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A B S T R A C T

Optoacoustic (OA) tomography is a powerful noninvasive preclinical imaging tool enabling high resolution 
whole-body visualization of biodistribution and dynamics of molecular agents. The technique yet lacks endog-
enous soft-tissue contrast, which often hampers anatomical navigation. Herein, we devise spiral volumetric 
optoacoustic and ultrasound (SVOPUS) tomography for concurrent OA and pulse-echo ultrasound (US) imaging 
of whole mice. To this end, a spherical array transducer featuring a central curvilinear segment is employed. Full 
rotation of the array renders transverse US and OA views, while additional translation facilitates volumetric 
whole-body imaging with high spatial resolution down to 150 µm and 110 µm in the OA and US modes, 
respectively. OA imaging revealed blood-filled, vascular organs like heart, liver, spleen, kidneys, and sur-
rounding vasculature, whilst complementary details of bones, lungs, and skin boundaries were provided by the 
US. The dual-modal capability of SVOPUS for label-free imaging of tissue morphology and function is poised to 
facilitate pharmacokinetic studies, disease monitoring, and image-guided therapies.

1. Introduction

Preclinical small animal imaging is essential in biomedical research 
to offer critical insights into disease progression and therapeutic effects 
[1,2]. In vivo imaging of rodents is commonly achieved with downscaled 
versions of whole-body clinical modalities like X-ray computed tomog-
raphy (CT) [3,4], magnetic resonance imaging (MRI) [5,6], or positron 
emission tomography (PET) [7,8]. Ultrasound (US) imaging is also 
routinely used in preclinical studies as it provides good soft tissue 
contrast and real-time imaging capacity to assess blood perfusion and 
other biodynamics [9,10]. Optoacoustic (OA) tomography is addition-
ally gaining maturity as a preclinical imaging tool capitalizing on rich 
spectroscopic optical contrast to resolve the biodistribution and dy-
namics of absorbing molecules in vivo [11–16]. State-of-the art OA to-
mography systems can reach imaging rates of hundreds to thousand 
frames per second dictated by the pulse repetition rate of the laser and 
excellent spatial resolution in the 20–200 µm range, mainly dependent 
on the detection bandwidth of the US transducer [17–20]. Spiral 

volumetric optoacoustic tomography (SVOT) represents a particularly 
advantageous strategy for whole-body imaging of mice with scalable 
spatio-temporal resolution [21–25]. Since endogenous OA contrast is 
dominated by hemoglobin absorption [26–29], accurate volumetric 
mapping of vascular anatomy and hemodynamics can be achieved in a 
label-free manner [30,31]. However, accurate organ delineation and 
signal quantification is often compromised by the lack of soft tissue 
contrast.

Conversely, pulse-echo US offers a distinct advantage in obtaining 
soft-tissue information and is widely employed to differentiate 
morphological features relying on acoustic impedance mismatches [32, 
33]. Both OA and US techniques share key advantages, such as the use of 
non-ionizing radiation, real-time imaging capacity, portability, or high 
spatial resolution. More importantly, both modalities rely on US detec-
tion, thus are natural imaging partners rendering complementary in-
formation. This has fostered the development of dual-modal OA-US 
imaging systems with unique capabilities for preclinical and clinical 
applications in early cancer diagnosis [34,35], image guided surgeries 
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[36], or therapy monitoring [37], to name a few examples. Hybridiza-
tion of OA and US for dual-modal small animal imaging has been ach-
ieved with different types of US transducers, including spherical 
single-element sensors [38,39], linear arrays [40–42], multi-segment 
arrays [43–45], or arc-shaped arrays [46–48]. These configurations 
often suffer from limited-view and out-of-plane artifacts when operating 
in cross-sectional (2D) imaging mode. Moreover, they require relatively 
long scan times, typically tens of minutes, to cover the entire animal. 
This hampers their use in studies involving pharmacokinetics and 
pharmacodynamics across large regions. On the other hand, spherical 
array transducers are growingly being used to achieve accurate tomo-
graphic OA reconstructions in real time [49–55]. However, compared to 
the sub-millimeter inter-element pitch used in typical clinical linear US 
transducer arrays, the large pitch of the spherical arrays (~3 mm) 
hampers efficient acoustic beamforming for pulse-echo US imaging 
[56]. A fundamentally new strategy is then required to achieve con-
current volumetric OA and US imaging.

