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Abstract

Mutations in the interface of membrane protein (MP) complexes are key contributors to a broad spectrum of human diseases, primarily
due to changes in their binding affinities. While various methods exist for predicting the mutation-induced changes in binding affinity
(��G) in protein–protein complexes, none are specific to MP complexes. This study proposes a novel strategy for ��G prediction in
MP complexes, which combines linear and nonlinear models, to obtain a more robust model with improved prediction accuracy. We
used multiple linear regression to extract informative features that influence the binding affinity in MP complexes, which included
changes in the stability of the complex, conservation score, electrostatic interaction, relatively accessible surface area, and interface
contacts. Further, using gradient boosting regressor on the selected features, we developed MPA-MutPred, a novel method specific for
predicting the ��G of membrane protein–protein complexes, and it is freely accessible at https://web.iitm.ac.in/bioinfo2/MPA-MutPred/.
Our method achieved a correlation of 0.75 and a mean absolute error (MAE) of 0.73 kcal/mol in the jack-knife test conducted on a dataset
of 770 mutants. We further validated the method using a blind test set of 86 mutations, obtaining a correlation of 0.85 and an MAE of
0.77 kcal/mol. We anticipate that this method can be used for large-scale studies to understand the influence of binding affinity change
on disease-causing mutations in MP complexes, thereby aiding in the understanding of disease mechanisms and the identification of
potential therapeutic targets.
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Introduction
Membrane proteins (MPs) are an essential group of proteins mak-
ing up ∼20%–30% of the human proteome [1]. Their significance
lies in their diverse functions as molecular transporters, signal
receptors, ion channels, and enzymes, rendering them primary
targets for medicinal drugs [2]. Membrane proteins mostly func-
tion as complexes, and the strength of their binding (binding
affinity), quantified by binding free energy (�G), is critical for
their proper functioning. However, due to their complex structural
characteristics, the binding affinity of MPs has been less exten-
sively studied compared to globular proteins. Recently, Ridha et al.
[3] developed a machine learning (ML)–based method, MPA-Pred,
to predict the binding affinity of MP–protein complexes using
structure- and sequence-based features. It was observed that
aromatic and charged residues at the interface and noncovalent
interactions such as electrostatic interactions play a crucial role
in understanding the MP binding affinity [4].

On the other hand, changes in binding affinity resulting from
mutations can disrupt vital processes, leading to aberrant cellular
function and potential disease onset [3]. Mutations in MPs have
been implicated as the culprits across a broad range of human

diseases, including cancers, cardiovascular conditions, congenital
disorders, and more [5]. For instance, mutations in voltage-
gated ion channels (VGICs) can lead to cardiac dysfunction, as
seen with the KCNH2 mutation (N588K) causing sudden cardiac
death [6]. Similarly, mutations in membrane-bound receptors,
like the L858R mutation in the epidermal growth factor receptor,
drive carcinogenesis, particularly in lung cancer [7]. Hence, it is
important to understand the mutational effects on the binding
affinity in MPs.

Quantitatively, the influence of mutations is determined
by the change in binding free energy (��G), using various
experimental techniques. Recently, Ridha et al. [8] compiled data
on experimental binding affinity change upon mutation from
literature and developed a database, Membrane Protein complex
binding Affinity Database (MPAD), which includes ∼5400 affinity
data. However, due to the resource-intensive and time-consuming
nature of experimental techniques, they are not feasible for large-
scale studies. Consequently, computational methods become
indispensable for predicting changes in the binding affinity of
MP complexes resulting from mutations.

Recent years have seen the emergence of various computa-
tional approaches, predominantly employing machine learning
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Figure 1. An overview showing the workflow of MPA-MutPred methodology.

and deep learning, to efficiently predict changes in binding
affinity upon mutation, leveraging both structural and sequence-
based features [9–16]. However, these methods are designed
for protein–protein complexes in general and do not account
for the unique challenges posed by MPs. We also observed
that most mutations occurred in the extracellular and/or
cytoplasmic regions of the MP–protein complex. On the other
hand, such mutations can significantly influence MP–protein
interactions by potentially altering the conformation of the
membrane-spanning regions, thus disrupting the key function
[3, 17]. Although it is similar to mutations in globular proteins,
existing prediction methods for globular proteins exhibit poor
performance in predicting ��G values for MPs due to distinct
structural and environmental characteristics. This highlights
the need for a specific method to predict affinity change upon
mutation in MP–protein complexes, which is currently lacking in
the literature.

