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ARTICLE

Cross-ancestry analysis of brain QTLs enhances
interpretation of schizophrenia
genome-wide association studies
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Chunyu Liu,1,4,17,* and Chao Chen1,11,15,17,*
Summary
Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet most

of these studies have been centered on European populations, leading to a constrained understanding of population diversities and dis-

ease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n ¼ 158), Europeans (EUR, n ¼
408), and East Asians (EAS, n¼ 217).When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns

of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs linked to 1,276 genes and

198,769 SNPs were found to be specific to non-EUR populations. Over 90% of observed population differences in eQTLs could be traced

back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare in the EUR population. Integrating brain

eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched pop-

ulations compared to mismatched ones. Prioritization analysis identified five risk genes (SFXN2, VPS37B, DENR, FTCDNL1, and

NT5DC2) and three potential regulatory variants in known risk genes (CNNM2, MTRFR, and MPHOSPH9) that were missed in the

EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely

increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the bio-

logical underpinnings of population structures but also pave the way for the identification of risk genes in SCZ.
Introduction

Genome-wide association studies (GWASs) have identified

287 risk loci associated with schizophrenia (SCZ).1 Yet, the

underlying mechanisms of these loci in disease develop-

ment and progression remain poorly understood. Primar-

ily, over 80% of GWAS risk loci reside in non-coding

regions, devoid of protein-coding sequences, making it

challenging to attribute them to specific genes. Moreover,

predicting the regulatory effect of these loci proves chal-

lenging due to their tendency for gene-specific and tis-

sue-specific effects. One effective strategy for gaining in-

sights into their functions involves the integration of

SCZ GWAS signals with expression quantitative trait loci
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(eQTLs), utilizing genotype and expression data from post-

mortem brains. These brain eQTLs establish crucial links

between risk genomic regions and gene expression levels,

prioritizing potential disease risk genes through methods

such as colocalization and transcriptome-wide association

studies (TWASs).

Past brain eQTL studies primarily focused on European

(EUR) ancestry.2–6 Global population diversity has not

been adequately represented. Cross-population studies

have shown that these European ancestry-based models

do not effectively predict gene expression in other ances-

tral groups.7 This limitation weakens the power to detect

TWAS associations in genetically diverse samples. While

multi-ancestry eQTL meta-analyses in the human brain
edical Genetics, School of Life Sciences, and Department of Psychiatry, The

, China; 2Broad Institute of MIT and Harvard, Cambridge, MA, USA; 3Insti-

na; 4Department of Psychiatry, SUNY Upstate Medical University, Syracuse,

utrition and Health, University of Chinese Academy of Sciences, Chinese

and Biochemistry, Yale University, New Haven, CT, USA; 7Institute of Basic

pment and Function, Chinese Academy of Medical Sciences, Department of

g Union Medical College, Beijing, China; 8Department of Human Anatomy

ngsha, China; 9Wuhan Institute for Neuroscience and Engineering, South-

gineering, Center for Evolutionary Biology, Collaborative Innovation Cen-

anghai, China; 11National Clinical Research Center for Geriatric Disorders,

enetic Medicine, Vanderbilt University School of Medicine, Nashville, TN,

niversity, Brooklyn, NY, USA; 14Department of Psychiatry and Behavioral

ry of Animal Models for Human Diseases, Central South University, Chang-

ember 7, 2024

ty of Human Genetics.

commons.org/licenses/by-nc-nd/4.0/).

mailto:liuch@upstate.edu
mailto:chenchao@sklmg.edu.cn
https://doi.org/10.1016/j.ajhg.2024.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2024.09.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Study design
We examined genotype and RNA-seq data from individuals from African American (AA), European (EUR), and East Asian (EAS) popu-
lations to identify expression quantitative trait loci (eQTLs) specific to non-European populations and their role in schizophrenia
risk. The figure was created using Biorender.com.
improve statistical power in uncovering risk loci shared

across populations, key genetic variants regulating expres-

sion in specific underrepresented populations remain

largely uncharted. The benefits of having brain eQTLs

in diverse populations have not been thoroughly docu-

mented. Identifying eQTLs specific to biomedically

underrepresented groups including African Americans

(AA) and East Asians (EAS) can better understand the ge-

netic contributions to disease susceptibilities and out-

comes in these populations.7 These populations have

unique genetic variants and linkage disequilibrium (LD)

patterns. Additionally, previous studies have shown that

combining eQTLs from different ancestries can enable

fine-mapping of causal variants and uncover potential

mechanisms of brain disorders.8,9 Thus, the question of

how to effectively leverage difference to uncover potential

mechanisms of brain disorders is a significant topic in

the field.
The American Jour
To enhance the diversity in brain eQTL mapping and

improve the interpretation of SCZ GWASs across popula-

tions, we performed brain eQTL mapping in three major

ancestries. Our data pool comprised genotype and RNA-

seq data of AA (n ¼ 158) and EUR (n ¼ 408) from the

PsychENCODE Consortium and EAS (n ¼ 217) from the

Chinese Human Brain Bank (Table S1). We juxtaposed

non-EUR results against EUR to systematically examine

differences and similarities in the brain eQTLs (Figure 1).

Further, we investigated the contributing factors for

eQTL differences across populations. By applying diverse

population brain eQTLs to TWAS and colocalization anal-

ysis of SCZ GWAS, we identified risk genes of schizo-

phrenia. Lastly, we identified likely causal variants by

multi-ancestry fine-mapping. The two key questions we

sought to answer are (1) what drives the brain eQTL differ-

ences across populations? and (2) what do we gain by

studying brain eQTLs in diverse populations?
nal of Human Genetics 111, 2444–2457, November 7, 2024 2445
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Subjects and methods

Sample collection and sequencing
217 prefrontal cortical samples of Han Chinese ancestry were

collected from the National Human Brain Bank for Development

and Function10,11; the samples were handled according to the stan-

dardized operational protocol of the China Human Brain Banking

Consortium, under the approval of the Institutional Review Board

of the Institute of Basic Medical Sciences, Chinese Academy ofMed-

ical Sciences, Beijing, China (Approval Number: 009-2014, 031-

2017, 2022125). The Ethics Committee of Central South University

gave ethical approval for this work (2015031007).

