n

)3/2 (
E2

g + 3kBTEg + 3.75k2BT
2
)

� (17)

Shockley Read Hall (SRH) recombination mechanism
SRH recombination is an extrinsic process that takes place via energy levels within the forbidden bandgap. It 
isn’t an inherent constraint on photodetector performance and can be minimized by employing higher purity 
and quality materials, which is feasible for narrow bandgap materials. The carrier lifetime resulting from SRH 
recombination is represented by the following Eq. 

	
τ SRH =

1

σ Ntvth
� (18)

 where σ denotes the capture cross-section for minority carriers, Nt represents the density of SRH traps, and vth 
symbolizes the thermal velocity of minority carriers, which is expressed as

	
vth =

√
3kBT

m∗
n

� (19)

Auger recombination mechanism
In narrow bandgap semiconductor materials, Auger recombination plays a crucial role. Among the various 
Auger mechanisms, three stand out as the most significant. In n-type materials, the Auger-1 process is the most 
common. For p-type materials, Auger-7 is the predominant mechanism. For narrow bandgap materials where 
the energy bandgap is less than the spin split-off energy, as in this case, the Auger-S process can typically be 
neglected. Consequently, when dealing with Hg1–xCdxTe material, only the Auger-1 and Auger-7 processes need 
to be taken into account. Therefore, Auger lifetime (τAug) is given by

	

1

τ Aug
=

1

τ Aug1
+

1

τ Aug7
� (20)

 where τAug1 represents the carrier lifetime associated with Auger-1 transitions, while τAug7 denotes the carrier 
lifetime resulting from Auger-7 transitions55.

Taking into account all recombination processes affecting carrier behavior, the overall lifetime can be represented 
as

	

1

τ
=

1

τ R
+

1

τ SRH
+

1

τ Aug
� (21)

Theoretical modeling of photodetector
Dark current density
The photodetector’s performance is significantly affected by the total dark current density (Jdark), which results 
from thermally generated carriers. In modeling the Jdark of the photodetector, all mechanisms occurring in 
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various regions have been taken into account, except for the current due to the drift mechanism. The components 
of Jdark originate from three main sources:

	1.	� diffusion of thermally generated carriers in the neutral region (Jdiff),
	2.	� generation-recombination of carriers in the depletion region (Jgr) and.
	3.	� tunneling of carriers across the junction (JTun).

The tunneling current density consists of two parts: Band-to-band (BTB) tunneling and Trap-assisted tunneling 
(TAT), which occurs via defect levels in the material’s bandgap. Consequently, the total dark current density, a 
function of applied voltage V and ambient temperature T, can be expressed as22

	 Jdark (V, T ) = Jdiff + Jgr + JTAT + JBTB� (22)

 where

	 Jdiff = [
(
Jp+

)
n− + (Jn−)p+](eqV/kBT − 1)� (23)

The diffusion contributions to current density for holes in n–- regions and electrons in p+-regions are denoted by (
Jp+

)
n− and (Jn−)p+, respectively. These components are estimated using the following approximations

	

(
Jp+

)
n− =

qn2
i

ND

√
µ pkBT

qτ p

SpLp
Dp

cosh
(
d−x−n
Lp

)
+ sinh

(
d−x−n
Lp

)

cosh
(
d−x−n
Lp

)
+

SpLp
Dp

sinh
(
d−x−n
Lp

) � (24)

	

(Jn−)p+ =
qn2

i

NA

√
µ nkBT

qτ n

SnLn
Dn

cosh
(
t+p −x+p
Ln

)
+ sinh

(
t+p −x+p
Ln

)

cosh
(
t+p −x+p
Ln

)
+ SnLn

Dn
sinh

(
t+p −x+p
Ln

) � (25)

 where ND and NA are the donor and acceptor concentrations, respectively. τp and τn correspond to the hole 
and electron lifetimes, respectively. Sp and Sn are the surface recombination velocities of holes and electrons, 
respectively. Lp =

√
Dpτ p and Ln =

√
Dnτ n are the diffusion lengths of holes and electrons, respectively, in 

cm.

The movement of charge carriers across the p+-n– junction is significantly influenced by traps or defects within 
the depletion region. The current density components for electrons and holes, resulting from generation-
recombination processes in the depletion region, are expressed as55

	
Jgr =

{ qniwV
(Vbi−V )τ SRH

V < 0
2niwkBT

(Vbi−V )τ SRH
sinh

(
qV

2kBT

)
V > 0

� (26)

 where Vbi is the built-in potential.

Trap-assisted tunneling current density is commonly observed in devices under low reverse bias conditions. This 
phenomenon occurs at the depletion region boundaries, where minority carriers traverse to unoccupied states 
on the junction’s opposite side. TAT involves a two-stage process: initially, electrons move from the valence band 
to a trap state within the bandgap, then tunnel to the conduction band. These intermediate energy levels, acting 
as trap states, are formed by impurities present in the material.

For materials with a narrow bandgap, the current density resulting from band-to-band tunneling becomes 
prominent when a high reverse bias is applied. However, this component is less relevant for the proposed 
photodetector, which typically operates at relatively lower reverse bias voltages.

