Abstract
1. Suspending human red blood cells in isotonic sucrose (low ionic strength, LIS) medium induces a significant increase in membrane transport of glutamine, glutamate, lactate, histidine, taurine, glycine, serine, choline and carnitine but not sorbitol or sucrose. 2. Progressive lowering of ionic strength by sucrose or NaCl replacement gave a similar activation profile for taurine influx as found earlier for residual K+(86Rb+) flux. 3. The induced taurine transport could be measured as enhanced influx and efflux. Influx was linear with external concentration up to 10 mM, largely insensitive to alteration in cell volume, and did not vary with red blood cell age. 4. Unlike previous results for residual K+ transport, altering transmembrane potential with gluconate or glucuronate media led to an increase in taurine influx similar to that observed in LIS media. Varying medium pH confirmed the effect was not due to alteration in pH. 5. The LIS-induced flux was sensitive to a variety of 'classical' anion transport inhibitors in the order of potency DNDS, DIDS, NPPB, DIOA, niflumic acid, furosemide (frusemide), glibenclamide, nitrendipine and bumetanide. 6. The taurine flux showed a temperature dependence similar to that of the LIS-induced residual K+ flux. High hydrostatic pressure (40 MPa), however, inhibited taurine flux but stimulated residual K+ influx in LIS media. 7. A significant enhanced taurine flux could be demonstrated in red blood cells of other species, including horse, cattle, pig and high and low potassium type sheep. 8. It is concluded that lowering ionic strength activates a transport pathway for organic molecules sharing some similarities with background Cl- channels and LIS-induced residual K+ fluxes. In the latter context, however, there are certain significant differences (effect of transmembrane potential; volume; pressure sensitivity; species distribution) which may be important, and the unequivocal identity of the two transport processes remains to be confirmed.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banderali U., Roy G. Anion channels for amino acids in MDCK cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1200–C1207. doi: 10.1152/ajpcell.1992.263.6.C1200. [DOI] [PubMed] [Google Scholar]
- Bernhardt I., Hall A. C., Ellory J. C. Effects of low ionic strength media on passive human red cell monovalent cation transport. J Physiol. 1991 Mar;434:489–506. doi: 10.1113/jphysiol.1991.sp018482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhardt I., Seidler G., Ihrig I., Erdmann A. Species-dependent differences in the effect of ionic strength on potassium transport of erythrocytes: the role of lipid composition. Gen Physiol Biophys. 1992 Jun;11(3):287–299. [PubMed] [Google Scholar]
- Cabantchik Z. I., Greger R. Chemical probes for anion transporters of mammalian cell membranes. Am J Physiol. 1992 Apr;262(4 Pt 1):C803–C827. doi: 10.1152/ajpcell.1992.262.4.C803. [DOI] [PubMed] [Google Scholar]
- Delpire E., Lauf P. K. Kinetics of DIDS inhibition of swelling-activated K-Cl cotransport in low K sheep erythrocytes. J Membr Biol. 1992 Feb;126(1):89–96. doi: 10.1007/BF00233463. [DOI] [PubMed] [Google Scholar]
- Denner K., Heinrich R., Bernhardt I. Carrier-mediated residual K+ and Na+ transport of human red blood cells. J Membr Biol. 1993 Mar;132(2):137–145. doi: 10.1007/BF00239003. [DOI] [PubMed] [Google Scholar]
- Ellory J. C., Kirk K., Culliford S. J., Nash G. B., Stuart J. Nitrendipine is a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. FEBS Lett. 1992 Jan 20;296(2):219–221. doi: 10.1016/0014-5793(92)80383-r. [DOI] [PubMed] [Google Scholar]
- Erdmann A., Bernhardt I., Herrmann A., Glaser R. Species-dependent differences in the influence of ionic strength on potassium transport of erythrocytes. The role of membrane fluidity and Ca2+. Gen Physiol Biophys. 1990 Dec;9(6):577–588. [PubMed] [Google Scholar]
- Erdmann A., Bernhardt I., Pittman S. J., Ellory J. C. Low potassium-type but not high potassium-type sheep red blood cells show passive K+ transport induced by low ionic strength. Biochim Biophys Acta. 1991 Jan 9;1061(1):85–88. doi: 10.1016/0005-2736(91)90271-9. [DOI] [PubMed] [Google Scholar]
- Franciolini F., Nonner W. Anion and cation permeability of a chloride channel in rat hippocampal neurons. J Gen Physiol. 1987 Oct;90(4):453–478. doi: 10.1085/jgp.90.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franciolini F., Petris A. Chloride channels of biological membranes. Biochim Biophys Acta. 1990 May 7;1031(2):247–259. doi: 10.1016/0304-4157(90)90009-2. [DOI] [PubMed] [Google Scholar]
- Franciolini F., Petris A. Transport mechanisms in chloride channels. Biochim Biophys Acta. 1992 Mar 26;1113(1):1–11. doi: 10.1016/0304-4157(92)90031-5. [DOI] [PubMed] [Google Scholar]
