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Abstract 

Background  Growing epidemiological evidence suggests an association between exposure to air pollutants 
and breast cancer. Yet, the underlying mechanisms remain poorly understood. This study explored the mediating role 
of thirteen metabolic health biomarkers in the relationship between exposure to three air pollutants, i.e. nitrogen 
dioxide (NO2), polychlorinated biphenyls 153 (PCB153), and benzo[a]pyrene (BaP), and breast cancer risk.

Methods  We used data from a nested case–control study within the French national prospective E3N-Generations 
cohort, involving 523 breast cancer cases and 523 matched controls. The four-way decomposition mediation of total 
effects for thirteen biomarkers was applied to estimate interaction and mediation effects (controlled direct, reference 
interaction, mediated interaction, and pure indirect effects).

Results  The analyses indicated a significant increase in breast cancer risk associated with BaP exposure (odds ratio 
(OR)Q4 vs Q1 = 2.32, 95% confidence intervals (CI): 1.00–5.37). PCB153 exposure showed a positive association only in the 
third quartile (ORQ3 vs Q1 = 2.25, CI 1.13–4.57), but it appeared to be non-significant in the highest quartile (ORQ4 vs 

Q1 = 2.07, CI 0.93–4.61). No association was observed between NO2 exposure and breast cancer risk. Estradiol was asso-
ciated with an increased risk of breast cancer (OR per one standard deviation (SD) increment = 1.22, CI 1.05–1.42), 
while thyroid-stimulating hormone was inversely related to breast cancer risk (OR per 1SD increase = 0.87, CI 0.75–
1.00). We observed a suggestive mediated effect of the association between the three pollutants and breast cancer 
risk, through albumin, high-density lipoproteins cholesterol, low-density lipoprotein cholesterol, parathormone, 
and estradiol.

Conclusion  Although limited by a lack of statistical power, this study provides relevant insights into the potential 
mediating role of certain biomarkers in the association between air pollutant exposure and breast cancer risk, high-
lighting the need for further in-depth studies in large populations.
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Background
Outdoor air pollution, a complex mixture of atmospheric 
pollutants including gases, particles, metals, and organic 
compounds, is a major contributor to global mortal-
ity [1].The International Agency for Research on Cancer 
(IARC) classified outdoor air pollution as a whole as car-
cinogenic in humans [2]. Among these, nitrogen dioxide 
(NO2) is a common pollutant that has been linked to 
various adverse health effects, including breast cancer 
development [3, 4]. NO2 is primarily emitted from the 
combustion of fossil fuels (heating, power generation) 
and motor vehicles [5]. Polychlorinated biphenyls (PCB) 
and benzo[a]pyrene (BaP) are two endocrine-disrupting 
pollutants  (EDP) that are associated with an increased 
incidence of numerous diseases, notably breast cancer 
risk [6–8]. These compounds are mainly emitted from 
industrial activities and biomass combustion [7, 9].

Recent epidemiological studies increasingly link air 
pollution to breast cancer, suggesting statistically signifi-
cant relationships between certain air pollutants and an 
increased risk of breast cancer, though the findings are 
not entirely inconsistent [10–13]. NO2 has been associ-
ated with a higher risk of breast cancer in case-control 
studies [14, 15]. A recent meta-analysis further supported 
this association, indicating NO2  as a common marker 
of traffic-related air pollutants (TRAP) linked to breast 
cancer [16]. Similarly, elevated levels of BaP and poly-
cyclic aromatic hydrocarbons (PAHs) have been associ-
ated with increased breast cancer risk [17, 18], and PCBs 
(including PCB153) have shown a positive association 
with breast cancer across several epidemiological studies, 
including meta-analyses [7, 19, 20].

Although not fully elucidated, several biological mech-
anisms that might explain how these pollutants are 
involved in the development of breast cancer have been 
proposed. EDP can bind to estrogen receptors [21] and 
the aryl hydrocarbon receptor [22, 23], activating path-
ways involved in the carcinogenesis. These EDP increase 
levels of endogenous hormone levels [24], particularly 
estrogen and progesterone, which are directly linked 
to breast cancer [25]. Sex Hormone-Binding Globulin 
(SHBG) also plays a crucial role in the pathophysiol-
ogy of breast cancer, primarily by regulating circulating 
estradiol [26]. Consequently, a decrease in SHBG levels 
is associated with a higher risk of breast cancer devel-
opment. Additionally, androgens, such as testosterone, 
significantly influence on breast cancer [27]. Moreo-
ver, exposure to the three air pollutants (NO2, BaP, and 
PCB153) can lead to a number of changes and perturba-
tion as hallmarks in cancer development [28], including 
chronic inflammations through increase in blood levels 
of pro-inflammatory factors [29] and C-reactive protein 

(CRP) [30], and disturbances in lipid metabolism, such as 
elevated cholesterol levels [31, 32].

Yet, the precise roles of these biomarkers, considering 
their interacting and mediating effects in the associations 
between the air pollutants of interest and breast cancer, 
remain unclear. A mediation approach, which consid-
ers both mediation and interaction, is a valuable tool for 
better understanding the underlying mechanisms and 
unravelling the different pathways of the association of 
air pollutants with breast cancer. Mediation analysis is 
generally applied to evaluate to what extent the effect of 
an exposure is explained or not, by a set of hypothetical 
mediators. In recent years, integrating causal inference 
approaches has significantly advanced mediation analy-
sis, resulting in more robust and generalizable methods 
for understanding direct and indirect effects [33].

The objective of the present study was, therefore, to 
explore the mediating role of various biomarkers of met-
abolic health in the relationship between three air pol-
lutants (NO2, BaP and PCB153) and risk of breast cancer 
using a four-way decomposition mediation analysis [34].

Methods
Study population
The present study was conducted using a sub-sample of 
523 breast cancer cases and 523 matched controls from 
the XENAIR study [35], for whom measurements of bio-
markers were available. This nested case-control study 
within the national E3N-Generations cohort, included 
5,222 cases of invasive breast cancer and 5,222 matched 
controls followed from 1990 (at baseline) to 2011 [17, 20]. 
As described in our previous studies, controls were ran-
domly selected from women who were free of breast can-
cer, based on incidence density sampling and matched 
to controls according to age, date, menopausal status, 
residential area, and blood sample [35]. The flowchart 
of study participants selection is provided in the Supple-
mentary Fig. 1.

The E3N-Generations prospective study, a continuing 
French cohort study, was established as an extension of 
the E3N cohort of women (Etude Epidémiologique auprès 
des femmes de la Mutuelle Générale de l’Education 
Nationale), which includes the E3N women’s children, 
their fathers and, in the future, their grandchildren.

The E3N-cohort Generations 1 was started in 1990 to 
investigate the key risk factors for cancer and chronic dis-
eases among women [36]. At recruitment (1990-1991), a 
total of 98,995 French women aged 40 to 65 years old, and 
insured with MGEN (a national health insurance scheme 
covering primarily teachers) were recruited. Partici-
pants completed self-administered questionnaires that 
collect data on socio-demographic characteristics, life-
style, reproductive factors, anthropometry, past medical 
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history, and familial history of cancer. The addresses of 
the cohort participants were collected at baseline and 
at each of the thirteen follow-ups questionnaires. Self-
reported cases were validated through the retrieval of 
medical records from treating physicians, with pathologi-
cal confirmation received for 93% of cases. The study was 
approved by the French National Commission for Data 
Protection and Privacy (CNIL), and informed consent 
was obtained from each participant.