To bridge this gap, we introduce a new method for predicting
the changes in binding free energy of MP–protein complexes
caused by single mutations (Fig. 1). Our distinctive approach
integrates complementary ML algorithms, offering a synergistic
solution to enhance the prediction of changes in binding affinity
upon mutation, leading to a more robust predictive model. We
developed a prediction model using multiple linear regression
(MLR) for feature selection, followed by gradient boosting regres-
sor (GBR), achieving a correlation of 0.75 and a mean absolute
error (MAE) of 0.73 kcal/mol in the jack-knife test and a correlation
of 0.85 with an MAE of 0.77 kcal/mol on the blind test set. We
also identified the important features influencing the binding
affinity change in MP complexes and performed SHAP (SHapley
Additive exPlanations) analysis to elucidate their contribution
to the model predictions, enhancing the interpretability of our
approach. A user-friendly web server, MPA-MutPred, was also
developed, which is freely accessible for public use. The selected
features and model development approach will be discussed
in detail.

Materials and methods
Dataset
The MPAD database [8] is utilized to obtain reliable single muta-
tion data on the binding affinity of MP complexes with known
wild-type and mutant �G values. We then calculated the binding

free energy change using Equation (1),

��G = �Gmut − �Gwt (1)

where �Gwt and �Gmut represent the binding free energies of
the wild-type and mutant complex, respectively. In our study,
an increase in binding affinity is indicated by a negative ��G
value, while a positive ��G value signifies a decrease in affinity,
independent of the magnitude.

Additionally, to balance the skewed distribution of ��G in the
dataset, we included hypothetical reverse mutations [18], where
the ��G of a mutation from wild type to its mutant is considered
to be equal to the negative of the change in binding affinity from
mutant to wild type.

��G (�Gmut − �Gwt) = −��G (�Gwt − �Gmut) (2)

This approach, widely used in the literature [9, 10, 16] helps
to achieve a more balanced representation of the dataset,
thereby enhancing the model’s generalizability and predictive
performance. Including the hypothetical reverse mutations, the
total dataset consists of 856 mutations, of which 770 were utilized
to train the final model. Further, we utilized 86 single mutations
(90:10 split) as the blind test set to evaluate the performance of
the model.

Feature extraction
Structure-based features
We obtained the wild-type complex structures from the Protein
Data Bank (PDB) and employed the BuildModel function in FoldX
[19] to introduce single-point mutations into the wild-type crystal
structure from PDB, in order to generate the mutant complex.
Using the wild and the mutant structures, we calculated several
structure-based features, which include: (i) energetic parameters
obtained using FoldX; (ii) accessible surface area using NACCESS
program [20]; (iii) residue depth analysis with Bio.PDB package, (iv)
hydrogen bond features from HBPLUS [21]; (v) network properties
using network package [22]; (v) interface residue–based contacts
with 5.5 Å cutoff; and (vi) label-encoded features related to the
mutation site such as chemical properties, size, and polarity of
the residues [12].
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Sequence-based features
We calculated several sequence-based features, including: (i)
physicochemical properties, distance potentials, and mutation
matrices from AAIndex [23]; (ii) conservation scores using AACon
[24]; and (iii) Position-Specific Scoring Matrix (PSSM) scores using
PSI-BLAST.

Feature selection
The features computed for each mutation were subject to pre-
processing to avoid overfitting and eliminate redundant features.
Initially, interfeature correlations were assessed, and highly cor-
related features (r > 0.7) were systematically removed. Among
the two features showing high correlation, the one less corre-
lated with the response variable was eliminated, thus ensuring
a reduced set of features with minimal multicollinearity and
maximal relevance to the target variable.

Following preprocessing, the sequential forward feature selec-
tion (FFS) procedure was employed to identify the important fea-
tures essential for achieving the highest predictive performance
of the model. Initially, an extensive systematic search was con-
ducted to evaluate all possible five feature combinations. The top-
performing combination was then used in an FFS process, where
the number of features in each combination was increased by one
to incorporate additional features. The process continued until
adding new features no longer improved the correlation (r) or
reduced the MAE.