The TAT component of the current density can be analytically evaluated using the following expression56

	
JTAT =

2π 2q2m∗
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 where

	
α

(
Et

Eg

)
=

π

2
+ sin−1

(
± 1± 2

Et

Eg

)
±

(
1− 2

Et

Eg

)√
Et

Eg

(
1− Et

Eg

)
� (28)

In this equation, Wc represents the matrix element related to the trap potential, while P denotes the interband 
matrix element. Et signifies the energy position of trap levels within the bandgap.

The current density component due to the BTB tunneling mechanism is approximated by56
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Resistance-area product
The various current density components discussed earlier contribute to the net resistance-area product (RA)NET, 
which can be expressed as

	

1

(RA)NET
=

1

(RA)diff
+

1

(RA)gr
+

1

(RA)TAT
+

1

(RA)BTB
� (30)

 where (RA)i =
(
d(Jdark)i

dV

)−1

. The subscript i denotes the various components that make up Jdark.

Photocurrent density
When the photodetector is exposed to light, it generates a photocurrent density. This photocurrent density is 
influenced by both the applied voltage and the temperature. It can be mathematically represented as29,57

	
Jlight (V, T ) = Jdark (V, T )−

QEλ cPin

1.24
� (31)

 where the latter term signifies the current density generated by incident photons. QE is quantum efficiency, Pin 
is incident light power density, and λc is the cut-off wavelength in µm.

Quantum efficiency
The photodetector’s quantum efficiency QE varies with wavelength and acts as a gain factor. The rate at which 
electron-hole pairs are optically generated can be expressed as a function of the distance x from the surface. This 
relationship can be mathematically represented as56

	
G (x) =

α (λ ) (1−R)Pin

Ahf
e−xα (λ )� (32)

 where A denotes the active area of the photodetector, and f is the frequency. In general, the Fresnel reflection 
coefficient R at the junction is evaluated by the formula,

	
R =

(nt − ne)
2 + k2

(nt + ne)
2 + k2

� (33)

 where ne and nt correspond to the refractive index values of the entrance and transmitted medium, respectively. 
k is the extinction coefficient. When k is negligibly small, the reflection coefficient can be computed as28

	
R =

(
nt − ne

nt + ne

)2

� (34)

The overall QE of the photodetector results from contributions from three distinct regions: the neutral p+-region, 
the neutral n–-region, and the depletion region22,23. Each of these regions plays a role in determining the total QE 
of the proposed homojunction photodetector.

	 QE = (QE)p+ + (QE)n− + (QE)dep� (35)
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 and

	
(QE)dep = (1 − R)
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� (38)
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Photocurrent responsivity
The photodetector’s photocurrent responsivity (Ri) is the ratio of photocurrent density to the incident light 
power density and is also related to QE by.

	
Ri =

Jlight

Pin
= QE

(
qλ

hc

)
= QE

(
λ
1.24

)
A/W� (39)

Specific detectivity
The specific detectivity (D*) quantifies a photodetector’s ability to detect minimal signals and is determined 
using the following equation22.

	
D∗ =

Ri

2

√
(R0A)NET

kBT
cmHz1/2/W� (40)

 where (R0A)NET =
(
dJdark
dV

)−1

V=0
 is the resistance-area product under the self-powered mode, i.e. at zero bias. A 

large value of (R0A)NET is preferable as it leads to enhanced specific detectivity.

Noise equivalent power
The noise equivalent power (NEP) represents the weakest optical signal a photodetector can distinguish from its 
inherent noise and is calculated using the following relation22.

	
NEP =

√
∆ fA

D∗ W/Hz1/2� (41)

 where Δf is the bandwidth.

Silvaco simulation results and discussions
The Silvaco ATLAS TCAD tool has been used to simulate and analyze the photodetector’s electrical and 
optical characteristics. The ATLAS framework utilizes BLAZE for electrical characterization and LUMINOUS 
for optical analysis. Uniform doping has been assumed for p+- and n–-regions. The simulation employs the 
ANALYTIC model for mobility calculations and incorporates SRH, AUGER, and OPTICAL recombination 
mechanism models for current density analysis. Standard band-to-band tunneling has also been considered. 
The DECKBUILD code integrated with ATLAS includes a collection of parameter values. The ATLAS simulation 
and analytical model account for surface recombination at the homojunction interface and contacts. Dark 
current density carrier modeling has been performed separately in MATLAB, with the resulting carrier lifetimes 
integrated into the ATLAS numerical simulation. A separate MATLAB program has been developed to compute 

Fig. 2.  (a) Energy bandgap diagram showing the conduction band (ECB), valence band (EVB), and Fermi level 
(EF) and (b) Corresponding electric field intensity profile across the p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te 
LWIR homojunction photodetector.
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absorption coefficients using Chu’s empirical relation58,59. This data has been used to create a file containing n 
and k values for various wavelengths. For optical characterization, this (n, k) data file has been incorporated into 
the DECKBUILD code for ATLAS simulation.

The SRH carrier lifetime of the photodetector is determined to be 0.29 µs. Calculations reveal the effective 
density of states for electrons in the conduction band (NCB) to be 2.65 × 1015 cm–3, while the effective density of 
states for holes in the valence band (NVB) is found to be 1.33 × 1018 cm–3.