In this work, we introduce spiral volumetric optoacoustic and ul-
trasound (SVOPUS) tomography that employs a hybridized hemispher-
ical array combining a cylindrically-focused, arc-shaped segment of 
emit/receive transducers and a dense grid of large square sensing ele-
ments distributed across the rest of the spherical surface. The proposed 
system thus achieves cross-sectional pulse-echo US imaging while 
ensuring optimal collection of volumetric OA data with a broad tomo-
graphic coverage. System’s performance is quantified in terms of reso-
lution and image quality in phantoms and further demonstrated with 
high-resolution dual-modal whole-body images of mice.

2. Materials and methods

2.1. SVOPUS tomography set-up

The schematics of the proposed hybrid SVOPUS scanner is depicted 
in Fig. 1A. An Nd:YAG laser (SpitLight, Innolas Laser GmbH, Krailing, 
Germany) delivering <10 ns pulses with 10 Hz repetition rate and 
1064 nm optical wavelength was used as an OA signal excitation source. 
A custom-built fiber bundle (CeramOptec GmbH, Bonn, Germany), 
inserted into the central cavity of a custom-made hybrid spherical array 
(HSA, Imasonic Sas, Voray, France), was used to illuminate the mouse 
surface with an approximately Gaussian illumination profile of ~10 mm 
diameter at full width at half maximum (FWHM). The optical fluence 
was maintained well below ANSI safety limits in all experiments [57]. 
SVOPUS image acquisition was performed with the custom-made HSA 
connected to multi-channel data acquisition/transmission unit (DAQ, 
Falkenstein Mikrosysteme GmbH, Taufkirchen, Germany), synchronized 
by the Q-switched laser trigger as detailed below. The HSA integrates a 
spherical matrix sub-array and a cylindrically-focused arc-shaped 
sub-array into a single device to render volumetric OA and pulse-echo 
B-mode US images, respectively (Fig. 1B). The spherical matrix 
sub-array segment consists of 384 elements arranged on a hemispherical 
surface having 40 mm radius and an angular coverage of 1300 (1.15π 
solid angle). The individual square-shaped elements have an approxi-
mate area of 12.20 mm2, inter-element pitch of 3.6 mm, and a central 
frequency of 5 MHz. The arc-shaped array segment consists of 128 
elongated elements arranged at the central part of the HSA. The indi-
vidual elements have 10 mm height, 0.2 mm inter-element pitch, and 
10 MHz central frequency. All the elements of the HSA exhibit >50 % 
transmit/receive bandwidth at FWHM. The acquired OA and US signals 
were simultaneously digitized at 24 Megasamples per second with the 
DAQ and transferred through 1 Gb/s Ethernet connection to a computer. 

Fig. 1. The SVOPUS setup and imaging protocol. A. Schematic representation of the SVOPUS scanner for whole-body volumetric imaging of mice. HSA: hybrid 
spherical array, FB: fiber bundle; OA: optoacoustic, US: ultrasound. B. Photo of the hybrid spherical array depicting the arrangement of OA and US elements. C. Time 
diagram of SVOPUS pulse transmission and signal acquisition sequence. T: Transmission, R: Reception. D. Activation sequence of the 128 US elements. Zoom-in 
shows the activation sequence of adjacent 8 elements after each laser pulse.
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This is equipped with 128 GB random access memory and a NVIDIA 
GeForce GTX 1060 6 GB graphical processing unit, and was operated 
with Windows 10. Later, a workstation with arch Linux operating sys-
tem, Intel i7–4820K (8) @ 3.9 GHz, 64 GB RAM, and a NVIDIA GeForce 
GTX TITAN X was used to process the signals and reconstruct the images.