Model development
The complete workflow containing feature preprocessing, feature
selection using MLR, and the training and evaluation of the
prediction method using GBR is illustrated in Supplementary Fig-
ure S1. Initially, the multivariate linear regression method was
used to select the features based on the performance (see
Feature Selection section).

After performing forward feature selection, the selected combi-
nation of features (see the Results section for details) was used to
train the prediction model. We employed various ML algorithms to
assess their performance (Supplementary Table S1). Based on the
performance, we selected the “GradientBoostingRegressor” from
the “ensemble” module in the Scikit-learn toolkit [25] for the
implementation of the final prediction model.

Performance evaluation
To evaluate the model performance, we used the Pearson corre-
lation coefficient (r) and assessed the prediction errors using the
mean absolute error (MAE) [3]. Furthermore, the robustness of the
trained model was evaluated using 10-fold cross-validation and a
jack-knife test. In the jack-knife test, the model is trained using
n − 1 data points, and the ��G for the excluded data point is then
predicted. This process is repeated for each of the n data points.
We also conducted an additional validation of our model using an
independent test dataset.

Results and Discussion
Statistics of the dataset
We analyzed the binding affinity change of 770 mutations,
and the distribution of ��G ranged from −6.1 to 6.1 kcal/mol
(Supplementary Figure S2). We found that 57.5% of the mutations
changed the binding affinity by ±1 kcal/mol. Additionally, 20.2%
of the mutations enhanced binding affinity (��G < −1 kcal/mol),
and 22.3% led to a reduction in affinity (��G > 1 kcal/mol).

Notably, the mutation R33Q in interferon alpha-2 (IFNα2)
significantly impacted its binding affinity with interferon alpha
receptor 2 (ifnar2). The wild-type complex demonstrated a
binding free energy of −11.62 kcal/mol. The positive charge of
the arginine side chain allows it to engage in strong electrostatic
interactions with negatively charged residue (Asp 51) on ifnar2,
contributing significantly to the affinity and stability of the
IFNa2-ifnar2 complex [26]. Mutation to glutamine (R33Q) resulted
in a �G of −5.54 kcal/mol, significantly lowering the affinity
(��G = 6.1 kcal/mol) due to the loss of electrostatic interactions
at the binding interface. Another example is the Y13A mutation in
human interleukin-4 binding protein (IL4-BP), which significantly
reduced its binding affinity for interleukin-4 (IL-4) with a ��G
of 5.2 kcal/mol. The substantial loss of affinity in this variant is
likely due to structural perturbations, as the aromatic ring of Y13
is fully buried within the protein [27].

Nonlinear methods using features obtained from
regression improved the ��G prediction
We used the FFS method combined with multiple linear regres-
sion to identify the optimal features with the best predictive
performance. Our iterative process initiated with all 5 feature
combinations and progressively extended up to 12 features using
the FFS method for the final model, as there was no signifi-
cant improvement in the performance beyond 12 features. Using
these selected features, we examined the performance on an
MLR model and obtained a correlation of 0.74 and an MAE of
0.75 kcal/mol in training and a correlation of 0.73 with an MAE
of 0.76 kcal/mol in the jack-knife test. Further, we compared the
performance on six different machine learning algorithms, and
the results are provided in Supplementary Table S1. Inspection of
the results revealed that the GBR showed improved performance
compared to the other methods, with a correlation up to 0.75 and
a reduction of MAE to 0.73 kcal/mol during the jack-knife test.

When we evaluated the performance of the model directly
trained on the entire feature set using the GBR, we obtained
a reduced performance (r = 0.72 and MAE = 0.76 kcal/mol in the
jack-knife test) in comparison to our previous approach. Also,
feature selection using the GBR is time-consuming and compu-
tationally expensive, especially with a large number of features.
This suggests that incorporating feature selection through lin-
ear regression helps to reduce complexity, potentially improves
interpretability, and can lead to better model performance. Thus,
we employed a novel approach of using linear regression for
feature selection followed by training gradient boosting on the
selected features, to obtain a more robust model by leveraging the
strengths of both approaches for improved performance.