Figure 2a presents the energy band diagram of the proposed p⁺–n⁻ homojunction photodetector at 0 V bias 
under dark conditions. The electric field (Efield) distribution across the photodetector’s junction under dark 
conditions at different bias voltages is shown in Fig. 2b. The Efield displays a triangular profile at the interface, 
reaching maximum values of 7.36, 11.65, and 15.15 kV/cm at 0, − 0.5, and − 1 V bias, respectively.

Figure 3a illustrates the relationship between Jdark and V in the proposed homojunction photodetector, while 
Fig. 3b provides the relationship between (RA)NET and V. In Fig. 3a, the Jdark increases with reverse bias, which is 
a characteristic behavior of Hg1–xCdxTe-based photodetectors. This rise in Jdark is primarily due to the increased 
carrier generation and tunneling effects at higher reverse biases, leading to enhanced leakage currents. The low 
Jdark values observed at zero bias indicate the device’s potential for low-noise operation, which is critical for high-
sensitivity IR applications.

The (RA)NET value is a critical parameter in assessing the photodetector’s noise performance, where higher 
values are indicative of lower dark current and improved detectivity. As reverse bias is applied, the (RA)NET 
increases significantly due to the widening of the depletion region. This widening occurs as the majority carriers 
are pulled away from the junction, resulting in fewer charge carriers available for conduction and thus higher 
resistance. The increase in (RA)NET indicates enhanced resistance to leakage currents, which is essential for 
maintaining low noise levels in photodetector applications. This behavior emphasizes the critical role of reverse 
biasing in enhancing the overall efficiency of the photodetector. Furthermore, optimizing (RA)NET is crucial 
for achieving superior specific detectivity and noise equivalent power, thereby enhancing the photodetector’s 
suitability for high-sensitivity IR sensing. Both graphs demonstrate a strong agreement between the Jdark and 
(RA)NET values obtained from the 2D and 3D ATLAS simulations and those calculated using the analytical 
model. This close correlation across different voltage conditions validates the consistency and accuracy of all 
three approaches in predicting the photodetector’s electrical behavior.

Figure  4a, b illustrate the proposed homojunction photodetector’s Jlight–V and Jlight–λ characteristics, 
respectively. The Jlight–λ curve, plotted at a − 0.5 V bias, shows a rapid decrease in Jlight beyond the 10.6 μm cut-
off wavelength, confirming the photodetector’s operation in the LWIR regime. The Jlight–V curve demonstrates 
an increase in photocurrent density with increasing voltage, highlighting the voltage-dependent nature of the 
photodetector’s response.

The simulated Jdark–V, Jlight–V, and (RA)NET–V characteristics align well with the analytical results, showing 
coefficient of correlation (R2) values between 0.7142 and 0.9975. At zero bias, the photodetector demonstrates 
favorable performance metrics: a low Jdark of 0.26 µA/cm2, a Jlight of 4.9 A/cm2, a high Jlight/Jdark ratio of 1.9 × 107, 
and (R0A)NET of 26.88 Ωcm2. The low Jdark at zero bias is attributed to the photodetector’s inherent potential 
barrier. When biased at − 0.5 V, the photodetector exhibits a Jdark of 0.20 mA/cm2, a Jlight of 4.98 A/cm2, and 
a Jlight/Jdark ratio of 2.46 × 104. The similarity in results suggests that the 2D and 3D simulations, as well as the 

Fig. 3.  (a) The Jdark–V and (b) (RA)NET–V characteristics of the p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te 
LWIR homojunction photodetector. The simulated data from both 2D and 3D simulations closely matches the 
analytical model results (open circles).
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analytical method, provide reliable representations of the photodetector’s performance under varying voltage 
inputs. The inclusion of both 2D and 3D simulations offers a comprehensive view of the photodetector’s 
characteristics, potentially capturing any dimensionality-dependent effects while also confirming the robustness 
of the simpler 2D model for this particular analysis.

Figure 5a presents the current density (J)–V characteristic curves at 300 K under both dark and illumination 
conditions, derived from 2D and 3D simulations of the proposed photodetector. The results highlight a significant 
challenge for the room temperature operation of Hg1–xCdxTe-based IR photodetectors. At 300  K, thermal 
excitation generates substantial dark current density, which often equals or exceeds the photocurrent density18,22. 

Fig. 5.  (a) The simulated 2D and 3D J–V characteristics of the p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te 
LWIR homojunction photodetector at 300 K and (b) Normalized frequency response of the p+-
Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te LWIR homojunction photodetector at − 0.5 V and 77 K.

 

Fig. 4.  (a) The Jlight–V and (b) Jlight–λ characteristics of the p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te LWIR 
homojunction photodetector. The Jlight-V data from both 2D and 3D simulations closely matches the analytical 
model results (open circles).
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This high dark current density severely limits the viability of most Hg1–xCdxTe-based IR photodetectors for 
practical applications at room temperature.

The normalized frequency response of the proposed photodetector at 77 K and − 0.5 V bias is depicted in 
Fig. 5b. The photodetector exhibits a 3-dB cut-off frequency (f3 − dB) of 104 GHz, indicating its potential for use 
in high-frequency applications.