These samples were then sequenced following the BGISEQ-500

protocol outsourced to BGI. 1 mg genomicDNAwas randomly frag-

mented by Covaris, the fragmented DNA was selected by Agen-

court AMPure XP-Medium kit to an average size of 200–400 bp,

followed by adapter ligation and PCR amplification, and the prod-

ucts were recovered by the AxyPrep Mag PCR clean up kit. The

double-stranded PCR products were heat-denatured and circular-

ized by the splint oligo sequence. The single-strand circle DNA

(ssCir DNA) was formatted as the final library and qualified by

QC. Sequencing was performed on BGISEQ-500 platform with

an average depth of 103.

Total RNA was extracted from the brain tissue using Trizol (Invi-

trogen) according to manufacturers’ instructions. Then, total RNA

was qualified and quantified using a Nano Drop and Agilent 2100

bioanalyzer (Thermo Fisher Scientific). Ribo-zeromethodwas used

to remove the rRNA. Purified mRNA was fragmented into small

pieces with fragment buffer at an appropriate temperature. The

cDNAs were purified by magnetic beads. After purification,

A-Tailing Mix and RNA Index Adapters were added by incubating

to carry out end repair. The cDNA fragments with adapters were

amplified by PCR, and the products were purified by Ampure XP

Beads. The library was validated on the Agilent Technologies

2100 bioanalyzer for quality control. The final library was ampli-

fied with phi29 (Thermo Fisher Scientific) to make DNA nanoball

(DNB), DNBs were loaded into the patterned nanoarray, and single

end 50 base reads were generated on BGISEQ-500 platform.

Data quality control
Raw sequencing reads were filtered to get clean reads by using

SOAPnuke (v.1.5.6),12 and FastQC13 was used to evaluate the qual-

ity of sequencing data via several metrics, including sequence

quality per base, sequence duplication levels, and quality score dis-

tribution for each sample. The average quality score for overall

DNA and RNA sequences was above 30, indicating that a high per-

centage of the sequences had high quality.

Variant identification
Clean DNA sequencing reads were mapped to the human refer-

ence genome hg19 (GRCh37) using BWA-MEM algorithm (BWA

v.0.7.128).14 Ambiguously mapped reads (MAPQ < 10) and dupli-

cated reads were removed using SAMtools v.1.2915 and PicardTools

v.1.1, respectively. Genomic variants were called following the

Genome Analysis Toolkit software (GATK v.3.4.4.6) best practices.

In total, 29 million single-nucleotide variants and small inser-

tions/deletions were identified in the EAS population.

Population validation, imputation, and filtering
We used PLINK to infer the genomic ancestry of each sample in this

study by combining our genotype data and the genotype data from
2446 The American Journal of Human Genetics 111, 2444–2457, Nov
the 1000 Genomes Project16; no sample was excluded. UsingMich-

igan Imputation Server,17 EAS genotypes were imputed into the

1000Genomes Project phase 3 EAS reference panel by chromosome

and subsequently merged. Imputed genotypes were filtered for LD

R2 < 0.3, Hardy-Weinberg equilibrium p value < 10e�6, and Minor

Allele Frequency (MAF) < 0.05, resulting in �6 million autosomal

single-nucleotide polymorphisms (SNPs).

For AA population, genotypes were imputed into the 1000 Ge-

nomes Project phase 3 AA reference panel by chromosome and

subsequently merged. To further confirm the ancestry of the Afri-

can American samples, all AA samples were evaluated for their

ancestry with three broad population groups with PC1 R 25% Af-

rican (AFR) and <25% American (AMR), <25% EAS, <25% South

Asian (SAS); clustering of individuals in each broad population

group with the 1000 Genomes Project reference populations are

shown in Figure 2A.

Sex check and sample swap identification
The sex of each sample was inferred with SNPs using PLINK. In the

EAS cohort, two samples were identified as sex-mismatched and

were subsequently removed in downstream analysis. Quality con-

trol was performed on genotypes using sample Binary Alignment

Map (BAM) files to detect any sample identity swaps between the

RNA and DNA experiments. The QTLtools match function18

confirmed that all samples were appropriately matched.

Gene expression quantification and quality control
The RNA-sequencing reads were mapped using STAR (2.4.2a)19 and

the genes and transcripts quantification was performed using RSEM

(1.3.0).20 Raw read counts were log-transformed using R package

VOOM,21 thereafter filtering those with log2(counts per million

reads, CPM) < 0 in more than 75% of the samples. Mitochondrial

DNA and X and Y chromosome-derived transcripts were excluded.

Samples with a Z score (measured for inter-sample connectivity)

less than �3 were also discarded. Finally, quantile normalization

was utilized to equalize distributions across samples.

Covariate selection
To measure technical covariates, quality control metrics were

collected using STAR, PicardTools v.1.139, and RNASeQC. Principal

components of the metrics data were calculated and included as

SeqPCs for covariate selection. Hidden covariates weremeasured us-

ing probabilistic estimation of expression residuals (PEER)22 and

found to be significantly correlated with technical and biological

covariates such as experimental batch, RNA Integrity Number

(RIN), sex, and age of death. Based on the Bayesian information cri-

terion (BIC) score, redundant covariates were removed to avoid

overfitting. A forward and backward selection procedure was fol-

lowed. The covariate with the higher BIC score was selected for sub-

sequent QTL mapping. To determine the optimal number of PEER

factors for QTL discovery, we conducted QTL mapping using a

range of PEER factor counts (5, 10, 15, 20, 25, 30, 35, 40, 45, and

50) as covariates. We then identified the minimum number of

PEER factors that maximized the number of detected eQTLs.

cis-eQTL mapping
cis-eQTL mapping was performed using QTLtools, accounting for

20 PEER factors, with a defined cis window spanning one mega-

base upstream and downstream of the gene/intron cluster body.