Performance on training and cross-validation
We used both default parameters and hyperparameter tuning
using the GridSearchCV method with a 5-fold cross validation
(CV) to compare the performance. We tested different hyperpa-
rameter values: n_estimators: 100, 200, 300; learning_rate: 0.01,
0.1, 1.0, 10; max_depth: 1, 3, 5, 7, 9; and sub_sample: 0.5, 0.8, 1.0.
However, the model with default parameters (n_estimators = 100,
learning_rate = 0.1, max_depth = 3, subsample = 1.0) clearly out-
performed the tuned model (Supplementary Table S2). Hence, we
finalized the GBR model with default parameters.

The method demonstrated a training correlation of 0.91 with
an MAE of 0.49 kcal/mol, while the jack-knife test results showed
a correlation of 0.75 and an MAE of 0.73 kcal/mol (Fig. 2a). Fur-
ther, in 10-fold cross-validation, the model predicts ��G with a
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Figure 2. Regression plots depicting the relationship between experimental and predicted ��G on (a) training and jack-knife test and (b) blind test set.
The dotted line represents the mutations predicted with a deviation of ±1.5 kcal/mol.

correlation of 0.74 and an MAE of 0.75 kcal/mol (Supplementary
Figure S3).

Performance on blind test
We tested our model on a blind dataset consisting of 86 mutations
to evaluate its prediction performance. The model achieved an
MAE of 0.77 kcal/mol and a correlation of 0.85 between the exper-
imental and predicted binding affinities. Figure 2b illustrates the
relationship between the actual and predicted ��G values for the
test set. For instance, the mutation F269A in interferon lambda
receptor 1 (IFNLR1) interacting with tyrosine-protein kinase JAK1
(PDB: 5IXD) resulted in a ��G of 3.50 kcal/mol. The method is able
to accurately predict the binding affinity change of the complex
(3.98 kcal/mol) within a deviation of 0.48 kcal/mol.

Performance across different functional classes
We have developed a generic model by considering mutations
in all classes of MPs together. For assessing the generalizability
of the model in different functional classes, we evaluated its
performance on each class separately in a jack-knife test and
an external blind dataset (Supplementary Figure S4). Notably, the
model performed well across all classes, achieving an MAE of
<1 kcal/mol, with specific values of 0.70, 0.74, 0.87, and 0.63 kcal/-
mol for mutations in enzymes, receptors, transporters, and mis-
cellaneous proteins, respectively, in the jack-knife set. This could
be due to the fact that the selected features such as change in
total energy and conservation score are shown to be important in
all classes of proteins. Further, we noticed a minor difference in
performance across different classes, and it might be due to the
following reasons: (i) the model is trained on a broad ��G range of
−6 to +6 kcal/mol, while specific functional classes, such as trans-
porters, have a narrow ��G range of −2 to +2 kcal/mol, and (ii) the
distinct structural features and functional mechanisms among
these protein classes can influence the ability of the model to
capture relevant information and make accurate predictions. The
features selected for the generalized model may not be equally
important across all functional classes, leading to suboptimal
performance in certain cases. Supplementary Figure S5 shows
the varying importance of features across functional classes sug-
gesting that different classes rely on specific sets of features

for accurate predictions. This can be overcome by developing
separate models for each functional class upon the availability
of a sufficient number of data in each class.

In the blind set, mutations in enzymes, receptors, transporters,
and miscellaneous proteins showed MAE values of 0.82, 0.80,
0.70, and 0.78, respectively. Overall, the model demonstrates
robust performance across all functional classes, with an MAE
of <1 kcal/mol in each class, indicating the generalizability of the
model.

Comparative analysis of ��Gs between
membrane and globular proteins
A detailed comparison between experimental and predicted ��G
values across different amino acid types is plotted in Fig. 3. We
categorized the amino acid residues into charged (R,H,K,D,E),
polar (S,T,N,Q), hydrophobic (A,V,I,L,M,F,Y,W), and special groups
(C,G,P). From Fig. 3a and b, it is interesting to note that most
mutations, particularly those involving charged and hydrophobic
groups mutating to alanine, have a positive affinity change except
for one mutation (Gly to Ala). For instance, charged residues at
the interface contribute to electrostatic interactions, while bulky
hydrophobic residues play a crucial role in stabilizing protein–
protein complexes through hydrophobic interactions. Replacing
these residues with Ala disrupts these interactions, leading to the
destabilization of the complex and a decrease in binding affinity
[28]. This observation is similar to that found in globular protein–
protein complexes [15] as shown in Fig. 3c. It may be due to
the fact that our dataset also contains complexes, where binding
occurs in the extracellular and/or cytoplasmic regions.