The photoswitching speed of the proposed photodetector is evaluated by examining its J-Time characteristics 
under 1  W/cm2 light illumination at 77  K. Figure  6 illustrates these characteristics at 0 and − 0.5  V bias 
conditions. The experiment involves pulsing the LWIR radiation in 10 ps intervals and measuring the resulting 
current density over time. The results reveal persistent photoswitching behavior, characterized by gradual 
exponential increases and decreases in current during illumination and dark periods, respectively. This figure 
demonstrates the photodetector’s rapid response to LWIR illumination and its varying sensitivity under different 
bias conditions. At 0 V, the photodetector exhibits a rise time of 1.62 ps and an instantaneous fall time. When 
biased at − 0.5 V, the rise time decreases to 0.8 ps, while the fall time increases to 1.2 ps. This behavior can 
be attributed to the increased electric field strength under reverse bias, which accelerates carrier collection, 
reducing rise time. The emergence of a measurable fall time at − 0.5 V likely results from the widened depletion 
region, influencing the carrier sweep-out process upon illumination termination.

The proposed photodetector operates on a timescale dramatically shorter than thermal detectors like 
bolometers. While bolometers typically respond in milliseconds, the proposed photodetector has a time constant 
measured in picoseconds (rise time of 1.62 ps at 0  V and 0.8 ps at − 0.5  V). This makes the photodetector 
approximately nine orders of magnitude faster than thermal detectors14. In comparison with other widely 
used technologies, such as photodiodes or avalanche photodetectors (APDs), the proposed photodetector 
offers superior speed. Many commercial photodiodes exhibit response times on the order of microseconds or 
nanoseconds. For example, InGaAs/GaAsSb34, InGaAs/InP35, InAs/InAsSb36, and HgCdTe/black phosphorus 
van der Waals heterojunction41-based photodetectors typically have response times of 6.1 µs, 115 ns, 0.52 ns, 
and 150 µs respectively, which are significantly slower than the picosecond-scale response achieved in this 
work. Additionally, APDs, while fast, often require high bias voltages and suffer from excess noise, limiting 

Fig. 6.  Time-dependent photoresponse of the p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te LWIR homojunction 
photodetector at 0 V and − 0.5 V.
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their performance in low-noise applications26. These metrics suggest the proposed photodetector is ideal for 
applications requiring extremely fast response times, such as high-speed optical switching in telecommunications 
and optical computing. This speed advantage could enable faster data transmission and signal processing 
compared to existing technologies. The tunable response times with varying bias also enhance its adaptability 
to a range of high-speed optical systems. The rapid response and scalability of wearable or flexible electronics 
make the device a strong candidate for integration into low-power, compact IR sensing systems for biomedical 
monitoring or Internet of Things (IoT) devices.

Figure 7 depicts how optical parameters (QE, Ri, D*, and NEP) of the photodetector vary with wavelength 
at − 0.5 V, comparing results from 2D, 3D, and analytical models. The photodetector’s expanded active layer 
enables greater photon absorption, yielding a QE of approximately 58.30  % (Fig.  7a). Beyond the cut-off 
wavelength, QE, Ri, and D* decrease sharply due to increased photon absorption in neutral regions, which limits 
the efficiency of photon-to-current conversion. This rapid falloff beyond the cut-off wavelength as shown in 
Fig. 7a–c underscores the photodetector’s wavelength sensitivity, reflecting the design choices in optimizing the 
active layer thickness and material composition. The figure demonstrates strong agreement between ATLAS 2D 
and 3D simulation results and those derived from the analytical model. In this work, NEP (Fig. 7d) is measured 
at a bandwidth of 1 Hz. As clear from Fig. 7, R² values between simulated data and analytical results range from 
0.9453 to 0.9897, confirming strong agreement across all optical characteristics. The proposed photodetector 
shows the peak Ri of 4.98 A/W, a peak D* of 3.96 × 1011 cmHz1/2/W, and a minimum NEP of 2.52 × 10–16 W/Hz1/2 
at cut-off wavelength. These performance metrics surpass those of recently developed InGaAs/InP35, HgCdTe/
black phosphorus van der Waals heterojunction41, PbS/graphene/Al2O3/InP60, and HgTe colloidal quantum 
dots61-based photodetectors, which generally exhibit lower overall performance. Additionally, while the overall 
optical properties of the proposed photodetector are comparable to well-known bolometers14 commonly used in 
the current IR market, its superior optical response, combined with faster response times, makes it more suitable 
for applications requiring both high sensitivity and speed.