To detect all available QTLs, QTLtools was conducted in nominal

pass mode. To identify the best nominal associated SNP per
ember 7, 2024
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Figure 2. Identification and characterization of eQTLs
(A) PCA plot showing the population structure of individuals in our study as well as the 1000Genomes Project. AFR, African; AMR, Amer-
ican; EAS, East Asian; EUR, European.
(B) Circos manhattan plot of significant eQTL genes among the three populations with highlighted top 50 fine-mapped eGenes. Each
layer of the plot represents results from an eQTL analysis, with results from the same ancestry grouped by color. The blue panel represents
EUR, red panel represents EAS, and the yellow panel represents AA. Significant eQTL are plotted as points.
(C) Distance distribution between eSNP to TSS of eGenes.
(D–F) Upset plot showed overlap among the significantly associated (D) eSNPs, (E) eGenes, as well as (F) eQTL pairs between populations.
phenotype, QTLtools was executed in the permutation pass mode.

Additionally, to identify SNPs with independent effects on regu-

lating gene expression, QTLtools was run in the conditional pass

mode. These empirical p values were subsequently corrected for

multiple testing across genes using Storey’s q value method.

SNPs with q values < 0.05 is classified as significant QTLs.

In detail, we first regress out the provided covariates from the

phenotype data, followed by running the linear regression be-

tween the phenotype residuals and the genotype. The residuals af-

ter the covariate correction are rank normal transformed. It incor-

porates an efficient permutation scheme to control for differential

multiple testing burden of each phenotype. We ran (1) a nominal

pass listing all genotype-phenotype associations below a certain

threshold, (2) a permutation pass to empirically characterize the

null distribution of associations for each phenotype separately,

thus adjusting the nominal p value of the best association for a

phenotype, and (3) a conditional analysis pass to discover multi-

ple proximal QTLs with independent effects on a phenotype.

The conditional analysis pass first uses permutations to derive a

nominal p value threshold per phenotype that varies and reflects

the number of independent tests per cis-window. Then, it uses a

forward-backward stepwise regression to learn the number of inde-

pendent signals per phenotype, determine the best candidate

variant per signal, and assign all significant hits to the indepen-

dent signal they relate to.

To address potential sample size disparities that could impact

the results, the EUR data were randomly sampled with various
The American Jour
sample size (150, 200, 250, 300, 350, and 400) and applied the

same analytical pipeline while exploring the relationship between

sample size and number of QTLs.
eQTL fine-mapping
Standard fixed-effects meta-analysis were used to combine all data

into a single regression model by METAL.23 The meta-analysis as-

sumes a fixed-effects size, as well as constant error variance, across

all data. The significance threshold of 1e�6 in meta-analysis were

generated by Bonferroni correction. The SNP-gene pairs with a sig-

nificant p value were collected for the eQTL fine-mapping.

The initial step of fine-mapping involved using the in-sample

LD of the three populations. We extracted common variants

with MAF > 5% from each group and used PLINK to determine

the LD regions of these common variants for each population.

To eliminate strand flipping and alignment issues, multi-allelic

variations and indels were removed. Next, SuSiEx was applied to

merge the eQTLs summary statistics from the three groups. Cred-

ible set is defined as a set of putative causal variants. A credible set

was discarded if it lacked genetic variants reaching genome-wide

significance (p < 1e�6) in either the population-specific eQTLs

or cross-population meta-eQTLs. By considering prior knowledge

and the observed data, this method provides a posterior probabil-

ity (PIP) for each variant being the causal one in the associated re-

gion. Variants with high PIPs are then considered strong candi-

dates for functional follow-up studies.
nal of Human Genetics 111, 2444–2457, November 7, 2024 2447



Functional enrichment
Genomic Regulatory Elements and GWAS Overlap algoRithm

(GREGOR)24 was performed to test the functional enrichment of

eQTL. GREGOR calculated the enrichment value based on the

observed and expected overlap within each annotation. To

conduct our analysis, the 15-state ChromHMM model BED

(Browser Extensible Data) files from the Roadmap Epigenetics Proj-

ect25 and 78 consensus transcription factor and DNA-protein

binding site BED files existing in multiple cells were downloaded.

Fifty binding proteins showed cortical brain expression in EAS and

AA populations data.26
The fraction of shared eQTLs between non-EUR and EUR

populations
Sharing rate was assessed based on significant eQTLs in the discov-

ery dataset by estimating the proportion of true associations (p1)

on the distribution of corresponding p values of the overlapping

eQTLs in the replication dataset.27
FST and MAF analysis
Fixation index (FST) was estimated using vcftools following the

Weir and Cockerham approach for each eSNP.28 The population-

divergent SNPs were defined as those with FST R 0.05 and popula-

tion-shared SNPs as those with FST < 0.05. To generate the list

of population-specific QTLs and population-shared QTLs, we

collected the overlap of eQTLs from the pairwise comparisons of

the list of AA eQTLs, EAS eQTLs, and EUR eQTLs. Finally, Fisher’s

exact test was performed between population-specific QTLs and

population-shared QTLs to test the contribution of MAF in the

QTL comparison.
Variance explained
Variance explained, which combines the effect size (beta) and fre-

quency of the allele (f), can be considered an approximatemeasure

of a causal variant’s importance within a population. Variance is

approximated using the formula 2f(1 – f)log(beta)2/(p2/3).29

Although these variants often exhibit similar odds ratios across

populations, their allele frequencies may differ. By considering

both the effect size (OR) and the frequency of the risk allele (f),

the variance explained offers a valuable approximation of a causal

variant’s significance within a given population.
Power estimation
We used R to calculate the sample size needed to achieve a given

power level in a chi-square test, based on an assumed effect size

and a significance threshold. It starts by setting initial values for

power, effect size, and p value threshold. Then, it computes the

critical chi-square statistic required to meet the power level. A

function, calculate_ncp, is defined to calculate the non-centrality

parameter from the p value and degrees of freedom, adjusting for

the critical chi-square statistic. Subsequently, the non-centrality

parameter is computed for the given power and p value threshold.