2.2. SVOPUS scanning procedure

SVOPUS scanning was performed by step-and-go motion of the HSA 
together with the output of the fiber bundle along the vertical (z) and 
azimuthal (ϕ) directions (Fig. 1A). Specifically, full rotation (360◦) over 
18 angular positions and long-range displacement in 12 steps separated 
by 2 mm along the longitudinal axis to cover the mouse body was per-
formed. Translation and rotation of the HSA was controlled using 
motorized stages (RCP2-RGD6c-I-56 P-4–150-P1-S-B, RCP2-RTCL-I-28 
P-30–360-P1-N, IAI Inc., Shizuoka Prefecture, Japan).

At each position of the array, an emission/reception sequence for 
hybrid OA-US imaging was implemented as shown in Fig. 1C. A function 
generator (externally triggered with the Q-switch output of the previous 
laser pulse) was used to trigger the DAQ with 99.916 ms delay. The 
input impedance of the DAQ is then switched to reception mode. This 
external trigger delay to the DAQ was chosen such that the next laser 
excitation occurs 84 μs after each trigger event from the function 
generator with the generated OA signals falling within a 20 μs acquisi-
tion window delayed by 105 μs with respect to the external trigger. Note 
that the generated OA signals for the first laser pulse will not be ac-
quired. The 100 ms time interval between the laser pulses was used for 
pulse-echo B-mode US imaging. The internal trigger of the DAQ was set 
such that a total of 8 US pulses at 9 ms intervals were transmitted and 
the reflected US waves were collected within this time window. In total, 
16 laser pulses were needed to complete the US pulse-echo sequence 
with all 128 elements of the arc-shaped array segment. For each pulse- 
echo sequence, only one US element was used to transmit US pulse 
while all the 512 elements received the echoes with only 128 central 
(arc-shaped) array elements used for US beamforming. The US pulse 
transmission paradigm is shown in Fig. 1D. Each element of the arc- 
shaped array emits a bipolar square pulse with ±19 Vpeak-to-peak. The 
DAQ input impedance was altered during each US pulse at 42 μs after 
each internal trigger event and was subsequently changed back for 
corresponding echo signal reception after US pulse emission with 61.5 μs 
delay with respect to the internal trigger. These delays were chosen so 
that the pulse-echo US responses fall within a 20 μs acquisition window 
delayed 105 μs with respect to the internal trigger. Note that the DAQ 
continuously acquires the OA and pulse-echo US signals from all the 512 
hybrid array elements for each trigger event. At each position of the 
HSA, a total of 108 volumetric OA and 6 cross-sectional US images were 
acquired and averaged, which lasts (108/10 Hz) = 10.8 sec. Hence, it 
takes (18*12*108/10 Hz) = 2332.8 sec ≈ 39 minutes to scan the whole 
body of the mouse.

2.3. System characterization

The spatial resolution of the SVOPUS system across the entire field of 
view (FOV) was characterized by imaging a phantom containing a cloud 
of 50 μm polyethylene microspheres (Cospheric Inc, Santa Barbara, 
USA). These microspheres were randomly distributed in a 20-mm 
diameter agar cylinder (1.3 % agar powder by weight). The sphere 
phantom was imaged following the step-and-go protocol described 
above with the HSA together with the fiber bundle scanned along 18 
angular positions covering 360◦ and 3 translational positions along z- 
axis in 2 mm steps. The position of the HSA was controlled using 
motorized stages that can be translated in the vertical direction and 
rotated in the azimuthal direction. To improve accuracy, the acquired 
signals were averaged 100 times (OA mode) and 6 times (US mode) at 
each scanning position. The spatial resolution of the SVOPUS system was 
characterized by positioning the focus of the HSA at 5.7 mm distance 

from the rotation axis. Note that this distance was chosen to obtain 
relatively uniform spatial resolution across the entire FOV, as the spatial 
resolution is generally dependent on the position of the geometrical 
center of the spherical array relative to the axis of rotation [23]. The 
motor positions were controlled using a MATLAB-based interface. After 
each experiment, the relative position and orientation of the HSA with 
respect to its rotation axis were calibrated using a gauge phantom, 
which consisted of a single 200 μm polyethylene microsphere (Cospheric 
Inc, Santa Barbara, USA) embedded in a 20-mm diameter agar cylinder 
(1.3 % agar powder by weight). It was scanned to determine the radial 
position, lateral shift, and axial rotation angle of the HSA by considering 
18 angular locations covering 360◦.