Furthermore, the photodetector’s photocurrent responsivity (Fig. 7b) and specific detectivity (Fig. 7c) exhibit 
a gradual decrease at shorter wavelengths, followed by a rapid falloff after exceeding the long wavelength cut-off 
point. The performance limitations of the Hg0.7783Cd0.2217Te-based photodetector are attributed to its limited 

Fig. 7.  The simulated 2D and 3D optical characteristic parameters of the p+-Hg0.7783Cd0.2217Te/n–-
Hg0.7783Cd0.2217Te LWIR homojunction photodetector at − 0.5 V. (a) QE, (b) Ri, (c) D*, and (d) NEP. The 
optical characteristic parameters from both 2D and 3D simulations closely match the analytical model results 
(open circles).
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absorption range, weaker built-in electric fields, and higher recombination rates. These factors result from the 
uniform bandgap throughout the device, which restricts wavelength sensitivity and reduces carrier separation 
efficiency compared to heterojunction designs. Additionally, the narrow energy bandgap of Hg0.7783Cd0.2217Te 
leads to higher thermal generation of carriers, increasing dark current density and noise levels. These further 
compromise the signal-to-noise ratio and overall photodetector performance, contributing to lower efficiency 
than heterojunction structures. However, despite these challenges, the detectivity of the proposed photodetector 
remains high compared to that of the Hg1–xCdxTe-based photodetector in the very long wavelength IR region55. 
The photodetector exhibits maximum Ri and D* at the cut-off wavelength, highlighting its capability for 
LWIR detection. This characteristic proves advantageous across diverse fields. The proposed photodetector 
technology can significantly impact industries such as thermal imaging for surveillance and safety monitoring, 
environmental monitoring through remote sensing of gases and pollutants, and automotive safety by improving 
night vision and driver-assistance systems. In defense surveillance, it enhances monitoring and target detection, 
while in industrial automation, it enables non-contact temperature measurements and thermal profiling for 
better quality control. The broad applicability of this technology across these diverse fields underscores its 
potential for widespread integration in scenarios demanding precise IR detection.

The observed QE, Ri, D
*, and NEP trends across varying wavelengths highlight the crucial role of optimizing 

the photodetector’s structure and material properties. The relationship between these parameters provides 
insight into how structural adjustments can enhance performance, particularly in the LWIR region. Further 
optimization of the device parameters, such as doping concentrations, layer dimensions, and compositional 
variations in the absorber layer, could improve functionality, making the photodetector even more suitable 
for high-performance applications. Overall, the proposed technology has the potential to significantly impact 
various industries where precise IR sensing is vital for optimal functionality and enhanced safety measures.

Machine learning regression models, results, and discussion
Evaluation of machine learning regression models
This section covers several key aspects of the machine learning approach. It introduces ML regression models, 
thoroughly analyzes the training and testing datasets, details the feature selection process, and presents the 
results. Additionally, it outlines the metrics used to assess the models’ predictive capabilities.

Machine learning techniques enable a more profound understanding of optoelectronic device behavior and 
underlying patterns. A fundamental ML method, regression analysis, is crucial in uncovering relationships 
between variables in optoelectronic devices. For example, it can reveal how changes in input factors like voltage or 
incident light wavelength influence electrical and optical parameters in photodetectors. These regression models 
quantify dependencies in the data, offering valuable insights into the critical factors governing photodetector 
performance.

Regression models are powerful tools that significantly reduce the time and resources needed for analyzing 
complex systems. These models use machine learning to accurately predict key parameters and identify missing 
values, making analysis more efficient. A large dataset of relevant features and target variables related to the 
system under study is first collected to create these models. This comprehensive data compilation is then used 
to train the regression model, allowing it to recognize patterns and relationships between inputs and desired 
outputs.

Once trained, the model can quickly predict values for new data points without running resource-intensive 
calculations, making it invaluable for streamlining analysis processes across various fields. This study addresses a 
gap in current research by providing an in-depth assessment and comparison of multiple ML regression models 
applied to the proposed homojunction photodetector in the LWIR spectral region. In this work, supervised ML 
approaches are employed, as they are well-suited for problems with clear objectives, unlike unsupervised or 
reinforcement learning methods62,63. The defined goals in supervised learning align better with research aims in 
fields like photodetector analysis, making it the preferred approach for such applications.

Description and rationale of machine learning regression models
The methodology involves splitting the simulated dataset, comprising electrical and optical characteristic 
parameters, into separate training and testing sets. Subsequently, various regression models are employed to 
find the underlying trends and correlations between input variables (voltage and incident light wavelength) 
and output optoelectronic parameters. During the training phase, four distinct ML regression models (DT, RF, 
ET, and GBM) implemented in Python are applied to the simulated dataset to predict the output characteristic 
parameters of the photodetector. These models are specifically chosen for their robust capabilities in identifying 
and quantifying both linear and nonlinear relationships within complex datasets, making them particularly 
suitable for analyzing the diverse and complex behavior of photodetector. The rationale for selecting each model 
is outlined below.

Decision tree (DT)
DT is a widely used simple ML model for both regression and classification. DT operates by recursively dividing 
the dataset into branches or nodes based on specific criteria, ultimately arriving at predictions in the final leaf 
nodes64. This structure mimics human decision-making processes, making DT particularly interpretable and 
easy to understand. The model’s straightforward approach and ability to handle both linear and non-linear 
relationships have contributed to its widespread adoption in various fields, including optoelectronics. In this 
study, DT was selected for its capacity to provide clear insights into the relationships between input variables, 
such as voltage and wavelength, and the photodetector’s performance.
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Random forest (RF)
RF is an ensemble learning model that enhances the predictive performance of individual decision trees through 
a bagging technique. By constructing multiple decision trees using bootstrapped samples of the dataset, RF 
reduces the risk of overfitting, a common issue with single decision trees. Each tree in the forest is trained on a 
random subset of predictors, thereby reducing the correlation between trees and increasing randomness. This 
leads to improved generalization and robustness in prediction64,65. In this study, RF was chosen for its proven 
ability to handle high-dimensional, non-linear datasets, and its robustness in predicting the optoelectronic 
parameters of the photodetector.