Pollutant exposure assessment
As previously described [14], long-term exposure lev-
els of the three pollutants (NO2, BaP and PCB153) were 
estimated at the subjects’ residential addresses using two 
models in accordance of the existence of measurement 
and emission data of the pollutants of interest for the 
study period (1990-2011).

BaP and PCB153 were estimated using is a chemistry-
transport model “CHIMERE”. This model, with a spatial 
resolution of 0.125° × 0.0625° (around 7 × 7 km) simu-
lates pollutant transport from local to continental scales, 
by utilizing data (e.g. emission, meteorological fields, and 
boundary conditions) as inputs and runs a set of equa-
tions reflecting the physicochemical steps associated 
with the evolution of concentrations [37]. CHIMERE 
takes into account main particles that are directly emit-
ted and whether they are anthropogenic or natural, and 
models the concentrations levels of each particle with 
aerodynamic diameters varying from a few nanometers 
to 10 μm [37]. NO2 levels were evaluated using a land 
use regression (LUR, 50 × 50 m) model, a widely used 
approach to model and to predict spatial variations in 
air pollution concentrations [38, 39]. The model employs 
proximity measures like circular buffers of different sizes, 
to capture geographical features that explain variability in 
monitored concentrations at specific locations (i.e. moni-
toring sites or addresses) [40, 41]. In the present study, a 
LUR model (50 × 50 m) was developed using the aver-
age annual NO2 data for the period of 2010 to 2012 [14]. 
This “baseline” model further incorporated inputs from 
COPERNIC (a chemical transport model providing NO2 
background concentrations across France) and localised 
variables related to road traffic and land use, available 
throughout the country[41, 42]. The model underwent 
validation through comparisons with measurements 
across France using a hold-out validation approach with 
independent monitoring sites. The LUR model was retro-
spectively extrapolated to 1990 using annual local trends 
derived from the CHIMERE model [43].

For each woman, annual mean concentration of NO2, 
BaP and PCB153 were evaluated at their geocoded resi-
dential addresses for each year from 1990 to 2011. The 
average of these annual mean concentration for each 

pollutant were then calculated for each woman from the 
year they entered into the cohort until their index date 
(which corresponds to the date of breast cancer diagnosis 
for cases and date of selection for controls).

Metabolic health biomarker assays
Biomarker levels were measured from the cohort blood 
samples collected between 1995 and 1998 [36]. The bio-
markers investigated in this study were chosen based on 
their previously established individual associations with 
breast cancer risk and air pollutants [21, 22, 24, 27, 29, 
30, 44]. These included pre-diagnostic circulating levels 
of albumin (g/L), c-reactive protein (CRP) (mg/L), tri-
glycerides (mmol/L), cholesterol (mmol/L), high-density 
lipoproteins cholesterol (HDL) (mmol/L), low-density 
lipoproteins cholesterol (LDL) (mmol/L), parathormone 
(PTH) (pg/mL), thyroid-stimulating hormone (mlU/L), 
prolactin (mIU/L), estradiol (pmol/L), testosterone 
(nmol/L), SHBG (nmol/L) and progesterone (nmol/L).

Albumin and CRP were quantified by bromocresol 
green (BCG) analysis and immunoturbidimetric-high 
sensitivity analysis, respectively, using a Hitachi 911 
analyzer (Roche Diagnostics, US) [45]. Using a modular 
analyzer (Roche Diagnostics, US), triglycerides, choles-
terol, HDL, and LDL were quantified employing enzyme 
immune-inhibition analysis [45]. PTH, thyroid-stimulat-
ing hormone, prolactin, estradiol, testosterone, SHBG 
and progesterone were quantified by electrochemilumi-
nescence immunoassay (ECLIA) method using the Elec-
sys analyzer (Roche Diagnostics, US) [45].

Statistical analysis
The main characteristics of the population and bio-
marker levels were described distinctly for cases and 
controls, using means, standard deviations (SDs), per-
centiles, minimum and maximum values for continu-
ous variables, and counts and percentages for qualitative 
variables. Pearson correlation analyses were performed 
to check correlations between biomarkers. The linear-
ity of the pollutant-cancer and mediator-cancer associa-
tions was verified using restricted cubic splines with four 
degrees of freedom [46]. Conditional logistic regressions 
were employed to calculate odds ratios (ORs) and their 
corresponding 95% confidence intervals (CIs) for the 
associations between exposure to each pollutant and 
the risk of breast cancer. We modelled the pollutants as 
continuous variables (one SD increase) and as categori-
cal variables (quartiles). Linear regression analyses were 
used to estimate the associations between each pollutant 
level and each biomarker of metabolic health with adjust-
ments for confounders. The effect of each biomarker on 
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breast cancer (per one SD increase) was estimated using 
conditional logistic regression analyses.

A four-way decomposition mediation analysis was fit-
ted to assess whether the associations between atmos-
pheric pollutants and breast cancer risk were mediated 
by selected biomarkers [34]. Data on n individuals were 
observed as independent and identically distributed 
(C, X, M, Y), with Y being the binary outcome of inter-
est, X the exposure, M a continuous mediator variable 

measured after X but before Y, and C representing pre-
exposure confounders of the effects of (X, M) on Y. (Fig-
ure  1). The four-way decomposition analysis assumes 
that after adjusting for the potential confounders, there 
is no unobserved confounding that affects the relation-
ship between exposure and outcome, and between expo-
sure and mediator, and there are no confounders of the 
mediator-outcome relationship that may be affected by 
the exposure (post-exposure confounders) [47]. This 
approach allows us  to determine the controlled direct 
effect (CDE), the reference interaction effect (INTref), the 
mediated interaction effect (INTmed) and the Pure Indi-
rect Effect (PIE) (Fig. 1), assuming the following regres-
sion models:

And

(1)log it{Pr (Y = 1|X = x,M = m,C = c)} = θ0 + θ1x + θ2m+ θ3xm+ θ ′4c

(2)E[M|X = x,C = c] = β0 + β1x + β ′
2c

Fig. 1  Causal diagram with the interaction representing a 4-way decomposition X: the exposure, M: the mediator, X × M: the interaction 
between the exposure and the mediator, Y: the outcome, C: a set of confounders. Red line shows each effect



Page 5 of 18Mercoeur et al. Breast Cancer Research          (2024) 26:159 	

VanderWeele and Vansteelandt derived expressions 
for the CDE and the PIE all on the risk ratio scale. The 
total effect (TE), CDE, and PIE were given by:

The control direct effect is given by:

The reference interaction is given by:

The mediated interaction is given by:

The pure indirect effect is given by:

In this study, the CDE corresponds to the effect of 
the pollutant on breast cancer risk without mediation 
by the biomarker and without interaction between the 
pollutant and the biomarker. The INTmed corresponds 
to the effect of the pollutant on the breast cancer risk 
due to both the mediation of the biomarker and the 
interaction between the pollutant and the biomarker. 
The INTref corresponds to the effect of the pollut-
ant on the breast cancer risk due solely to the inter-
action between the pollutant and the biomarker. The 
PIE corresponds to the effect of the pollutant on the 
breast cancer risk due solely to the mediation by the 
biomarker.