2.4. In vivo animal experiments

Female Hsd:Athymic Nude-Foxn1nu/nu mice were used for the in 
vivo demonstration experiments, in accordance with the Swiss Federal 
Act on Animal Protection and with the approval of the Cantonal Vet-
erinary Office in Zurich. The mice were anesthetized using isoflurane 
(5 % volume ratio for induction and 1.5 % volume ratio during experi-
ments; Provet AG, Switzerland) in an oxygen/air mixture of 100/ 
400 mL/min. The mice were held in a fixed position with fore and hind 
paws secured using a custom-made animal holder and placed inside a 
water tank. The water temperature was maintained at 36 ◦C throughout 
the experiments using a feedback-controlled heating stick. A vet oint-
ment (Bepanthen, Bayer AG, Leverkusen, Germany) was applied on the 
eyes to prevent dehydration during scanning and for protection against 
laser light. The mice were scanned in a step-and-go fashion to cover 360◦

over 18 angular positions and in 12 steps separated by 2 mm in the 
vertical direction. At each position of the HSA, a total of 108 volumetric 
OA frames and 6 fully-compounded cross-sectional US frames were ac-
quired and averaged in order to increase the signal-to-noise-ratio of the 
images.

2.5. Signal processing, image reconstruction, and analysis

The acquired time-resolved OA and US signals were initially band- 
pass filtered in the 0.1–15 MHz frequency band covering the entire 
bandwidth of the HSA elements. The OA images were reconstructed with 
the signals recorded with the 384 elements of the spherical sub-array 
segment whilst the 128 elements of the arc-shaped sub-array were 
solely used for the US reconstructions with conventional delay-and-sum 
beamforming technique implemented on a graphics processing unit 
(GPU) [58–60]. To facilitate in vivo OA image reconstruction, a 
pre-processing self-gated respiratory motion rejection algorithm was 
applied for the step-and-go scanning method, as described elsewhere 
[61]. Briefly, the recorded 108 raw OA data frames (1 frame per laser 
pulse), each frame containing 493 time-samples for every channel, were 
rearranged into a 2D matrix containing 493 ×384 rows and 108 col-
umns. This 2D matrix represents the entire sequence of frames acquired 
for a single position of the HSA. The correlation matrix of all frames was 
then computed. Clustering of frames into two sets with high and low 
correlation coefficients was performed by employing the second order 
k-means method to the correlation coefficient matrix. The frames with 
high correlation coefficient were then selected and averaged with the 
volumetric OA images reconstructed using a GPU-based back-projection 
(BP) technique [62,63]. Time taken for clustering breathing frames in 
case of OA imaging is 113.4 sec. To reduce image artifacts due to spatial 
undersampling, each detector was additionally split into 9 sub-elements 
[25]. All these steps were performed at each position of the HSA. For 
phantom images, we assumed an average speed of sound (SOS) of 
1545 m/s, 25 μm voxel resolution for OA, and 10 μm pixel resolution for 
US. For in vivo imaging, we used instead 1535 m/s SOS, 50 μm voxel 
resolution for OA, and 12.5 μm pixel resolution for US. Individual 
reconstructed 3D volumes of the mouse at each position of the HSA were 
stitched using Icmax compounding technique to obtain whole-body 
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volumetric mouse images [25]. The reconstruction time for an OA image 
volume at a single position of the HSA was 19.4 sec, whereas the total 
reconstruction time required to obtain whole-body OA image was 
74.7 minutes. The US beamforming at a single position of the HSA takes 
23.2 sec with the cross-sectional compounded images over 18 angular 
positions taking 6.9 minutes to reconstruct. Note that these recon-
struction times were calculated for OA reconstructions with 50 µm pixel 
resolution and for US reconstructions with 12.5 µm resolution. The 
quality of OA images can potentially be further enhanced by employing 
model-based reconstruction algorithms at the expense of longer 
computation times [64,65].