Extra trees (ET)
ET is another ensemble learning model derived from the RF model. Like RF, ET also builds multiple decision 
trees, but with a key difference: ET uses the entire training dataset and selects splitting points at random for each 
node, which introduces greater randomness into the model. This randomization helps reduce both bias and 
variance, making ET more resistant to overfitting64. Additionally, ET grows fully-developed trees that account 
for all possible splitting points, which enhances the precision of the model. ET was chosen for its ability to handle 
complex, non-linear relationships with improved accuracy and generalization compared to other ensemble 
methods.

Gradient boosting machine (GBM)
GBM is a versatile and powerful ensemble learning model that combines multiple weak learners, typically 
decision trees, to form a strong predictive model capable of excelling in both regression and classification tasks. 
GBM constructs predictive models using an iterative process of back-fitting and non-parametric regression 
techniques. Instead of creating a single comprehensive model at once, GBM starts with a simple initial model 
and progressively builds upon it, with each new model in the ensemble correcting the errors of the previous 
one. This sequential process allows GBM to gradually improve overall predictive performance, effectively 
handling complex and non-linear data relationships66. In this study, GBM was selected for its ability to capture 
the subtle and intricate interactions between input variables, such as applied voltage and light wavelength, and 
key performance metrics like photocurrent and dark current. The iterative nature of GBM enables it to refine 
its predictions over time, achieving high accuracy. This makes GBM an excellent choice for optimizing the 
performance of optoelectronic devices, where precision is critical to evaluating device behavior and performance.

Hyperparameters and their significance
Hyperparameters are key in ML regression algorithms, affecting their predictive performance, generalization 
ability, and overfitting prevention. For the DT, RF, ET, and GBM regressors, all key hyperparameters such as 
maximum depth (max_depth), minimum sample split (min_samples_split), minimum samples leaf (min_
samples_leaf), and number of estimators (n_estimators) are set to their default values as shown in Table  2, 
aiming to optimize the prediction performance of the proposed photodetector. Table 2 also lists the significance 
of each hyperparameter. Adjusting these hyperparameters can significantly impact model performance and 
training time for all the ML regression models. Increasing the complexity of the models (through deeper trees 
or more estimators in ensemble models) generally leads to better performance up to a point, but also increases 
computational cost. However, beyond a certain threshold, further increases in complexity may lead to minimal 
additional improvements in performance and potentially increase the risk of overfitting.

Hyperparameter

Values

Significance of the parameterDT RF ET GBM

max_depth None None None None

The max_depth parameter in tree-based models is crucial as it controls the model’s complexity, balancing its ability 
to capture complex patterns in the data against the risk of overfitting, thereby directly influencing the model’s 
capacity to generalize to new, unseen data
The max_depth parameter is set to None by default to allow trees to grow without depth restrictions, maximizing 
flexibility but potentially increasing overfitting risk, thus leaving depth control to the user’s judgment based on their 
specific needs and dataset characteristics

min_samples_split 2 2 2 2 The parameters min_samples_split and min_samples_leaf determine the smallest number of samples necessary to 
divide an internal node or constitute a leaf node, respectively
They help to prevent the model from learning very specific rules for individual samples
These default values (min_samples_split = 2, min_samples_leaf = 1) allow for maximum tree growth and granularity, 
enabling the model to capture specific patterns in the data. However, this flexibility can lead to overfitting, especially 
in smaller datasets, so these parameters are often adjusted to control model complexity and improve generalization

min_samples_leaf 1 1 1 1

n_estimators – 100 100 100

This determines the number of trees in the ensemble, affecting the model’s robustness and performance. The 
n_estimators parameter usually controls the number of individual models combined in an ensemble method. This 
setting is common in techniques that utilize multiple, often tree-based, predictors to enhance overall predictive 
power
The default value of 100 for n_estimators in RF, ET, and GBM is a compromise between model performance and 
computational efficiency. It typically provides a good balance of predictive power and training time for many 
datasets, offering substantial improvements over single trees without excessive computational burden. However, the 
optimal number can vary depending on the problem and dataset

Table 2.  Default hyperparameters and their significance for proposed ML regression models.
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Model validation and metrics
To rigorously validate the simulation results and assess the performance of the ML regression models, three 
key statistical metrics were employed: mean absolute error (MAE), root mean squared error (RMSE), and R-
squared (R²) value. These metrics serve distinct yet complementary roles in the evaluation process. The MAE 
calculates the average magnitude of differences between the model’s predictions and the actual observed values, 
offering an easily interpretable measure of the model’s accuracy. The RMSE quantifies the standard deviation of 
the model’s prediction errors, with higher values indicating less accurate predictions. R² value quantifies how 
well the model explains the variability in the target variable, with values closer to 1 indicating a better fit. The 
following equations are employed to calculate these performance metrics64

	
MAE =

1

N

∑
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(
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)
� (42)
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2� (43)

	
R2 = 1−

∑
N
i=1(Predicted_Valuei − Actual_Valuei)

2

∑
N
i=1(Actual_Valuei − Average_Target_Valuei)

2 � (44)

 where N is the total number of data samples employed for validating the performance of the ML regression 
model.