Another function, af_n_relation, is created to determine the rela-

tionship between allele frequency and sample size, incorporating

the effect size and the non-centrality parameter. Finally, the

code iteratively solves for the sample size corresponding to a range

of allele frequencies, thus enabling the determination of the

necessary sample size for different allele frequencies to maintain

the specified power level in the chi-square test.
2448 The American Journal of Human Genetics 111, 2444–2457, Nov
Partitioned LDSR
Partitioned LD score regression v.1.0.130 was used to measure the

enrichment of GWAS summary statistics in each functional cate-

gory by accounting for LD. Brain QTL annotations were created

by eSNP, mapped to the corresponding 1000 Genome reference

panel. LD scores were calculated for each SNP in the QTL annota-

tion using an LD window of 1 cM in 1000 Genomes European

Phase 3 and 1000 Genomes Asian Phase 3 separately. Enrichment

for each annotation was calculated by the proportion of heritabil-

ity explained by each annotation divided by the proportion of

SNPs in the genome falling in that annotation category. We

then applied Welch modified two-sample t test on enrichment

values generated from QTLs in the two populations.
Colocalization
Conditional association was used to test for evidence of colocaliza-

tion. This method compares the p value of association for the lead

SNP of an eQTL before and after conditioning on the GWAS hit.

The equation for the regulatory trait concordance (RTC) score is

as follows: RTC ¼ (NSNPs in an LD block/RankGWAS_SNP)/NSNPs in

an LD block. The rank denoted the number of SNPs, which

when used to correct the expression data, has a higher impact

on theQTL than the GWAS SNPs. RTC values close to 1.0 indicated

causal regulatory effects. A threshold of 0.9 was used to select

causal regulatory elements.

We also applied a Bayesian co-localization approach to identify

GWAS signals that could exhibit the same genetic effect with

GWAS and eQTLs using coloc R (v.5.1.0) package.31 We used the

default coloc priors for Bayesian co-localization analysis, in which

the prior was assigned 10e�6 for representing the probability that

the SNP was associated with eQTL. For each GWAS trait, we ex-

tracted the GWAS SNPs with a p value < 5e�8 and located at least

1 Mb away frommore significant variants. The co-localized signals

were searched within a surrounding region of 100 kb of GWAS

SNPs. Five posterior probabilities (PPs) were calculated for the co-

localization analysis using all variants in the region of interest. PP0

represents the null model of no association. PP1 and PP2 represent

the probability that causal genetic variants are associated with

either disease signals or eQTLs alone. PP3 represents the probabil-

ity that the genetic effects of disease signals and eQTLs are inde-

pendent, and PP4 represents the probability that disease signals

and eQTLs share causal SNPs. The genes were defined as co-local-

ization events if PP4 > 0.8. Region visualization plots were con-

structed using LocusZoom.32

Colocalization of fine-mapped variations from complex traits

and cis-eQTLs correlations were performed. Based on complex

trait and cis-eQTLs fine-mapping data, a posterior inclusion prob-

ability of colocalization for a variant was calculated as a product of

PIP for GWASs and PIP for the cis-eQTLs (PIPcoloc ¼ PIPGWAS *

PIPcis-eQTLs).
Summary-data-based mendelian randomization
SMR33 was applied on SCZ GWAS summary data to prioritize

candidate genes. Significant QTLs identified in the previous anal-

ysis (FDR < 0.05) were combined with filtered GWAS summary

data (p < 5e�8) to perform the SMR test. In general, we used the

default parameters suggested by the developers of the SMR soft-

ware. These included the application of heterogeneity indepen-

dent instruments (HEIDI) testing, filtering out hits that arose

from significant linkage with pleiotropically associated variants

(LD cutoff of p ¼ 0.05 in the HEIDI test, as suggested by SMR).
ember 7, 2024



Genes with an empirical p that passed Bonferroni correction in

the SMR test and a p > 0.05 in the HEIDI test were considered as

risk genes.
Prioritizing genes underlying GWAS hits using

MetaXcan
In this research, we initially developed gene expression prediction

models for distinct populations using MetaXcan software.34

Following this, we integrated these models with GWAS summary

statistics specifically focused on schizophrenia. This integration

aimed to generate gene-level z-scores representing the association

of the genetically determined expression for a gene from its predic-

tion model with the phenotype. TWAS enabled us to compute p

values and subsequently prioritize genes in relation to their associ-

ation with schizophrenia risk.
Results

To capture brain eQTLs across diverse populations, we uti-

lizedhigh-density genotypedataalongsidehigh-throughput

RNA sequencing from prefrontal cortices. We obtained AA

(n¼158)andEUR(n¼408)data fromtheBrainGVExproject

of the PsychENCODE Consortium (https://www.synapse.

org/Synapse:syn4921369). We generated EAS (n ¼ 217)

data from the Chinese Human Brain Bank (Table S2;

Figure 1). Following rigorous quality checks and preprocess-

ing (Figures S1 and S2), we compiled expression data for

18,939 genes and genotype data at 6.4 million autosomal

SNPs across the three groups. Aligning the samples with

the 1000 Genomes Project reference populations, prin-

cipal-component analysis (PCA) confirmed the ancestry ori-

gins of donors (Figure 2A). We ensured sample identity con-

sistency by comparing the genotypes from the DNA and

RNA samples. See subjects and methods for additional

details.
Characterizing the cis-acting eQTLs in European, East

Asian, and African American populations

We separately conducted cis-eQTLs mapping in the EUR,

EAS, and AA samples using a 5% empirical gene-level false

discovery rate (FDR) threshold. This yielded 1,966,209 sig-

nificant eQTL signals covering 11,622 genes (eGenes) and

1,226,769 SNPs (eSNPs) across the populations (see

Figure 2B; Table S3). Specifically, we identified 10,236

eGenes for EUR, 5,000 eGenes for EAS, and 3,039 eGenes

for AA. To identify credible SNP sets harboring plausible

causal variants in cis-eQTLs, we applied a fine-mapping

method named SuSiE35 to each population’s eQTL results.