3. Results

3.1. Spatial resolution characterization

Results of the spatial resolution characterization of the SVOPUS 
system are shown in Figs. 2A and 2B. For volumetric OA imaging, the 
spatial resolution along three cylindrical axes, namely, radial er, 
azimuthal eϕ, and elevational ez directions were computed, whilst only 
in-plane components (er and eϕ) were considered for the B-mode US 
imaging (Figs. 2C and 2D). The spatial resolutions were estimated at 
each radial position after deconvolving the actual microsphere diameter 

D from the corresponding FWHM in the images as 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(FWHM)
2
− (D)2

√

. 

Note that FWHM was calculated after fitting to Gaussian curves for all 
axes. In both imaging modes the radial resolution performance remained 
nearly isotropic and constant throughout the imaged volume in the 
range between 150 μm and 190 μm for OA imaging and almost constant 
resolution around 110 μm for US imaging. Whilst strong variation of 
azimuthal resolution exists on the radial position for OA imaging 
ranging from 165 μm to 365 μm, slight variation exists for pulse-echo US 
imaging, ranging from 113 μm to 139 μm. The elevational resolution for 
OA imaging ranges from 200 μm to 370 μm. The spatially-dependent 
resolution in OA mode can be attributed to the directivity of the rela-
tively large OA sensing elements towards the center of the FOV, in 
contrast to the wide angular sensitivity of high-pitch US sensing ele-
ments. Higher in-plane (radial and azimuthal) resolutions for pulse-echo 
US imaging were observed due to the higher central frequency of 
10 MHz for the 128 elements of the arc-shaped array segment compared 
to that of 5 MHz for the remaining spherical array segment.

3.2. Whole-body mouse imaging

Whole-body in vivo imaging performance of the hybrid SVOPUS 
system was subsequently demonstrated (Fig. 3). SVOT imaging of the 
entire mouse was obtained by stitching individual reconstructed volu-
metric frames at each position of the HSA by employing the Icmax 
compounding technique [25] (Fig. 3A). Major organs like the heart, 
liver, spleen, kidney, spinal cord, brown adipose tissue, duodenum and 

Fig. 2. Spatial resolution characterization of the SVOPUS system. Reconstructed maximum intensity projection (MIP) OA (A) and US (B) images of the 50 μm 
microspheres phantom. The focus of the hybrid spherical array geometry was set at a distance of 5.7 mm from the axis of rotation. C. Dependence of radial (er), 
azimuthal (eϕ), and elevational (ez) resolution on the radial position from the axis of rotation for OA imaging. D. Dependence of radial (er) and azimuthal (eϕ) 
resolution on the radial position from the axis of rotation for pulse-echo US imaging.
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Fig. 3. Whole-body in vivo mouse imaging with SVOPUS. A. Maximum intensity projections (MIPs) of the rendered volume (left to right) from the back and front 
views. Scalebar: 1 cm. B. OA and US cross-sectional slices at anatomical locations marked with dashed lines in A. BAT: brown adipose tissue, SC: spinal cord, SP: 
spleen, L: liver, K: kidney, HT: heart, JV: jugular vein, TV: thoracic veins, DD: duodenum, ITV: internal thoracic veins, RA: right atrium, LA: left atrium, RV: right 
ventricle, LV: left ventricle, ST: sternum, SF: skin folds, R: ribs, RL: right lung, LL: left lung, MLV: median lobe of liver, LLV: left lobe of liver, BV: blood vessels, RLV: 
right lobe of liver, IVC: inferior vena cava, IN: intestines, G: gut, TC: transverse colon, RK: right kidney, LK: left kidney.
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surrounding vasculature can be easily discernible in the maximum in-
tensity projections (MIPs) along different views. The full tomographic 
angular coverage of the SVOPUS scanning method enables visualization 
of deep anatomical structures that are mainly concealed in the MIP 
views that mainly emphasize superficial signals due to depth-dependent 
light attenuation in tissue. The cross-sectional OA images (Fig. 3B, 
0.1 mm thickness) at different anatomical locations (marked in Fig. 3A) 
depict more anatomical details across the mouse body. Fine anatomical 
and vascular structures such as the heart atria and ventricles, inferior 
vena cava, and liver lobes are clearly discernible. Additional anatomical 
information is obtained from the cross-sectional pulse-echo US images 
(Fig. 3B). Various bone structures such as sternum, ribs, spinal cord, air 
filled lungs, duodenum, transverse colon, and skin appeared as hyper-
echoic, whilst highly vascularized organs like liver, spleen, kidneys 
appeared as hypoechoic in the US images. Other structures, like stomach 
and gut, produce diffuse reflections and appear as gray or hypoechoic 
contrast. Note that all OA cross-sectional images were normalized with 
the estimated fluence [66] and further processed with a weighted (10 %) 
Frangi filter, while a modified Bessel function [67] was employed for 
time-gain compensation of the US images in order to increase their 
contrast across all depths.