By applying these metrics across various test set sizes (30–70% of the total dataset), it was possible to 
comprehensively assess each model’s predictive accuracy and robustness under different data allocation 
scenarios. This approach not only allowed for comparison of the performance of different ML models (DT, RF, 
ET, and GBM) but also validated the simulation results by demonstrating the models’ ability to accurately capture 
the underlying physics of the photodetector. The consistently low MAE and RMSE values, coupled with high 
R² values (often reaching 1.0), across different test sizes, provide strong evidence for the validity and reliability 
of the simulation approach. To assess model robustness, multiple data splitting strategies were utilized for ML 
regression models. These models were trained on varying proportions of the dataset: 70%, 60%, 50%, 40%, and 
30%. Correspondingly, the remaining portions (30%, 40%, 50%, 60%, and 70%) were used for testing. This 
approach allowed for a comprehensive evaluation of the ML regression models’ performance across different 
ratios of training to testing data, providing insights into model behavior under various data allocation scenarios. 
The complete workflow of the ML-driven predictive process for the proposed photodetector is illustrated in 
Fig. 8.

Results and discussion
The correlations between predicted and actual values for Jdark, Jlight, QE, and Ri are illustrated as scatter plots 
in Figs. 9, 10 and 11, and 12, respectively. These plots compare the predictions of DT, RF, ET, and GBM ML 
regression models against experimental data. The plots illustrate how the model performs when evaluated on 
different-sized test sets, which comprise between 30% and 70% of the entire dataset. Incorporating this range 
of test sizes allows for a comprehensive analysis of the model’s effectiveness across different training ratios to 

Fig. 8.  Workflow of the ML-driven predictive process of the p+-Hg0.7783Cd0.2217Te/n–-Hg0.7783Cd0.2217Te LWIR 
homojunction photodetector.
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testing data. These scatter plots visually represent each model’s accuracy, performance, and general trends across 
different test sample sizes. Figures 9, 10, 11 and 12 suggest that as the test dataset expands, there is an increasing 
divergence between the model’s predictions and the actual results. This phenomenon may be attributed to the 
model’s tendency to overfit the training data and its difficulty in accommodating the increased diversity found 
in more extensive test datasets. This observation provides insight into the models’ behavior and limitations as 
the proportion of testing data increases.

Among the four models examined, the ET regression model tends to outperform DT, RF, and GBM in 
accurately predicting the photodetector’s optoelectronic parameters. This enhanced performance can be ascribed 
to the ET model’s implementation of highly randomized splitting criteria and increased overall randomization. 
This approach results in a more diverse set of decision trees within the ensemble, enabling the model to effectively 
capture diverse data patterns while mitigating the risk of overfitting.

The performance metrics (MAE, RMSE, and R2 values) for the applied ML regression models are shown 
in heatmap Figs. 13, 14, 15 and 16. These metrics evaluate the models across various test set sizes to predict 
the optoelectronic characteristics of the proposed LWIR photodetector and assess the discrepancies between 
predicted and actual parameter values to indicate model accuracy.

Analysis of Figs. 13, 14, 15 and 16 indicates that the DT and ET regression models consistently demonstrate 
low MAE and RMSE values. These models achieve a perfect R² value of 1 across all evaluated test set sizes. This 
optimal R² value suggests that the DT and ET models explain nearly all data variance, indicating an exceptional 
correlation between predicted and observed photodetector parameters. The RF and GBM regression models also 
demonstrated strong performance, yielding comparably low error metrics in their predictions.

The models’ robust predictive capabilities are evidenced by their consistently low error metrics (MAE and 
RMSE) and high R² values, even when trained on limited data subsets. These findings highlight the efficacy of 
DT and ET regression models in this context. A detailed examination of the results reveals that a test size of 30% 
yields optimal performance across the evaluated test sizes, suggesting that a more compact test set offers a more 
accurate evaluation of model predictive capability. Furthermore, they emphasize the importance of selecting 
appropriate modeling techniques based on specific dataset characteristics and required prediction accuracy. 
These findings highlight the diverse strengths of various ML regression models and underscore the critical need 
to choose a model that aligns with both the dataset’s unique features and the desired precision in predictions.

Fig. 9.  Scatter plot visualizations showing correlations between predicted and simulated Jdark values for (a) DT, 
(b) RF, (c) ET, and (d) GBM regression models, across various test set sizes.
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Overall discussion
The results of this study demonstrate the significant potential of Hg1–xCdx=0.2217Te-based LWIR homojunction 
photodetector, particularly for high-sensitivity, low-noise, and high-speed applications. The demonstrated Jdark of 
0.20 mA/cm² and QE of 58.30% at 77 K indicate that the device is well-suited for use in high-frequency systems. 
The high cut-off frequency of 104 GHz and the fast response time of 0.8 ps make this photodetector highly 
competitive in optical communication and IR imaging systems, where speed and sensitivity are critical. The 
photodetector’s low noise characteristics further enhance its performance in these high-precision environments, 
making it a promising candidate for defense surveillance, environmental monitoring, and high-speed optical 
switching.