Furthermore, we performed a qualitative analysis focusing
on the proportion of mutations decreasing the binding affinity
(denoted by positive ��G). Similar to the above observation, most
mutations to Ala have >70% positive ��G (Supplementary Fig-
ures S6a and b). A similar pattern is observed in globular protein
complexes also (Supplementary Figure S6c). Thus, we observe
a consistent trend based on average ��G and % of mutations
decreasing (or increasing) the binding affinity, confirming the
reliability of our observations.

On examining the ��G values, we observe that the majority
of mutations to arginine have a negative free energy change

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae598#supplementary-data
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Figure 3. A comparative analysis of mutation-induced binding affinity changes across various amino acid types. (a) and (b) are experimental and
predicted average binding affinity changes upon mutation (kcal/mol) respectively, (c) is average ��G for the globular protein dataset, while (d) is
the deviation between experimental and predicted ��G (jack-knife test) upon each type of mutation (kcal/mol) in MP complexes. The figure uses
distinct color codes to represent different amino acid groups: charged (R,H,K,D,E), polar (S,T,N,Q), hydrophobic (A,V,I,L,M,F,Y,W), special groups (C,G,P),
and positions with no mutations.

indicating an increase in binding affinity, possibly due to favorable
electrostatic interactions with the oppositely charged groups on
the binding partner, strengthening the binding. This agrees with a
previous study [29] that positive charges contribute to stabilizing
protein–protein interfaces through favorable electrostatic inter-
actions. An illustrative instance is the mutation Q33R within the
IFNa2-ifnar2 complex (PDB:3S9D), where the substitution to Arg
introduces an electrostatic interaction between Arg 33 and Asp
51, which was absent in the wild-type complex (Supplementary
Figure S7).

Overall, comparing the patterns in Fig. 3a and b shows that our
predictions are in close agreement with the experimental data in

terms of average ��G values. Figure 3d shows that 90% of the
mutations fall within a deviation of 1.5 kcal/mol, indicating a high
level of agreement between the experimental and predicted ��G.
This consistency underscores the reliability and accuracy of our
prediction model in capturing the change in binding affinity upon
mutation.

Analysis of features influencing ��G prediction
The final set of features selected for our model includes accessible
surface area, energetic parameters obtained using FoldX such
as total energy, electrostatics, and solvation; interface contacts,
PSSM score, buriedness, long-range nonbonded energy, and degree

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae598#supplementary-data
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Figure 4. Beeswarm plot showing the SHAP analysis of the ��G prediction
model, where features are ranked in descending order of importance
according to their SHAP scores.

(network property). To understand the impact of individual fea-
tures on the prediction of ��G, we performed feature ablation
and SHAP analysis [30].

Feature ablation study
In order to assess the importance of each feature, we conducted
a feature ablation study by systematically removing each
feature from the model and evaluating its impact on the
prediction performance of ��G. This process helped identify the
contribution of each feature to the overall model performance.
Supplementary Figure S8 displays the jack-knife test performance
of the ablated features in terms of correlation and MAE for ��G
prediction. The results demonstrate that excluding one or both
“pssm_weight_diff” and “Total energy_FoldX” features showed a
significant performance drop (r = 0.63 and MAE = 0.87 kcal/mol),
highlighting the importance of these features for our prediction.
In contrast, we observed that the elimination of other features
reduced the performance minimally (MAE < 0.05 kcal/mol).

SHapley Additive exPlanations analysis
The importance of each feature in the model was assessed and
ranked using SHAP analysis [30] to evaluate their contributions to
the model prediction. SHAP assigns an importance score to each
feature that quantifies its positive or negative impact on the final
prediction, providing a clear understanding of how each feature
affects the outcome. A higher SHAP score denotes greater feature
importance, whereas a lower score indicates reduced importance.
The beeswarm plot derived from the SHAP analysis is provided in
Fig. 4.

The important features influencing the binding affinity change
are discussed in detail below.