The sum of these four effects (i.e. CDE, INTref, 
INTmed, PIE) equals the total effect (TE) of the pollut-
ant on breast cancer risk. The proportion of each of 
the four effects is calculated relative to the TE, thus, 
their sum equals 1. Of note, in some situations, nega-
tive proportions and proportions exceeding 100% may 
be observed. A negative proportion indicates that the 
indirect effect is opposite to the TE. In this case, the 
proportions of other effects may exceed 100%. This 
scenario typically arises when the associations between 
exposure and biomarker, and between biomarker 
and outcome are in opposite directions. Mediation 
analyses were conducted for biomarkers that have 
previously been demonstrated to have significant asso-
ciations with breast cancer. Mediation analysis con-
sidered causal effects for changes in pollutant levels 

(3)RRTE
c = exp

[

θ1 + θ2β1 + θ3
(

β0 + β1x
∗ + β1x + β ′

2c + θ2σ
2
)

(x − x∗)+ 1
2θ

2
3σ

2
(

x2 − x∗2
)

]

(4)RRCDE
c (m∗) = exp[(θ1 + θ3m

∗)(x − x∗)]

(5)
RR

INTref
c (m∗) =

∫

{

E[x,m,c]
E[x∗,m∗,c]

−
E[x∗,m,c]
E[x∗,m∗,c]

−
E[x,m∗,c]
E[x∗,m∗,c]

+ 1
}

dP(m|x∗c)

(6)

RRINTmed
c = ∫

{

E[x,m, c]
E[x∗,m∗, c]

−
E
[

x∗,m, c
]

E[x∗,m∗, c]

}

{

dP(x, c)− dP
(

x∗, c
)}

(7)RRPIE
c = exp[(θ2β1 + θ3β1x

∗)(x − x∗)]

from the 25th to the 75th percentile and each mediator 
fixed at its median level. To test the robustness of our 
results, we further performed sensitivity mediation 

analyses, using average exposure from the inclusion to 
the date of blood collection. All multivariable models 
were adjusted for confounding factors identified by a 
direct acyclic graph (Supplementary Fig. 2), including 

body mass index, menopausal hormone replacement 
therapy use, urban/rural status at birth, urban/rural 
status at inclusion, alcohol drinking, breastfeeding, 
mammography before inclusion, oral contraceptive 
use, age at full-term pregnancy and parity, smoking 
status, total physical activity.

Analyses were conducted using R software ver-
sion 4.2.3. Mediation analyses were conducted using 
STATA 14.

Results
Study population
Descriptive characteristics of the study population are 
shown in Supplementary Table 1, comprising 523 breast 
cancer cases and 523 matched controls. The mean age 
(± SD) at inclusion was 49.9 (± 6.3) years. Alcohol con-
sumption was slightly lower in cases as compared to con-
trols, with 52.0% of cases and 56.2% of controls reporting 
drinking more than 6.7 g/day. Education levels were gen-
erally high, with over 85% of participants having at least a 
1- to 2-year university degree, with no difference between 
cases and controls. With the exception of breastfeeding, 
slightly more common in controls than in cases (62.5% 
vs. 59.1%), all other reproductive factors (age at first 
menstruation, use of oral contraceptives, and the number 
of children and age at first pregnancy) were overall simi-
lar between cases and controls. The distribution of body 
mass index, physical activity levels, and smoking status 
were also comparable between cases and controls.

Biomarker levels and annual mean concentration levels 
of pollutant exposure (NO2, BaP and PCB153) between 
cases and controls are shown in Supplementary Table 2 
and Supplementary Table 3. There was no strong differ-
ence in the mean levels of all biomarkers between cases 
and controls. The average (±SD) of annual mean con-
centrations was 37.08 (±16.94)  μg/m3, 0.21 (±0.12)  ng/
m3 and 11.06 (±4.04) ng/m3, for NO2, BaP and PCB153, 
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respectively. The averages of annual mean concentrations 
of the three air pollutants were similar between cases and 
controls.

Figure  2 presents Pearson correlation coefficients 
between biomarkers. Overall, with the exception of 
between HDL and LDL cholesterol (coef. = − 0.62), there 
were no strong correlations between biomarkers.

Pollutant exposure and breast cancer risk
Table  1 presents the results of multivariable-adjusted 
associations between the three pollutants of interest and 
breast cancer risk. Overall, in continuous analyses, each 
SD increment in exposure to BaP (0.126  ng/m3) and 
NO2 (17.0  μg/m3) was associated with ORs of 1.04 (CI 

0.81–1.34) and 1.04 (CI 0.81–1.34) of breast cancer risk, 
respectively. In contrast, exposure to PCB153 showed a 
borderline positive association, with an OR of 1.30 (CI 
0.98–1.73) for each 1 SD increment in PCB153 levels 
(3.92 ng/m3).

In the analysis by quartiles, an increase in breast 
cancer risk was shown with increasing quartiles of BaP 
exposure (ORQ3 vs Q1 = 2.03, CI 1.05–3.93; and ORQ4 vs 

Q1 = 2.32, CI 1.00–5.37). Similarly, an increased risk of 
breast cancer associated with PCB153 exposure was 
observed for the third quartile (ORQ3 vs Q1 = 2.25, CI 
1.13–4.57). However, the association became statisti-
cally non-significant in the highest exposed quartile 
(ORQ4 vs Q1 = 2.07, CI 0.93–4.61).

Fig. 2  Pearson correlations between biomarkers. HDL: High-density lipoprotein cholesterol, LDL: Light-density lipoprotein cholesterol, TSH: 
Thyroid-stimulating hormone, SHGB: Sex Hormone-Binding Globulin, PTH: Parathormone, Protein CRP: C-reactive protein
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Biomarkers and breast cancer risk
Table  2 shows the multivariable-adjusted ORs of 
the relationship between biomarkers of interest and 
breast cancer risk. Thyroid-stimulating hormone was 
inversely associated with breast cancer risk (OR = 0.87, 
CI 0.75–1.00, for each 1 SD increment), while estradiol 

was related to an increased risk of breast cancer (OR 
= 1.22, CI 1.05–1.42, for each 1 SD increment).

Pollutants and biomarkers associations
Results for the associations between pollutants (NO2, 
BaP and PCB153) and biomarkers are presented in 
Table  3. There was evidence of positive associations 
between albumin and each of the three pollutants. HDL 
cholesterol and LDL cholesterol were respectively, pos-
itively and inversely related to BaP. PTH was inversely 
associated with PCB153 and NO2. CRP and estradiol 
showed, respectively, inverse and positive associations 
with BaP.

Four‑way decomposition mediation analysis
Table  4 presents the results of the causal mediation 
analysis with the four-way decomposition (i.e. con-
trol direct effect (CDE), reference interaction (INTref), 
mediated interaction (INTmed), pure indirect effect 
(PIE)) of the effect of NO2 on breast cancer risk medi-
ated individually by different biomarkers. This media-
tion analysis considered the causal effects of changes 
in pollutant levels from the 25th to the 75th percentile, 
with each mediator set at its median value. The CDEs 
(the effect in the absence of mediation or interaction) 
of NO2 on breast cancer risk were very high, ranging 
from 80.6 to 121.1%, when holding estradiol and testos-
terone at their median levels, respectively. The overall 
mediated effects (sum of PIE and mediation interac-
tion) through estradiol and PTH were suggestively pos-
itive, at 18.8 and 13.6% respectively (Table 4).

For PCB153, the proportions of CDE were elevated, 
ranging from 95.2 to 106.0%, when holding estradiol 

Table 1  Associations between each pollutant and breast cancer risk

Conditional logistic regression models were used for estimating ORs and 95%CI, adjusted for body mass index, menopausal hormone replacement therapy uses, 
urban/rural status at birth, urban/rural status at inclusion, alcohol drinking, breastfeeding, mammography before inclusion, oral contraceptive use, age at full-term 
pregnancy and parity, smoking status, total physical activity.