4. Discussion and conclusions

The newly-developed hybrid SVOPUS tomography system offers 
complementary dual-modal contrast, allowing for comprehensive visu-
alization of both soft tissues and surrounding vascular networks across 
the entire mouse body. This stands in contrast to the existing whole- 
body SVOT imaging systems, which excel at angiographic imaging but 
lack other soft-tissue information. The US array employed in SVOPUS 
was designed ad hoc to provide a large angular coverage for accurate OA 
tomographic reconstructions, whilst additionally integrating an arc- 
shaped array segment for efficient pulse-echo US imaging. US imaging 
was interleaved between consecutive laser pulses, where US trans-
mission and laser pulses were precisely synchronized for the OA re-
sponses and US echoes to fall within the same acquisition window. The 
SVOPUS system achieves isotropic resolution at the center of FOV down 
to 150 μm and an in-plane resolution down to 110 μm in the OA and US 
modes, respectively. Complimentary morphological information of 
various bones like sternum, ribs, spinal cord, air filled lungs, gas filled 
stomach, gut, intestines, and skin boundaries was discernible with pulse- 
echo US imaging. On the other hand, blood-filled and highly vascular-
ized organs, like heart, liver, spleen, kidneys, brown adipose tissue, in-
testines, and surrounding vasculature was best visualized with OA 
imaging.

A number of hybrid OA and US imaging systems based on linear 
arrays, linear-concave arrays, or arc-shaped arrays have previously been 
proposed for small animal imaging [38–44,46–48]. While such config-
urations achieve high quality cross-sectional US images, they are 
sub-optimal for achieving large angular coverage as required for high 
quality 3D whole-body OA imaging of mice. As a result, cross-sectional 
imaging systems cannot provide accurate images of arbitrarily-oriented 
vascular networks. This can partially be compensated by employing 
Frangi-based (vesselness) filtering, albeit at the expense of introducing 
vessel-like networks that do not represent actual structures in the mouse 
[68]. In contrast, by employing truly 3D tomographic acquisition ge-
ometry the SVOPUS approach is advantageous for accurate visualization 
of vascular networks extending in all three dimensions. Multi-spectral 
imaging can additionally be performed in the OA mode by rapid tun-
ing of the laser wavelength [22,31]. This allows for visualizing oxygen 
saturation (sO2) in healthy and diseased tissues by unmixing 
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) content.

In summary, SVOPUS optimally combines the complementary 
contrast mechanisms of OA and US imaging into a single hybrid mo-
dality. This represents a significant advancement in the field of pre-
clinical imaging addressing limitations of state-of-the-art 

implementations. The method enhances the visualization of soft tissues 
in a non-invasive manner and achieves label-free imaging of the organ 
parenchyma along with surrounding vascular networks. The dual-modal 
performance of SVOPUS sets a new standard for non-invasive imaging 
performance at the whole-body scale thus opening new avenues for 
preclinical studies into pharmacokinetics, monitoring of disease pro-
gression, and therapy guidance.
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