The integration of ML techniques into the study provides a robust framework for predicting the optoelectronic 
performance of the device. By employing ML regression models, the research offers a more efficient means 
of optimizing device design and predicting performance characteristics. These models demonstrate strong 
predictive capabilities, with high R² values and low error metrics across various test set sizes. The ability to 
predict key parameters such as Jdark, Jlight, QE, and Ri without resorting to resource-intensive simulations marks 
a significant advancement in photodetector research, enabling faster and more accurate design optimization.

However, despite these promising findings, several limitations must be addressed to improve the practical 
applicability of the proposed photodetector. One of the most significant limitations is the requirement for 
cryogenic cooling to maintain low dark current levels. At room temperature, Jdark increases substantially due 
to thermal excitation, reaching levels that can equal or exceed the Jlight. This restricts the photodetector’s use 
in commercial and portable applications, where cryogenic cooling is often impractical due to increased cost, 
complexity, and power consumption.

To overcome the limitation of high dark current at room temperature, heterojunction designs or barrier 
architectures emerge as promising solutions. These alternative architectures could enable higher-temperature 
operation without significantly sacrificing performance, offering a promising avenue for improving device 
usability. The integration of advanced materials, such as 2D materials like graphene and black phosphorus could 
further enhance the performance by improving carrier mobility and reducing recombination losses. Exploring 
these architectures could expand the practical applications of Hg1–xCdxTe-based photodetectors, particularly in 
portable and low-power systems where cooling mechanisms are impractical.

Fig. 10.  Scatter plot visualizations showing correlations between predicted and simulated Jlight values for (a) 
DT, (b) RF, (c) ET, and (d) GBM regression models, across various test set sizes.
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Another limitation is the dependence on numerical simulations and ML regression models without 
experimental validation. Real-world fabrication challenges, such as material defects and interface traps, could 
cause discrepancies between simulated and actual performance. Future work should prioritize experimental 
validation to bridge this gap and refine device designs.

Conclusions
The research demonstrates the potential of Hg1–xCdx=0.2217Te for developing LWIR homojunction photodetectors, 
evaluated comprehensively through theoretical analysis, simulation, and machine. The performance of 
the photodetector was assessed at a wavelength of 10.6 μm and a temperature of 77 K. Results from Silvaco 
TCAD simulation were compared with analytically derived data, showing good agreement and confirming the 
validity of the considered model. The photodetector exhibited a low dark current density of 0.20 mA/cm2, a 
high photocurrent density of 4.98 A/cm2, a quantum efficiency of 58.30%, a peak photocurrent responsivity of 
4.98 A/W, a specific detectivity of 3.96 × 1011 cmHz1/2/W, and a noise equivalent power of 2.52 × 10–16 W/Hz1/2. 
The 3-dB cut-off frequency of 104 GHz and a rise time of 0.8 ps further underline its suitability for high-speed 
optoelectronic systems.

Additionally, a comparative study of four machine learning regression models (DT, RF, ET, and GBM) was 
conducted to streamline the design process. The DT and ET models demonstrated strong predictive accuracy, 
with R2 values reaching up to 1 and low error metrics across various test sets. These models provide reliable 
predictions for essential optoelectronic parameters, offering a robust framework for future design optimization 
and performance improvements. These findings emphasize the potential of HgCdTe-based homojunction 
photodetectors for applications requiring low-noise, high-speed, and high-sensitivity detection, particularly in 
the LWIR range. By integrating simulation and machine learning, this study provides valuable insights into 
performance optimization for next-generation infrared photodetectors, with potential applications in infrared 
sensing and high-speed optical communication.

Fig. 11.  Scatter plot visualizations showing correlations between predicted and simulated QE values for (a) 
DT, (b) RF, (c) ET, and (d) GBM regression models, across various test set sizes.
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Fig. 12.  Scatter plot visualizations showing correlations between predicted and simulated Ri values for (a) DT, 
(b) RF, (c) ET, and (d) GBM regression models, across various test set sizes.
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Fig. 13.  Heatmap of performance evaluation of DT, RF, ET, and GBM ML regression models for predicting 
Jdark values with test sizes varying from 30–70% based on (a) MAE, (b) RMSE, and (c) R2 values.
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Fig. 14.  Heatmap of performance evaluation of DT, RF, ET, and GBM ML regression models for predicting 
Jlight values with test sizes varying from 30–70% based on (a) MAE, (b) RMSE, and (c) R2 values.
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Fig. 15.  Heatmap of performance evaluation of DT, RF, ET, and GBM ML regression models for predicting QE 
values with test sizes varying from 30–70% based on (a) MAE, (b) RMSE, and (c) R2 values.
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Data availability
All data generated or analyzed during this study are included in this article.
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Fig. 16.  Heatmap of performance evaluation of DT, RF, ET, and GBM ML regression models for predicting Ri 
values with test sizes varying from 30–70% based on (a) MAE, (b) RMSE, and (c) R2 values.
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