The ORs (95% CI) correspond to an increment of 1 SD level in controls, NO2: 17.0 μg/m3, PCB153: 3.92 ng/m3, BaP: 0.126 ng/m3 

Quartiles’ cut-offs for NO2 based on the distribution among controls: ≤ 24.2, ≤ 32.4, ≤ 46.5 µg/m3

Quartiles’ cut-offs for PCB153 based on the distribution among controls: ≤ 8.13, ≤ 10.12, ≤ 12.91 ng/m3

Quartiles’ cut-offs for BaP based on the distribution among controls: ≤ 0.133, ≤ 0.179, ≤ 0.240 ng/m3

SD Standard deviation, OR odds ratio, 95% CI 95% confidence intervals, NO2 nitrogen dioxide, BaP: benzo[a]pyrene, PCB153: polychlorinated biphenyls

NO2 BaP PCB153
Cases/Controls OR (95% CI) OR (95% CI) OR (95% CI)

Continuous (For each 1SD 
increase)

523/523 1.04 (0.81, 1.34) 1.04 (0.81, 1.34) 1.30 (0.98, 1.73)

Quartiles

I 121/131 1 (ref ) 1 (ref ) 1 (ref )

II 134/131 1.11 (0.74, 1.66) 1.58 (0.96, 2.61) 1.19 (0.68, 2.06)

III 132/130 1.14 (0.71, 1.83) 2.03 (1.05, 3.93) 2.25 (1.13, 4.57)

IV 136/131 1.18 (0.66, 2.11) 2.32 (1.00, 5.37) 2.07 (0.93, 4.61)

Table 2  Associations between each biomarker and breast 
cancer risk

Conditional logistic regression models were used for estimating ORs and 95%CI, 
for each 1SD biomarker increment, adjusted for body mass index, menopausal 
hormone replacement therapy uses, urban/rural status at birth, urban/rural 
status at inclusion, alcohol drinking, breastfeeding, mammography before 
inclusion, oral contraceptive use, age at full-term pregnancy and parity, smoking 
status, total physical activity.

OR: odds ratio; 95% CI: 95% confidence intervals, HDL cholesterol: High-density 
lipoprotein cholesterol, LDL cholesterol: Light-density lipoprotein cholesterol, 
SD: standard deviation, SHGB: Sex Hormone-binding globulin

P value was obtained based on Wald test.

Biomarkers Cases/Controls OR (CI 95%) P value

Albumin 478 / 478 1.05 (0.90, 1.23) 0.53

Protein C-reactive 481 / 481 1.05 (0.90, 1.23) 0.52

Triglycerides 430 / 430 0.96 (0.83, 1.11) 0.56

Cholesterol 450 / 450 0.94 (0.82, 1.09) 0.41

HDL cholesterol 420 / 420 0.95 (0.76, 1.18) 0.62

LDL cholesterol 423 / 423 0.89 (0.72, 1.10) 0.29

Parathormone 470 / 470 0.92 (0.80, 1.06) 0.23

Thyroid-stimulating 
hormone

480 / 480 0.87 (0.75, 1.00) 0.04

Prolactin 484 / 484 1.01 (0.87, 1.16) 0.93

Estradiol 479 / 479 1.22 (1.05, 1.42) 0.01

Testosterone 472 / 472 1.03 (0.89, 1.20) 0.68

SHBG 440 / 440 0.97 (0.84, 1.11) 0.63

Progesterone 481 / 481 1.07 (0.93, 1.22) 0.35
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and CRP at their median levels, respectively (Table 5). 
Although not statistically significant, small propor-
tions of the association between PCB153 and breast 
cancer were mediated by estradiol and PTH, with the 
overall mediated effect being 6.4 and 4.1%, respectively 
(Table 5).

Table  6 displays the results of the causal mediation 
analysis with four-way decompositions of the effect of 
BaP on breast cancer mediated individually by differ-
ent biomarkers. The CDEs ranged from 66.4 to 176.5% 
while holding albumin and progesterone at their 
median levels, respectively. The overall mediated effects 
through albumin (24.3%), LDL cholesterol (22.8%), and 
estradiol (27.0%) were suggestively positive. In contrast, 
there was a non-significant negative mediated effect 
through HDL cholesterol (− 18.7%).

The sensitivity mediation analyses, which restricted 
pollutants exposure to the period from inclusion to 
the date of biomarker collection, yielded comparable 
mediating effects to those observed when exposure was 
measured until the index date (Supplementary Tables 4, 
5 and 6).

Discussion
This study is, to date, the first to assess whether specific 
biomarkers act as potential mediators of the association 
between exposure to three major air pollutants (NO2, 
BaP and PCB153) and risk of breast cancer. Our analyses 

revealed a significantly increased risk of breast cancer 
with increasing quartile levels of BaP and PCB153 expo-
sures. A positive but not statistically significant associa-
tion was observed between exposure to NO2 and the risk 
of breast cancer. There was evidence of an inverse asso-
ciation between thyroid-stimulating hormone and breast 
cancer risk, whereas estradiol showed an increased risk 
of breast cancer. The four-way decomposition mediation 
analysis showed a suggestive mediation through estradiol 
and PTH in the association of NO2 and PCB153 expo-
sures with breast cancer risk, whereas albumin, estradiol, 
LDL and HDL cholesterol may play a role in the associa-
tion between BaP and breast cancer risk.

BaP and PCB153 are recognized as EDP [7]. Steroid 
hormones, especially estradiol, have been strongly linked 
to the risk of breast cancer [48, 49]. Certain EDP may 
promote tumor growth through pathways mediated by 
estrogen, progesterone, or other hormonal responses, 
particularly by modifying the levels of these steroid hor-
mones [50, 51]. Moreover, PAHs, such as BaP, exhibit 
estrogenic properties and could, therefore, stimulate the 
proliferation of breast cells [23]. Certain BaP metabolites 
can bind to estrogen receptors and activate estrogen-
dependent signalling pathways, potentially promoting 
the growth of breast cells [52]. Although a direct link 
between NO2 and estradiol has not been established, 
NO2 can contribute to both endocrine disruption (ED) 
and carcinogenic effects through indirect mechanisms 

Table 3  Beta coefficients and P values for associations between pollutants and biomarkers, a nested case–control study within the 
E3N-Generations cohort, 1990–2011

Linear regression models were used for estimating beta value, per 1 SD biomarker and pollutant increment,adjusted for body mass index, menopausal hormone 
replacement therapy uses, urban/rural status at birth, urban/rural status at inclusion, alcohol drinking, breastfeeding, and mammography before inclusion, oral 
contraceptive use, age at full-term pregnancy and parity, smoking status, total physical activity.

P value was obtained based on student test.