- Garay R. P., Nazaret C., Hannaert P. A., Cragoe E. J., Jr Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system. Mol Pharmacol. 1988 Jun;33(6):696–701. [PubMed] [Google Scholar]
- Gasbjerg P. K., Funder J., Brahm J. Kinetics of residual chloride transport in human red blood cells after maximum covalent 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid binding. J Gen Physiol. 1993 May;101(5):715–732. doi: 10.1085/jgp.101.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser R. The shape of red blood cells as a function of membrane potential and temperature. J Membr Biol. 1979 Dec 31;51(3-4):217–228. doi: 10.1007/BF01869085. [DOI] [PubMed] [Google Scholar]
- Goldstein L., Brill S. R. Volume-activated taurine efflux from skate erythrocytes: possible band 3 involvement. Am J Physiol. 1991 May;260(5 Pt 2):R1014–R1020. doi: 10.1152/ajpregu.1991.260.5.R1014. [DOI] [PubMed] [Google Scholar]
- Greger R. Chloride channel blockers. Methods Enzymol. 1990;191:793–810. doi: 10.1016/0076-6879(90)91048-b. [DOI] [PubMed] [Google Scholar]
- Hall A. C., Ellory J. C. Effects of high hydrostatic pressure on 'passive' monovalent cation transport in human red cells. J Membr Biol. 1986;94(1):1–17. doi: 10.1007/BF01901009. [DOI] [PubMed] [Google Scholar]
- Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
- Halperin J. A., Brugnara C., Tosteson M. T., Van Ha T., Tosteson D. C. Voltage-activated cation transport in human erythrocytes. Am J Physiol. 1989 Nov;257(5 Pt 1):C986–C996. doi: 10.1152/ajpcell.1989.257.5.C986. [DOI] [PubMed] [Google Scholar]
- Halperin J. A., Brugnara C., Van Ha T., Tosteson D. C. Voltage-activated cation permeability in high-potassium but not low-potassium red blood cells. Am J Physiol. 1990 Jun;258(6 Pt 1):C1169–C1172. doi: 10.1152/ajpcell.1990.258.6.C1169. [DOI] [PubMed] [Google Scholar]
- Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
- Jackson P. S., Strange K. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol. 1993 Dec;265(6 Pt 1):C1489–C1500. doi: 10.1152/ajpcell.1993.265.6.C1489. [DOI] [PubMed] [Google Scholar]
- Jones G. S., Knauf P. A. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J Gen Physiol. 1985 Nov;86(5):721–738. doi: 10.1085/jgp.86.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk K., Ellory J. C., Young J. D. Transport of organic substrates via a volume-activated channel. J Biol Chem. 1992 Nov 25;267(33):23475–23478. [PubMed] [Google Scholar]
- Kirk K., Horner H. A., Elford B. C., Ellory J. C., Newbold C. I. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem. 1994 Feb 4;269(5):3339–3347. [PubMed] [Google Scholar]
- Kirk K., Horner H. A., Spillett D. J., Elford B. C. Glibenclamide and meglitinide block the transport of low molecular weight solutes into malaria-infected erythrocytes. FEBS Lett. 1993 May 24;323(1-2):123–128. doi: 10.1016/0014-5793(93)81462-9. [DOI] [PubMed] [Google Scholar]
- Kirk K., Kirk J. Volume-regulatory taurine release from a human lung cancer cell line. Evidence for amino acid transport via a volume-activated chloride channel. FEBS Lett. 1993 Dec 20;336(1):153–158. doi: 10.1016/0014-5793(93)81630-i. [DOI] [PubMed] [Google Scholar]
- Kracke G. R., Dunham P. B. Effect of membrane potential on furosemide-inhibitable sodium influxes in human red blood cells. J Membr Biol. 1987;98(2):117–124. doi: 10.1007/BF01872124. [DOI] [PubMed] [Google Scholar]
- Lambert I. H., Hoffmann E. K. Regulation of taurine transport in Ehrlich ascites tumor cells. J Membr Biol. 1993 Jan;131(1):67–79. doi: 10.1007/BF02258535. [DOI] [PubMed] [Google Scholar]
- Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
- Pasantes-Morales H., Murray R. A., Sánchez-Olea R., Morán J. Regulatory volume decrease in cultured astrocytes. II. Permeability pathway to amino acids and polyols. Am J Physiol. 1994 Jan;266(1 Pt 1):C172–C178. doi: 10.1152/ajpcell.1994.266.1.C172. [DOI] [PubMed] [Google Scholar]
- Roy G., Malo C. Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J Membr Biol. 1992 Oct;130(1):83–90. doi: 10.1007/BF00233740. [DOI] [PubMed] [Google Scholar]
- Siebens A. W., Spring K. R. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells. Am J Physiol. 1989 Dec;257(6 Pt 2):F937–F946. doi: 10.1152/ajprenal.1989.257.6.F937. [DOI] [PubMed] [Google Scholar]
- Stewart G. W., Ellory J. C., Klein R. A. Increased human red cell cation passive permeability below 12 degrees C. Nature. 1980 Jul 24;286(5771):403–404. doi: 10.1038/286403a0. [DOI] [PubMed] [Google Scholar]
- Strange K., Morrison R., Shrode L., Putnam R. Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am J Physiol. 1993 Jul;265(1 Pt 1):C244–C256. doi: 10.1152/ajpcell.1993.265.1.C244. [DOI] [PubMed] [Google Scholar]
- Zade-Oppen A. M., Adragna N. C., Tosteson D. C. Effects of pH, potential, chloride and furosemide on passive Na+ and K+ effluxes from human red blood cells. J Membr Biol. 1988 Aug;103(3):217–225. doi: 10.1007/BF01993981. [DOI] [PubMed] [Google Scholar]