The results showed 966 credible SNP sets for 757 eGenes in

the EUR cohort, 826 sets for 726 eGenes in EAS, and 847

sets for 746 eGenes in AA (Tables S4–S6).

To investigate the genomic features of these cis-eQTLs,

we evaluated the SNP distributions and locations relative

to various functional regions. 20% of cis-eQTLs in both

EUR and non-EUR populations were located within 10 kb

of transcription start site (TSS) regions (Figure 2C). Accord-

ing to the chromatin states predicted by GREGOR36 for
The American Jour
prefrontal cortical tissue, eSNPs from the non-EUR popula-

tions were significantly enriched in TSSs, promoters, and

transcribed regulatory promoters or enhancers (Figure S3,

pBonferroni < 0.05), identical to the observation in the EUR

data. Moreover, using transcription factor binding site

(TFBS) annotation for 51 TFs, 46 and 49 TFs were signifi-

cantly enriched with cis-eQTLs in the AA and EAS popula-

tions, respectively (pBonferroni < 0.05). All these TFBS were

also significantly enriched with cis-eQTLs in the EUR

population.

To maximize the power of our population-based data-

sets, we employed METAL to amalgamate the cis-eQTL

data from all three populations. We then used SuSiEx16

to identify likely causal variants regulating expression by

incorporating the LD reference data from different popula-

tions. In total, SuSiEx identified 2,121 credible SNP sets for

1,801 eGenes in the 3-population combined data. Further

details from the meta-analysis and fine-mapping results

can be found in Table S7.

Population-shared eQTLs showed similar regulatory

effect across populations

To evaluate the effect sizes across populations, we conduct-

ed a correlation test of effect size values between the EUR

and non-EUR populations. The effect sizes of the shared

eQTLs between the non-EUR and EUR were highly concor-

dant (0.910 for eQTLs comparing EAS to EUR and 0.944

for AA to EUR; Figure 3B). To assess the robustness of

the concordant effect size, we examined eQTL slopes in

the different populations. We looked at eQTLs obtained

from the nominal, permutation, and conditional tests,

separately. eQTLs with smaller p values or larger effect sizes

showed greater consistency across populations (Figure S4).

Considering that sample size and heterogeneity may influ-

ence the results, we randomly down-sampled the EUR data

to match the size of the non-EUR data. The results were

similar to the results comparing all samples, showing

highly concordant effect sizes across populations (see

Figures 3D and S4). In addition, we compared the slope

of the down-sampled EUR data with GTEx data (also of

EUR). We randomly sub-sampled 100 times and obtained

a distribution of correlation values (R2). The mean R2 was

0.94, which was not significantly different from the corre-

lation between the EUR and non-EUR population. We

therefore concluded that the effect sizes of eQTLs in

diverse populations were mostly stable across human

populations.

We evaluated the replicated rate (p1), which gauges the

true positive rate for the eQTLs identified in the non-EUR

populations that were also associated in the EUR popula-

tion. The replicated rate was p1(EAS-EUR) ¼ 0.86 and

p1(AA-EUR) ¼ 0.91 (see Figure 3A; Table S8). The p1 for

the non-EUR populations in EUR was slightly but signifi-

cantly lower than the p1 between two EUR cohorts, as rep-

resented by the GTEx cis-eQTL data (prefrontal cortex) in

our EUR eQTL data (p1(GTEx-EUR) ¼ 0.86, p value ¼
0.023). To ensure a fair comparison of the replication rate
nal of Human Genetics 111, 2444–2457, November 7, 2024 2449
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D E

Figure 3. Analysis of regulatory patterns
(A) Relationship between sample size and the # of detected eQTLs. The numbers on the line represent p1 between two populations.
(B) Effect sizes for common (MAF > 1%) sentinel cis-eQTLs across EAS and AA compared to EUR populations.
(C) Comparison of MAF between population-shared and non-EUR specific eSNPs. ThemeanMAF has been labeled under the x axis. "NS"
stands for not significant, and "***" indicates a p value < 0.01.
(D) Down-sampling results to estimate p1 between non-European and European eQTLs.
(E) Example of opposite effect eQTL TAS2R31-chr12:11282501A>G. The x axis represented the genotype. The y axis represented the
normalized expression of TAS2R31.
of detected cis-eQTLs in non-EUR data, we adjusted the

EUR data to reflect the smaller sample size of the non-

EUR data. This adjustment enabled us to determine how

many non-EUR cis-eQTLs were confirmed in the adjusted

EUR dataset. The adjusted results revealed a concordant

trend: the replicated rate between different populations

was still slightly lower than that within the same popula-

tion assuming the same sample size (EUR-nonEUR average

p1 ¼ 0.68, EURadjusted-EUR average p1 ¼ 0.72, p value ¼
0.037) (see Figure 3D).

Population differences in brain cis-eQTLs are mainly

caused by differences in SNP allele frequency while

differences in effect size are small and uncertain

Here we defined those eQTLs that were exclusively

observed in a single population as population-specific

eQTLs. Upon analyzing the cis-eQTLs overlapping between

populations, we identified 343,737 cis-eQTLs that were

exclusively observed in the non-EUR populations, as

detailed in Table S3. This number represents approxi-

mately 17% of all eQTL pairs. These eQTLs involved

1,276 genes (about 10% of all eGenes) and 198,769 SNPs

(around 16% of all eSNPs, Figures 2D–2F). Specifically,
2450 The American Journal of Human Genetics 111, 2444–2457, Nov
there were 292,254 cis-eQTLs involving 165,300 eSNPs

and 937 eGenes that were observed unique in the EAS pop-

ulation and 51,483 cis-eQTLs involving 33,469 eSNPs and

339 eGenes that were observed unique in the AA popula-

tion. For the 343,737 non-overlapping eQTLs, 186,459

eSNPs (156,589 in EAS population and 31,401 in AA pop-

ulation) are not in LD regions (LD R2> 0.8) with any eSNPs

in the EUR population. Importantly, our comparison with

the MetaBrain eQTL results8 revealed that 483 population-

specific eGenes, involving 130,117 eQTLs, were still absent

in the EUR population.