SD: standard deviation, HDL cholesterol: High-density lipoprotein cholesterol, LDL cholesterol: Light-density lipoprotein cholesterol, TSH: Thyroid-stimulating 
hormone, SHGB: Sex Hormone-Binding Globulin, NO2: nitrogen dioxide, BaP: benzo[a]pyrene, PCB153: polychlorinated biphenyls

BaP PCB153 NO2

Biomarkers n Beta P value Beta P value Beta P value

Albumin 1001 0.088 0.007 0.094 0.003 0.071 0.048

Protein C-reactive 1003  − 0.061 0.057  − 0.034 0.264  − 0.045 0.181

Triglycerides 945  − 0.022 0.545  − 0.038 0.250  − 0.045 0.227

Cholesterol 972 0.009 0.806  − 0.011 0.751  − 0.017 0.649

HDL cholesterol 936 0.104 0.004 0.043 0.194  − 0.048 0.198

LDL cholesterol 937  − 0.092 0.012  − 0.060 0.079 0.039 0.305

Parathormone 992  − 0.053 0.131  − 0.116 0.001  − 0.155 0.000

TSH 1003  − 0.018 0.582 0.019 0.551 0.020 0.577

Prolactin 1007 0.035 0.282 0.045 0.154 0.043 0.223

Estradiol 1002 0.063 0.054 0.052 0.102 0.050 0.161

Testosterone 993  − 0.048 0.148  − 0.010 0.751  − 0.026 0.475

SHBG 960 0.036 0.291  − 0.006 0.848  − 0.004 0.920

Progesterone 1004 0.031 0.374 0.029 0.391 0.013 0.736
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Table 4  Four-way decomposition of each mediator of the associations between NO2 and breast cancer risk

Mediation Effect Estimate (CI 95%) P value Proportion P value

Albumin TE 0.1178 (− 0.2666, 0.5022) 0.548

CDE 0.1126 (− 0.2724, 0.4976) 0.566 95.6%  < 0.001

INTref 0.0031 (− 0.0260, 0.0323) 0.833 2.7% 0.842

INTmed  − 0.0014 (− 0.0136, 0.0109) 0.829  − 1.1% 0.838

PIE 0.0034 (− 0.0098, 0.0167) 0.612 2.9% 0.695

O_M 1.8% 0.766

CRP TE 0.1206 (− 0.2608, 0.5020) 0.536

CDE 0.1335 (− 0.2459, 0.5130) 0.490 110.7%  < 0.001

INTref  − 0.0127 (− 0.0708, 0.0455) 0.670  − 10.5% 0.738

INTmed 0.0004 (− 0.0052, 0.0060) 0.882 0.4% 0.887

PIE  − 0.0007 (− 0.0099, 0.0084) 0.877  − 0.6% 0.881

O_M  − 0.2% 0.893

Triglycerides TE 0.1260 (− 0.2776, 0.5297) 0.541

CDE 0.1254 (− 0.2815, 0.5324) 0.546 99.5%  < 0.001

INTref  − 0.0026 (− 0.0339, 0.0287) 0.873  − 2.0% 0.873

INTmed 0.0009 (− 0.0104, 0.0122) 0.879 0.7% 0.879

PIE 0.0023 (− 0.0099, 0.0145) 0.713 1.8% 0.749

O_M 2.5% 0.681

Cholesterol TE 0.0836 (− 0.2955, 0.4628) 0.665

CDE 0.0828 (− 0.2969, 0.4624) 0.669 99.0%  < 0.001

INTref  − 0.0011 (− 0.0104, 0.0083) 0.824  − 1.3% 0.835

INTmed 0.0012 (− 0.0066, 0.0090) 0.768 1.4% 0.796

PIE 0.0008 (− 0.0051, 0.0066) 0.802 0.9% 0.829

O_M 2.3% 0.787

HDL cholesterol TE 0.1667 (− 0.2575, 0.5908) 0.441

CDE 0.1692 (− 0.2587, 0.5971) 0.438 101.5%  < 0.001

INTref  − 0.0073 (− 0.0437, 0.0291) 0.695  − 4.4% 0.715

INTmed 0.0030 (− 0.0134, 0.0195) 0.720 1.8% 0.736

PIE 0.0017 (− 0.0145, 0.0179) 0.834 1.0% 0.840

O_M 2.8% 0.680

LDL cholesterol TE 0.2178 (− 0.2414, 0.6770) 0.353

CDE 0.2164 (− 0.2313, 0.6641) 0.343 99.4%  < 0.001

INTref 0.0150 (− 0.0381, 0.0681) 0.579 6.9% 0.552

INTmed  − 0.0073 (− 0.0325, 0.0180) 0.573  − 3.3% 0.554

PIE  − 0.0064 (− 0.0278, 0.0151) 0.561  − 2.9% 0.629

O_M  − 6.2% 0.495

Parathormone TE 0.1378 (− 0.2679, 0.5436) 0.506

CDE 0.1247 (− 0.2761, 0.5254) 0.542 90.5%  < 0.001

INTref  − 0.0055 (− 0.0234, 0.0123) 0.544  − 4.0% 0.626

INTmed 0.0103 (− 0.0195, 0.0402) 0.497 7.5% 0.600

PIE 0.0083 (− 0.0179, 0.0346) 0.533 6.1% 0.622

O_M 13.6% 0.510

TSH TE 0.0289 (− 0.3257, 0.3835) 0.873

CDE 0.0310 (− 0.3270, 0.3889) 0.865 107.3% 0.168

INTref  − 0.0004 (− 0.0295, 0.0286) 0.978  − 1.4% 0.978

INTmed 0.0033 (− 0.0176, 0.0241) 0.760 11.3% 0.893

PIE  − 0.0050 (− 0.0363, 0.0264) 0.757  − 17.1% 0.890

O_M  − 5.9% 0.888
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[53–55]. Notably, its potential carcinogenicity can arise 
from pathways such as oxidative stress and chronic 
inflammation, influencing various cancer-related pro-
cesses (such as angiogenesis, apoptosis, cell cycle regula-
tion, invasion, and metastasis) or enhancing the effects of 
other environmental carcinogens. Overall, these findings 
are in agreement with our mediation results observed for 
estradiol, suggesting a potential role in the association 
between these pollutants and breast cancer development.

Furthermore, we noted an elevated but statisti-
cally non-significant mediated proportion for PTH in 
the association between both NO2 and PCB153 expo-
sures and breast cancer risk. PTH is a peptide hormone 
secreted by the parathyroid glands, playing a crucial role 
in the metabolism of calcium and phosphorus [56]. A 
few studies have suggested that PTH might be involved 
in the development of breast cancer [57, 58]. Although 
the association between PTH and PCB153 or NO2 has 

TE: total effect (total excess relative risk), CDE: excess relative risk due to controlled direct effect, INTref: excess relative risk due to reference interaction, INTmed: excess 
relative risk due to mediated interaction, PIE: excess relative risk due to pure indirect effect, O_M: overall mediated

CRP: C-reactive protein, HDL: High-density lipoprotein cholesterol, LDL: Light-density lipoprotein cholesterol, SHBG: Sex Hormone-Binding Globulin, TSH: Thyroid-
stimulating hormone, SHGB: Sex Hormone-binding globulin

Output of mediation analysis with causal effects estimated for a change in pollutant levels from the 25th to the 75th percentile

Adjusted for body mass index, menopausal hormone replacement therapy uses, urban/rural status at birth, urban/rural status at inclusion, alcohol drinking, 
breastfeeding, mammography before inclusion, oral contraceptive use, age at full-term pregnancy and parity, smoking status, total physical activity

Controlled direct effects are computed fixing the mediators at their median levels

Table 4  (continued)