To further characterize these non-EUR-specific eQTLs,

we analyzed the variance, taking into account both the

eQTL slope (effect size) and differences in allele frequency

between populations.We found thatmore than 90% of the

population differences in variance were attributable to dif-

ferences in allele frequency. Moreover, to delve deeper into

the distinctive characteristics of the eQTLs exclusive to the

non-EUR groups, we leveraged two statistics, the FST and

the MAF, retrieved from the 1000 Genomes Selection

Browser.37 A high FST value indicates that the measured lo-

cus has diverged over time in the populations. As expected,

eSNPs detected specific to the EAS or AA population
ember 7, 2024



displayed a significantly elevated FST when juxtaposed

against eSNPs shared across populations (Figure S5, mean

FSTEAS-sp-eSNP ¼ 0.13; mean FSTEUR-sp-eSNP ¼ 0.11; mean

FSTAA-sp-eSNP ¼ 0.14; mean FSTcommon-eSNP ¼ 0.1; Wilcoxon

test p < 2.2e�16). Meanwhile, the non-EUR-specific eSNPs

showed higher MAF values in their respective source pop-

ulations (Figure 3C, Wilcoxon test p < 2.2e�16) than in

EUR. Of the 343,737 eQTLs absent in the EUR data,

309,363 were likely due to inadequate statistical power

because they have smaller MAF in the EUR than non-

EUR population.

For the remaining eQTLs for which population differ-

ences could not be explained by differences in MAF, a

test for differences in eQTL slopes (effect sizes) was also

conducted between the EUR and non-EUR populations.

The Z score of each independent eQTL from conditional

analysis was calculated based on effect size and its standard

deviation. Here the null hypothesis was that the difference

in eQTL effect size between the populations equals zero.

No eQTL pairs detected by conditional analysis could reject

the null hypothesis. We then investigated if any eQTLs ex-

hibited opposite effect directions across populations. None

of the independent eQTLs from the conditional analysis

displayed such effects. We relaxed our eQTL threshold us-

ing a nominal p value < 0.05. 534 eQTLs involving eigh-

teen genes exhibited opposing eQTL effects between the

EUR and non-EUR populations. For example, the bitter

taste receptor gene TAS2R31 showed opposite directions

of eQTLs in EAS and EUR (Figure 3E), which could be repli-

cated using the blood eQTLs from a previous study.7,38

In conclusion, the variance in population differences

can be largely attributed to differences in allele frequency.

The influence of effect size differences, on the other hand,

appears to be minimal and inconclusive.
Brain eQTLs from matched populations can improve

interpretation of SCZ GWASs

To determine whether eQTLs detected from a specific

population could explain the disease GWAS signals and

SNP-based disease heritability better than eQTLs from

non-matching populations, we undertook a two-step anal-

ysis. Firstly, we gathered SCZ GWAS summary statistics for

the EUR, EAS, and AA populations from previously pub-

lished studies.39–41 We employed the LDSR42 approach to

assess the GWAS signal enrichment of these eQTLs. eQTLs

identified in the EAS population demonstrated a higher

enrichment in EAS-based GWAS signals than eQTLs identi-

fied in the EUR population (Table S9, EnrichmentEUR ¼
1.08, EnrichmentEAS ¼ 1.3; Welch modified two-sample t

test p value < 0.001). Conversely, eQTLs identified in the

EUR population showed a greater enrichment for EUR-

based GWAS signals than the eQTLs from the EAS cohort

(EnrichmentEUR ¼ 1.37, EnrichmentEAS ¼ 1.21; Welch

modified two-sample t test p value < 0.001). Both of these

enrichments were statistically significant (Table S9; Welch

modified two-sample t test p value < 0.001; Figure 4A).
The American Jour
Besides the SNP heritability enrichment of all eQTLs,

we also compared the significance of the GWAS signals

for population-specific eSNPs. We found that popula-

tion-specific eSNPs tended to have smaller p values of

disease association (i.e., stronger associations) in the

corresponding population than the common eSNPs

(Figure S6, Welch modified two-sample t test p < 0.001),

indicating the ability of population-specific eSNPs to

explain the disease association and propose the relevant

gene, which might be overlooked when focusing on a sin-

gle population.
SCZ risk genes identified using eQTLs and GWASs from

non-EUR populations

To uncover risk genes and pathways for SCZ in non-

EUR populations, we used MetaXcan, RTC,17 and

SMR33 to prioritize SCZ candidate risk genes in non-

EUR populations and compared them with risk genes

identified in the EUR (see subjects and methods). In total,

we prioritized eight risk genes in the EAS (Tables S10–

S12). It is worth noting that our TWAS analysis of AA

data did not reveal any significant associations. This

lack of association in AA data might be attributed to

the relatively small sample size available from the AA

SCZ GWAS.

Five SCZ candidate risk genes (SFXN2, VPS37B, DENR,

FTCDNL1, and NT5DC2) uniquely discovered in the EAS

population were assessed for allele frequency. The eSNPs

for these genes showed lower allele frequency in the EUR

population than in EAS. For instance, the GWAS signal

chr12:123286491A>G (rs11060065) in VPS37B was found

to be significant in the EAS population with a high MAF of

0.48 (OR ¼ 0.92; p ¼ 3.797e�08; Figure 4C). In contrast,

this association was not significant in the EUR population

with a markedly lower allele frequency of 0.04. A parallel

pattern emergedwith the eSNP forVPS37B, with amarkedly

higher frequency (chr12:123306558G>A, rs75471208,

MAF ¼ 0.24) in EAS than in the EUR (Figure 4D, MAFEUR ¼
0.04). These results further confirm that allele frequency