Mediation Effect Estimate (CI 95%) P value Proportion P value

Prolactin TE 0.1544 (− 0.2442, 0.5531) 0.448

CDE 0.1568 (− 0.2435, 0.5570) 0.443 101.5%  < 0.001

INTref 0.0025 (− 0.0148, 0.0198) 0.777 1.6% 0.786

INTmed  − 0.0115 (− 0.0381, 0.0150) 0.394  − 7.5% 0.537

PIE 0.0067 (− 0.0153, 0.0288) 0.549 4.4% 0.624

O_M  − 3.1% 0.712

Estradiol TE 0.0935 (− 0.2865, 0.4734) 0.630

CDE 0.0776 (− 0.3007, 0.4559) 0.688 83.0% 0.027

INTref  − 0.0017 (− 0.0124, 0.0089) 0.751  − 1.8% 0.700

INTmed  − 0.0035 (− 0.0232, 0.0162) 0.730  − 3.7% 0.807

PIE 0.0210 (− 0.0133, 0.0554) 0.230 22.5% 0.647

O_M 18.8% 0.619

Testosterone TE 0.1167 (− 0.2850, 0.5184) 0.569

CDE 0.1414 (− 0.2610, 0.5437) 0.491 121.1% 0.004

INTref  − 0.0195 (− 0.0708, 0.0317) 0.455  − 16.7% 0.666

INTmed  − 0.0119 (− 0.0495, 0.0258) 0.536  − 10.2% 0.659

PIE 0.0068 (− 0.0153, 0.0289) 0.548 5.8% 0.680

O_M  − 4.4% 0.659

SHBG TE 0.1452 (− 0.2664, 0.5569) 0.489

CDE 0.1446 (− 0.2669, 0.5561) 0.491 99.6%  < 0.001

INTref 0.0005 (− 0.0082, 0.0092) 0.912 0.3% 0.912

INTmed  − 0.0005 (− 0.0069, 0.0058) 0.866  − 0.4% 0.869

PIE 0.0007 (− 0.0069, 0.0082) 0.860 0.5% 0.864

O_M 0.1% 0.926

Progesterone TE 0.1063 (− 0.2766, 0.4891) 0.586

CDE 0.0856 (− 0.2986, 0.4699) 0.662 80.6% 0.103

INTref 0.0226 (− 0.0569, 0.1021) 0.578 21.3% 0.684

INTmed  − 0.0011 (− 0.0094, 0.0072) 0.788  − 1.1% 0.808

PIE  − 0.0008 (− 0.0071, 0.0055) 0.801  − 0.8% 0.818

O_M  − 1.8% 0.794
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Table 5  Four-way decomposition of each mediator of the associations between PCB153 and breast cancer risk

Mediation Effect Estimate (CI 95%) P value Proportion P value

Albumin TE 0.4563 (− 0.0831, 0.9957) 0.097

CDE 0.4369 (− 0.1007, 0.9746) 0.111 95.7%  < 0.001

INTref 0.0204 (− 0.0320, 0.0728) 0.445 4.5% 0.475

INTmed  − 0.0139 (− 0.0443, 0.0164) 0.368  − 3.1% 0.413

PIE 0.0129 (− 0.0119, 0.0377) 0.306 2.8% 0.375

O_M  − 0.2% 0.946

CRP TE 0.4211 (− 0.1049, 0.9471) 0.117

CDE 0.4462 (− 0.0882, 0.9806) 0.102 106.0%  < 0.001

INTref  − 0.0251 (− 0.0821, 0.0319) 0.388  − 6.0% 0.435

INTmed  − 0.0021 (− 0.0131, 0.0090) 0.711  − 0.5% 0.715

PIE 0.0021 (− 0.0088, 0.0130) 0.705 0.5% 0.714

O_M 0.0% 0.994

Triglycerides TE 0.4763 (− 0.0883, 1.0410) 0.098

CDE 0.4948 (− 0.0772, 1.0667) 0.090 103.9%  < 0.001

INTref  − 0.0184 (− 0.0507, 0.0139) 0.265  − 3.9% 0.305

INTmed  − 0.0001 (− 0.0151, 0.0150) 0.997 0.0% 0.997

PIE 0.0001 (− 0.0018, 0.0018) 0.997 0.0% 0.997

O_M 0.0% 0.997

Cholesterol TE 0.5117 (− 0.0634, 1.0868) 0.081

CDE 0.5158 (− 0.0611, 1.0928) 0.080 100.8%  < 0.001

INTref  − 0.0017 (− 0.0232, 0.0197) 0.875  − 0.3% 0.875

INTmed  − 0.0027 (− 0.0184, 0.0129) 0.730  − 0.5% 0.732

PIE 0.0003 (− 0.0039, 0.0046) 0.873 0.1% 0.873

O_M  − 0.5% 0.739

HDL cholesterol TE 0.5204 (− 0.0624, 1.1032) 0.080

CDE 0.5379 (− 0.0546, 1.1303) 0.075 103.4%  < 0.001

INTref  − 0.0118 (− 0.0427, 0.0191) 0.455  − 2.3% 0.455

INTmed  − 0.0066 (− 0.0268, 0.0136) 0.523  − 1.3% 0.526

PIE 0.0009 (− 0.0128, 0.0147) 0.894 0.2% 0.894

O_M  − 1.1% 0.624

LDL cholesterol TE 0.5723 (− 0.0436, 1.1882) 0.069

CDE 0.5481 (− 0.0487, 1.1449) 0.072 95.8%  < 0.001

INTref 0.0121 (− 0.0355, 0.0597) 0.618 2.1% 0.604

INTmed 0.0079 (− 0.0177, 0.0335) 0.545 1.4% 0.525

PIE 0.0042 (− 0.0117, 0.0200) 0.605 0.7% 0.611

O_M 2.1% 0.497

Parathormone TE 0.3785 (− 0.1522, 0.9092) 0.162

CDE 0.3702 (− 0.1577, 0.8982) 0.169 97.8%  < 0.001

INTref  − 0.0073 (− 0.0255, 0.0109) 0.430  − 1.9% 0.456

INTmed 0.0109 (− 0.0123, 0.0341) 0.357 2.9% 0.393

PIE 0.0047 (− 0.0144, 0.0237) 0.631 1.2% 0.638

O_M 4.1% 0.332

TSH TE 0.3490 (− 0.1430, 0.8410) 0.164

CDE 0.3608 (− 0.1374, 0.8591) 0.156 103.4%  < 0.001

INTref  − 0.0071 (− 0.0309, 0.0167) 0.559  − 2.0% 0.565

INTmed 0.0027 (− 0.0091, 0.0145) 0.654 0.8% 0.689

PIE  − 0.0075 (− 0.0354, 0.0205) 0.600  − 2.1% 0.631

O_M  − 1.4% 0.631
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not yet been well studied, some studies have found asso-
ciations between PTH and other air pollutants [59, 60]. 
Specifically, an inverse association was observed between 
particulate matter <2.5  μm diameter (PM2.5) exposure 
and PTH levels [59]. Another study provides insights into 
the impact of ozone (O3) on PTH levels [60].

While we observed a higher positive indirect effect 
through LDL cholesterol (21%), there was a sugges-
tive negative through HDL cholesterol (− 17%) in the 

association between BaP exposure and breast cancer. 
This negative effect is mainly due to the opposite asso-
ciations between exposure-biomarker and biomarker-
outcome, indicating antagonistic associations between 
the effect of BaP on HDL cholesterol (positive associa-
tion) and the association of HDL cholesterol with breast 
cancer risk (inverse association), resulting in an overall 
negative mediated proportion. Several studies have iden-
tified associations between high levels of LDL cholesterol 

TE: total effect (total excess relative risk), CDE: excess relative risk due to controlled direct effect, INTref: excess relative risk due to reference interaction, INTmed: excess 
relative risk due to mediated interaction, PIE: excess relative risk due to pure indirect effect, O_M: overall mediated

CRP: C-reactive protein, HDL: High-density lipoprotein cholesterol, LDL: Light-density lipoprotein cholesterol, SHBG: Sex Hormone-Binding Globulin, TSH: Thyroid-
stimulating hormone, SHGB: Sex Hormone-binding globulin

Output of mediation analysis with causal effects estimated for a change in pollutant levels from the 25th to the 75th percentile

Adjusted for body mass index, menopausal hormone replacement therapy uses, urban/rural status at birth, urban/rural status at inclusion, alcohol drinking, 
breastfeeding, mammography before inclusion, oral contraceptive use, age at full-term pregnancy and parity, smoking status, total physical activity

Controlled direct effects are computed fixing the mediators at their median levels

Table 5  (continued)

Mediation Effect Estimate (CI 95%) P value Proportion P value

Prolactin TE 0.4295 (− 0.0944, 0.9534) 0.108

CDE 0.4299 (− 0.0946, 0.9543) 0.108 100.1%  < 0.001

INTref 0.0003 (− 0.0051, 0.0058) 0.905 0.1% 0.905

INTmed  − 0.0022 (− 0.0181, 0.0136) 0.782  − 0.5% 0.784

PIE 0.0015 (− 0.0133, 0.0163) 0.841 0.4% 0.842

O_M  − 0.2% 0.940

Estradiol TE 0.3752 (− 0.1330, 0.8835) 0.148

CDE 0.3570 (− 0.1500, 0.8641) 0.168 95.2%  < 0.001

INTref  − 0.0060 (− 0.0195, 0.0074) 0.381  − 1.6% 0.248

INTmed 0.0079 (− 0.0160, 0.0318) 0.517 2.1% 0.474

PIE 0.0163 (− 0.0102, 0.0427) 0.227 4.3% 0.345

O_M 6.4% 0.266

Testosterone TE 0.3552 (− 0.1657, 0.8762) 0.181

CDE 0.3759 (− 0.1457, 0.8975) 0.158 105.8%  < 0.001

INTref  − 0.0175 (− 0.0597, 0.0247) 0.416  − 4.9% 0.502

INTmed  − 0.0075 (− 0.0344, 0.0194) 0.584  − 2.1% 0.601

PIE 0.0044 (− 0.0118, 0.0206) 0.595 1.2% 0.624

O_M  − 0.9% 0.649

SHBG TE 0.5035 (− 0.0961, 1.1030) 0.100

CDE 0.5021 (− 0.0975, 1.1016) 0.101 99.7%  < 0.001

INTref 0.0015 (− 0.0180, 0.0211) 0.878 0.3% 0.879

INTmed  − 0.0034 (− 0.0168, 0.0101) 0.624  − 0.7% 0.636

PIE 0.0032 (− 0.0089, 0.0154) 0.600 0.6% 0.614

O_M 0.0% 0.979

Progesterone TE 0.4212 (− 0.0995, 0.9420) 0.113

CDE 0.4321 (− 0.0897, 0.9539) 0.105 102.6%  < 0.001

INTref  − 0.0138 (− 0.0936, 0.0661) 0.735  − 3.3% 0.744

INTmed  − 0.0015 (− 0.0115, 0.0086) 0.772  − 0.4% 0.778

PIE 0.0044 (− 0.0095, 0.0183) 0.537 1.0% 0.561

O_M 0.7% 0.646
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Table 6  Four-way decomposition of each mediator of the associations between BaP and breast cancer risk

Mediation Effect Estimate (CI 95%) P value Proportion P value

Albumin TE 0.0143 (− 0.2134, 0.2421) 0.902

CDE 0.0095 (− 0.2189, 0.2380) 0.935 66.4% 0.813

INTref 0.0013 (− 0.0175, 0.0201) 0.890 9.3% 0.928

INTmed  − 0.0007 (− 0.0101, 0.0088) 0.889  − 4.7% 0.927

PIE 0.0042 (− 0.0096, 0.0179) 0.553 29.0% 0.903

O_M 24.3% 0.903

CRP TE 0.0530 (− 0.2032, 0.3091) 0.685

CDE 0.0705 (− 0.1792, 0.3201) 0.580 133.0% 0.216

INTref  − 0.0160 (− 0.0737, 0.0418) 0.587  − 30.2% 0.769

INTmed 0.0019 (− 0.0057, 0.0094) 0.629 3.5% 0.779

PIE  − 0.0034 (− 0.0132, 0.0064) 0.501  − 6.3% 0.736

O_M  − 2.8% 0.762

Triglycerides TE 0.0287 (− 0.2204, 0.2778) 0.821

CDE 0.0255 (− 0.2236, 0.2746) 0.841 88.9% 0.127

INTref 0.0027 (− 0.0161, 0.0215) 0.778 9.4% 0.858

INTmed  − 0.0002 (− 0.0027, 0.0022) 0.839  − 0.9% 0.877

PIE 0.0007 (− 0.0046, 0.0061) 0.789 2.5% 0.861

O_M 1.7% 0.865

Cholesterol TE 0.0935 (− 0.1848, 0.3717) 0.510

CDE 0.0973 (− 0.1822, 0.3768) 0.495 104.0%  < 0.001

INTref 0.0006 (− 0.0191, 0.0204) 0.949 0.7% 0.949

INTmed  − 0.0056 (− 0.0172, 0.0059) 0.339  − 6.0% 0.547

PIE 0.0012 (− 0.0074, 0.0099) 0.783 1.3% 0.793

O_M  − 4.7% 0.580

HDL cholesterol TE 0.0977 (− 0.2007, 0.3962) 0.521

CDE 0.1207 (− 0.1885, 0.4299) 0.444 123.5%  < 0.001

INTref  − 0.0047 (− 0.0451, 0.0357) 0.821  − 4.8% 0.828

INTmed  − 0.0262 (− 0.0599, 0.0076) 0.129  − 26.8% 0.487

PIE 0.0078 (− 0.0287, 0.0443) 0.674 8.0% 0.705

O_M  − 18.7% 0.562

LDL cholesterol TE 0.0560 (− 0.2016, 0.3135) 0.670

CDE 0.0436 (− 0.2102, 0.2973) 0.736 77.9% 0.147

INTref  − 0.0004 (− 0.0079, 0.0071) 0.920  − 0.7% 0.920

INTmed  − 0.0003 (− 0.0200, 0.0195) 0.979  − 0.5% 0.979

PIE 0.0130 (− 0.0149, 0.0410) 0.361 23.3% 0.683

O_M 22.8% 0.670

Parathormone TE 0.0337 (− 0.2019, 0.2693) 0.779

CDE 0.0324 (− 0.2020, 0.2668) 0.786 96.1% 0.002

INTref  − 0.0020 (− 0.0186, 0.0147) 0.815  − 5.9% 0.860

INTmed 0.0026 (− 0.0055, 0.0107) 0.532 7.7% 0.790

PIE 0.0007 (− 0.0043, 0.0056) 0.783 2.1% 0.837

O_M 9.7% 0.787

TSH TE 0.0376 (− 0.1991, 0.2742) 0.756

CDE 0.0342 (− 0.2051, 0.2735) 0.779 91.1% 0.012

INTref 0.0004 (− 0.0066, 0.0075) 0.904 1.2% 0.922

INTmed  − 0.0006 (− 0.0041, 0.0030) 0.761  − 1.5% 0.839

PIE 0.0035 (− 0.0097, 0.0166) 0.604 9.3% 0.785

O_M 7.8% 0.779
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or low levels of HDL cholesterol and an increased risk of 
breast cancer [61–63]. Furthermore, studies have dem-
onstrated a link between exposure to certain EDP, such 
as bisphenol A or perfluorinated compounds and cho-
lesterol [64, 65]. However, a direct link between BaP and 
cholesterol has not been investigated in previous studies.

In contrast, we estimated an important media-
tion through albumin (i.e., proportion of pure indirect 
effect = 28%) for the association between BaP and risk 

of breast cancer. Regarding the role of albumin, its levels 
have been reported to be associated with breast cancer 
risk [66]. The mediating effect of albumin in the associa-
tion between BaP and breast cancer development has not 
been investigated in other studies yet.