differences betweenpopulations can explainmost of the dis-

crepanciesbetween theEURandEASGWASand the eQTL re-

sults (Table S13).
Potential SCZ regulatory variations were refined

utilizing brain eQTLs from non-EUR populations

Three risk genes identified in the EAS population were

shared with the EUR population (CNNM2, MTRFR, and

MPHOSPH9), but differences in genetic architecture be-

tween populations were still apparent. For example, two

distinct significant SNPs in EAS and in EUR were associated

with SCZ on chromosome 10 (Figure S7, GWASEUR:

chr10:104850632G>A [rs3736922] with GWAS p value ¼
6.4e�13; GWASEAS: chr10:104657300T>C [rs12219346]

with GWAS p value ¼ 5.4e�12). Using eQTLs with GWAS

signals in EAS and EUR separately, colocalization and

SMR analysis prioritized these two distinct GWAS SNPs to
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Figure 4. Explanation of SCZ GWAS signals and prioritization of candidate genes
(A) GWAS enrichment results from LDSR.
(B) Fine-mapped colocalization results. Each point represents an eQTL pairs, the x axis represents the GWAS pip for that eSNP, and the y
axis represents the eQTL pip for that eSNP. Red points represent pipGWAS*pipeQTL> 0.1 and are labeled with the eGene.
(C and D) LocusZoom plots demonstrating the genetic colocalization evidence between SCZ GWAS signals (upper) and brain eQTLs
(lower) at the VPS37B locus for (C) the EAS population and (D) the EUR population, respectively.
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the same risk gene, CNNM2, in the two populations,

respectively.

To further investigate whether these signals are located

within any regulatory elements, we utilized the non-coding

variant annotationdatabase (NCAD)43 to annotate their reg-

ulatory information. Our findings revealed that all the EAS

GWAS risk SNPs are situated in enhancer regions

(Table S14). Moreover, the EAS GWAS risk SNPs near

CNNM2demonstrated apotential impact onhistonemodifi-

cation, supported by the Roadmap data. Furthermore, we

used the Lineage-specific Brain Open Chromatin Atlas44 to

investigate whether this enhancer region shows different

effects in major brain cell types. The results did not show

anycell typedifferences,which indicates the enhancer effect

exists universally in major brain cell types (Figure S8).

Integrating these insights, we discovered strong evidence

for multiple regulatory regions among the EAS eSNPs-

chr10:104654577T>C, which have a high LD with

CNNM2 GWAS SNPs (LD R2 ¼ 1, p value < 0.00001). Addi-

tionally, our dual luciferase reporter assay results confirmed

that the EAS eSNPs C-allele at chr10:104654577T>C signifi-

cantlyenhances luciferaseactivity compared to the reference

vector, as detailed in the supplemental methodsand

Figure S8.
High-confidence putative causal variants of SCZ using

multi-ancestry brain eQTLs

To identify high-confidence putative causal variants from

multiple populations, we applied colocalization to our fine-

mappedeQTLs andSCZGWAS signals. In total,we identified

four SNP-gene-disease triplets in which the SNP colocalized

with both gene expression and SCZ GWAS (Table S15,

PiPcoloc ¼ PiPGWAS 3 PiPcis-eQTLs > 0.1). The top genes

with PIPcoloc > 0.1 include FURIN, ZNF823, RHOA, and

VWA5A (Figure 4B). As an example, we identified the stron-

gest putative SCZ causal SNP for FURIN-chr15:

91426560G>A. This SNP is located in the 30 untranslated re-

gions (UTRs) of FURIN. Notably, this variant did not reach

genome-wide significance in the EAS population (p ¼
1.06e�3) likely due to limited statistical power. Our result

strongly supported that this causal variant is shared across

populations, with causal probabilities of 1. Previous study

has also implicated the variant in both the EUR and EAS

populations.13
Discussion

In this study, we have created a brain transcriptome resource

and identified eQTLs in the prefrontal cortex, specifically

focusing on non-European populations. Our findings

address the initial inquiries raised in the introduction.

Firstly, we investigated the driver behind the variation in

brain eQTLs across different populations.We found that dif-

ferences in allele frequency are instrumental in connecting

disease susceptibility to gene expression regulation. This

finding greatly augments our comprehension of genetic in-
The American Jour
fluences on gene expression in the human brain. Secondly,

when examining brain eQTLs from diverse populations, we

gained power to explain the GWAS heritability, uncover risk

genes, and fine-map risk variants. We observed a pro-

nounced enrichment of disease heritability among eQTLs

in matched populations. In the non-EUR cohort, the allele

frequencies and LD configurations facilitated the identifica-

tion of five SCZ risk genes. Additionally, we identified four

high-confidence putative causal SCZ variants. These results

highlight the utility of studying non-European cohorts.

Population differences appear to be more pronounced at

the allele frequency level but are less so at the effect size

level. In general, the estimated p1 of eQTLs from non-

EUR populations in EUR is lower compared to the rate

observed between down-sampling-EUR and the EUR popu-

lation cohort. Despite the relatively small sample size and

statistical power, we identified 343,737 significant cis-

eQTLs including 232,254 EAS eQTLs and 51,483 AA eQTLs

that were exclusive to the non-EUR populations. While

over half of eSNPs in our non-EUR dataset were population

specific, 80% of eGenes identified in the non-EUR were

also eGenes in the EUR data but associated with different

SNPs. Moreover, we observed that the effect sizes of eQTLs

were highly correlated between populations. The consis-

tency of our observations with prior research involving

diverse populations, including studies on gene expres-

sion,45,46 methylation,47 and chromatin accessibility,48

confirms the shared regulatory patterns across different

populations.

Interestingly, some eQTLs showed contrasting effects

across populations. �0.1% of the non-EUR-specific eQTLs

displayed opposing directions in effect size. A notable

example of this is the eQTL rs2599400-TAS2R31, which

showed opposite effects in different populations. Blood

eQTLs from EAS,38 EUR, and AFR7 also support this obser-

vation. Prior studies have underscored the population-spe-

cific variations in TAS2R31, linking these variations to

differing sensitivity to the bitter taste.24 It is important to

acknowledge that effect-size differences, though infre-

quent, can provide critical insights into the genetic archi-

tecture and underlying biological mechanisms. However,

the observed differences in this study may arise due to

variations in sample sizes, leading to overestimation or un-

derestimation of effect sizes because of random sampling

variation. Replicating findings in independent cohorts

can help confirm the observed effect sizes and rule out sta-

tistical artifacts. Additionally, further experimental valida-

tion and functional studies of variants showing significant

effect-size differences are warranted to elucidate the biolog-

ical mechanisms underlying these differences.

Our findings underscore that enhancing genetic ances-

tral diversity is more efficient for power gain than

increasing the sample size within large-scale eQTLs data-

sets. Through our benchmarking of eQTLs across three

populations, we have established robust capabilities for

identifying eQTLs with a MAF greater than 0.2 and an ef-

fect size of 0.6 (Figure S9). Our power analysis indicates
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that more than 30,000 individuals of European ancestry is

needed to uncover all eQTLs with MAF of 0.01 in this pop-

ulation, based on the estimated effect size of eQTLs exclu-

sively observed in non-EUR populations (Figure S9). For

example, one eQTL pair (chr12:123306558G>A-VPS37B)

would require 3,215 EUR samples based on the power esti-

mate because of the low frequency in the EUR population

(MAF ¼ 0.04). However, the MAF of this eSNP is 0.22 in

EAS, which reduces the required sample size from 3,215

to 246. Thus, incorporating a more diverse population

would reveal numerous regulatory variants that are not

only rarer in EUR but more prevalent in non-EUR groups.

Advancing toward a broader, more diverse human refer-

ence dataset will facilitate more comprehensive investiga-

tions into the impact of human demography on eQTL

detection, thereby deepening our understanding of the

distribution and influence of genetic regulation in the hu-

man brain.

Differences in the genetic architecture underlying gene

expression can help us to prioritize risk genes. Notably,

prior research has reported that disease-associated loci

tend to be skewed toward variants with higher allele fre-

quency in the discovery population, indicating that

limited statistical power may result in ‘‘missing’’ disease-as-

sociation signals. Incorporating diverse samples can

enhance our ability to uncover the etiology of the disease.

In our study, we identified five SCZ risk genes using the

non-EUR population, includingVPS37B in the EAS popula-

tion. VPS37B is associated with calcium-dependent protein

binding, providing evidence to support the involvement of

the calcium-related pathway in SCZ risk in the EAS popula-

tion.49 Another interesting candidate highlighted in our

study was CYP17A1 (RTC ¼ 0.99). The corresponding

GWAS signal was significant in the EAS and EUR popula-

tions (pEAS ¼ 4.5e�8; MAFEAS ¼ 0.48; pEUR ¼ 2.6e�13;

MAFEUR ¼ 0.30), while the corresponding eSNP in EAS

population (MAF ¼ 0.48) showed extremely low frequency

in EUR population (MAF < 0.001). CYP17A1 notably en-

codes enzyme important for the production of glucocorti-

coids and sex hormones, such as estrogen, which have

been linked to schizophrenia.50–52

Besides enhancing the power for detecting risk genes,

the inclusion of brain eQTLs from diverse populations im-

proves the ability to fine-map SCZ GWAS loci, identifying

regulatory variants which have the potential to regulate

downstream gene expression. This approach aids in inter-

pretation, thereby facilitating subsequent computational

and experimental functional investigations. Our result re-

vealed a potential regulatory region near the population-

shared risk gene CNNM2. This discovery showcases the po-

wer of leveraging diverse populations.

By leveraging the multi-ancestry information, trans-

ancestry fine-mapping also helped us identify high-confi-

dence putative causal variants. In addition to previously

validated genes, our study uncovered another significant

finding at chr3:50297330A>G-RHOA-SCZ through trans-

ancestry colocalization. RHOA encodes a member of the
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Rho family of small GTPases, pivotal in signal transduction

cascades by toggling between inactive GDP-bound and

active GTP-bound states.

Several limitations of our study warrant attention.

Firstly, our sample size is relatively small, which likely

constrained the comprehensiveness of our findings.

Our analysis indicates that increasing the sample size

would enable the identification of a larger set of eQTLs.

The modest sample sizes of both the AA eQTL dataset

and the SCZ GWAS cohort likely contributed to the fail-

ure of TWAS in the AA population. It is also important

to note that the EAS population in our study consists

solely of Han Chinese samples. Given that EAS encom-

passes a broader range of East Asian ancestries, speci-

fying our EAS eQTL results as representative of Han Chi-

nese offers a more accurate representation. This

limitation highlights the necessity for future research

to include a more diverse array of East Asian popula-

tions, thereby ensuring more generalizable and compre-

hensive results. We also highlighted that the current re-

sults are valid for cis-regulatory elements but exclude

any differences embedded through trans-regulatory ele-

ments. This distinction is crucial as it underscores the

focus of our study on cis-acting variations, while trans-

acting factors, which could also play significant roles

in gene regulation, remain unexplored within the scope

of our current analysis.

In conclusion, we present a genome-widemap of human

brain gene expression regulation. Importantly, this

resource bridges the gap between neuropsychiatric GWAS

and brain gene expression profiling in non-European pop-

ulations. Our study emphasizes the significance of this

atlas of brain gene expression regulation in non-European

populations for advancing our understanding of human

diversity, addressing health disparities, and developing

precision medicine.
Data and code availability

The raw sequence data for East Asian population generated during

this study are available at the Genome Sequence Archive in BIG

Data Center, Beijing Institute of Genomics (BIG), Chinese Acad-

emy of Sciences, under accession number HRA000108 and can

be accessed at https://bigd.big.ac.cn/gsa-human.

The summary statistics of eQTLs generated in this study are pro-

vided in the https://github.com/liusihan/population-compare-

pipeline.

The code generated during this study are available at GitHub

(https://github.com/liusihan/population-compare-pipeline).
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