Although we did not identify potential mediating 
effects of metabolic/inflammatory markers, previ-
ous studies reported that chronic inflammatory and 
metabolism conditions play a role in the underlying 

TE: total effect (total excess relative risk), CDE: excess relative risk due to controlled direct effect, INTref: excess relative risk due to reference interaction, INTmed: excess 
relative risk due to mediated interaction, PIE: excess relative risk due to pure indirect effect, O_M: overall mediated

CRP: C-reactive protein, HDL: High-density lipoprotein cholesterol, LDL: Light-density lipoprotein cholesterol, SHBG: Sex Hormone-Binding globulin, TSH: Thyroid-
stimulating hormone, SHGB: Sex Hormone-binding globulin

Output of mediation analysis with causal effects estimated for a change in pollutant levels from the 25th to the 75th percentile

Adjusted for body mass index, menopausal hormone replacement therapy uses, urban/rural status at birth, urban/rural status at inclusion, alcohol drinking, 
breastfeeding, mammography before inclusion, oral contraceptive use, age at full-term pregnancy and parity, smoking status, total physical activity

Controlled direct effects are computed fixing the mediators at their median levels

Table 6  (continued)

Mediation Effect Estimate (CI 95%) P value Proportion P value

Prolactin TE 0.0369 (− 0.1988, 0.2727) 0.759

CDE 0.0348 (− 0.1997, 0.2693) 0.771 94.2%  < 0.001

INTref 0.0012 (− 0.0114, 0.0138) 0.854 3.2% 0.869

INTmed 0.0020 (− 0.0046, 0.0086) 0.548 5.5% 0.780

PIE  − 0.0011 (− 0.0062, 0.0041) 0.685  − 2.9% 0.810

O_M 2.6% 0.799

Estradiol TE 0.0434 (− 0.1963, 0.2831) 0.722

CDE 0.0321 (− 0.2067, 0.2709) 0.792 74.0% 0.320

INTref  − 0.0004 (− 0.0043, 0.0035) 0.837  − 0.9% 0.765

INTmed 0.0005 (− 0.0077, 0.0086) 0.910 1.1% 0.899

PIE 0.0112 (− 0.0062, 0.0287) 0.208 25.9% 0.731

O_M 27.0% 0.714

Testosterone TE 0.0249 (− 0.2116, 0.2613) 0.837

CDE 0.0251 (− 0.2073, 0.2576) 0.832 101.1% 0.008

INTref 0.0006 (− 0.0187, 0.0200) 0.948 2.6% 0.947

INTmed  − 0.0001 (− 0.0043, 0.0040) 0.948  − 0.6% 0.946

PIE  − 0.0008 (− 0.0058, 0.0043) 0.765  − 3.1% 0.872

O_M  − 3.6% 0.853

SHBG TE 0.0810 (− 0.1913, 0.3533) 0.560

CDE 0.0807 (− 0.1918, 0.3533) 0.561 99.7%  < 0.001

INTref 0.0001 (− 0.0097, 0.0099) 0.986 0.1% 0.986

INTmed  − 0.0006 (− 0.0053, 0.0040) 0.784  − 0.8% 0.802

PIE 0.0008 (− 0.0050, 0.0066) 0.783 1.0% 0.801

O_M 0.2% 0.879

Progesterone TE 0.0326 (− 0.2022, 0.2674) 0.785

CDE 0.0576 (− 0.1825, 0.2976) 0.638 176.5% 0.550

INTref  − 0.0271 (− 0.0789, 0.0247) 0.305  − 83.1% 0.794

INTmed  − 0.0038 (− 0.0125, 0.0050) 0.399  − 11.5% 0.795

PIE 0.0059 (− 0.0061, 0.0179) 0.335 18.1% 0.794

O_M 6.5% 0.813
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mechanisms linking air pollution and breast cancer 
risk [54, 66]. Both BaP and PCB exposures can result in 
perturbation of inflammation mediators, leading to an 
inflammation microenvironment (via TNF-α and NFκB 
leading to IL-6 upregulation) that facilitates and con-
tributes to the migration and invasion of breast cancer 
cells [67, 68]. Taken together, all these conditions can 
stimulate the growth of breast cancer cells and con-
tribute to the development and progression of breast 
cancer.

Our study has several strengths. One main strength is 
the use of four-way decomposition mediation analyses to 
explore potential mediating pathways linking air pollut-
ants to the risk of breast cancer. The method used in this 
study has several advantages compared to other media-
tion analysis approaches, including the ability to esti-
mate the reference interaction and mediated interaction, 
greater flexibility and better control of confounding vari-
ables. In addition, this study has investigated several bio-
markers of metabolic health, adjusted all the models for a 
comprehensive list of confounding variables. While this 
present study is the first to explore the potential media-
tion role of several biomarkers of metabolic health, the 
findings offer insights into the potential biological path-
ways through which these pollutants could influence the 
risk of breast cancer development, and suggest promis-
ing research perspectives. In the present study, biases due 
to exposure occurring after biomarker assessment are 
unlikely, as our additional sensitivity mediation analyses 
using the average exposure from the time of inclusion to 
the date of biomarker assessment, revealed no substan-
tial differences as compared to the exposure calculated 
from inclusion to the index date. These findings confirm 
the robustness of the estimates and suggest that the tim-
ing of exposure relative to biomarker collection did non 
influence the results observed in our mediation analy-
ses. However, further studies with larger sample sizes are 
needed to confirm and extend these findings. A better 
understanding of underlying mechanisms could lead to 
more effective preventive strategies for breast cancer.

A notable limitation of the present study is the lim-
ited statistical power due to small sample size, which 
may reduce our ability to detect significant associations, 
especially in mediation analyses. Additionally, the small 
sample size precluded us from performing stratified anal-
yses. Despite the extensive efforts to adjust for a poten-
tial confounder, residual confounding cannot be entirely 
excluded. We noted some negative proportions and pro-
portions exceeding 100%. As mentioned earlier, negative 
effects can occur when the associations between expo-
sure-biomarker and biomarker-outcome are in the oppo-
site direction, leading to proportions of the overall effect 
exceeding 100%. However, in some cases, these negative 

effects may be attributable to confounding or interaction 
with other variables, or measurement biases. It should 
be noted that due to sample size limitations, we were not 
able to perform multiple-mediator models; future stud-
ies, with larger sample sizes should consider the simul-
taneous analysis of multiple mediators, which could 
provide insights into how each biomarker contributes 
to the overall mediated effect. Additionally, limitations 
associated with multiple-mediator models, such as col-
linearity, should be carefully managed to ensure robust 
findings. It is also important to note the lack of repre-
sentativeness in the study sample, since the analysis was 
based on a subsample of the E3N cohort participants, 
who were predominantly teachers. Thus, caution is war-
ranted in interpreting these results or extrapolating them 
to the general population. Finally, the results should also 
be interpreted with caution due to the wide confidence 
intervals, which may indicate a degree of uncertainty and 
precision in the estimates.

Conclusion
Overall, this pioneering study provides additional 
insights into the potential role of several metabolic health 
biomarkers in mediating the association between air pol-
lutants and breast cancer risk. Although not statistically 
significant, there was a suggestive mediation through 
estradiol and PTH in the association of NO2 and PCB153 
exposures with breast cancer risk. Similarly, albumin, 
estradiol, and both LDL and HDL cholesterol may play a 
role in linking BaP exposure to breast cancer risk. These 
findings emphasize the need and importance of further 
investigation into the role of biomarkers linking air pol-
lutant exposure to the occurrence of breast cancer, a 
major public health issue. This study also highlights the 
value of mediation analysis in unravelling the complex 
mechanisms through which environmental exposures 
may impact global human health.
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