Energetic parameters
The ablation and SHAP analysis revealed that the change in
overall stability energy (Total energy_FoldX) obtained from FoldX
is the most important feature, exhibiting nonlinear relationships
with the model output as evidenced by their wide range of both
positive and negative SHAP values. This prominence is consistent
with findings from a previous study where the thermodynamic
stability of complexes was an important feature for the prediction

of affinity changes upon mutations [10]. Analyzing Fig. 5a, we
observed a direct relationship between stability change and
��G. This observation is further substantiated by an example of
Y13A mutation in the interleukin-4/receptor alpha chain complex
(PDB: 1IAR). The positive ��G of 5.2 kcal/mol indicates a weaker
binding affinity compared to the wild type, which showed a good
agreement with the observed decrease in stability change of
6.3 kcal/mol. These observations demonstrate how total stability
energy difference correlates with the binding affinity change.

Another selected feature from FoldX is the solvation energy,
which includes both polar and nonpolar solvation energy. This
agrees with the previous study [31] which reports a crucial role
of solvation energy in determining the binding affinity changes.
Interestingly, our data revealed that mutations leading to stronger
binding affinity (negative ��G) were accompanied by a positive
solvation energy difference (��Gsolv). While the mutation might
disrupt favorable interactions with solvent molecules (positive
��Gsolv), it could also lead to the formation of new favorable
interactions between the proteins (e.g. hydrogen bonds, van der
Waals forces) that outweigh the solvation penalty, leading to a net
increase in binding affinity (negative ��G).

Change in electrostatic interaction energy feature from FoldX
as shown in Fig. 5b, depicts that mutations leading to more favor-
able electrostatic interactions (more negative ��Eelec) might tend
to shift toward the left (more negative ��G) on the graph, poten-
tially indicating stronger binding affinity. This suggests that elec-
trostatic interactions can influence the binding affinity change
upon mutation.

Solvent accessibility
Change in relative solvent accessibility (�ASArel) is another impor-
tant feature. We observed a negative correlation between ��G
and �ASArel, which implies that mutations leading to decreased
solvent accessibility (negative �ASArel) tend to be associated with
stronger binding affinity (negative ��G). This observation can be
explained by the reduced competition from water molecules for
binding interactions when solvent accessibility decreases. Con-
sequently, stronger interactions can form between the mutated
protein and its binding partner protein, leading to increased bind-
ing affinity. Previous studies have also highlighted this feature as
a crucial factor in predicting ��G [9, 32]. A similar trend was
observed for the change in polar ASA, which was also a feature
selected, suggesting a potential role of polar group accessibility in
influencing binding affinity.

Interface contacts
The number of contacts in the interface is another important
feature influencing the binding affinity. The SHAP plot shows
that an increase in the number of mutant interface contacts is
associated with increased affinity (negative SHAP value), while
an increase in the number of wild-type interface contacts cor-
relates with decreased affinity. Figure 5c, depicting the change
in the number of contacts between wild and mutant residue,
shows that mutations increasing the number of contacts (positive
�Contact) tend to be associated with a stronger binding affinity
(negative ��G). This aligns with the concept that forming more
contacts often leads to a larger interaction surface area between
the protein and its binding partner. This, in turn, can facilitate the
formation of favorable interactions such as hydrogen bonds and
electrostatic interactions, contributing to a more stable complex
and potentially lowering the binding free energy (negative ��G).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae598#supplementary-data
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Figure 5. Distribution of various features across different ��G ranges (steps of 3 kcal/mol) (a) change in FoldX total energy (b) change in electrostatic
interaction energy, and (c) change in number of contacts in the interface.

Sequence-based features
Among the sequence-based features, the difference in weighted
PSSM score between mutant and wildtype residues (pssm_weight
_diff) was found to be the most important feature, as reported
in a previous study [33] and confirmed by the ablation study.
It signifies the extent of change introduced by the mutation in
terms of evolutionary conservation at the position of interest.
Analysis of the SHAP plot indicates that higher “pssm_weight_diff”
tends to yield negative SHAP values, implying that mutating
a less conserved residue to more conserved residues leads to
increased binding affinity. Conversely, lower “pssm_weight_diff”
values are associated with positive SHAP values, indicating
decreased binding affinity. This highlights the significance of
conservation in predicting the impact of mutations on protein
binding affinity.

Other sequence-based features such as buriedness and long-
range nonbonded energy were also key for predicting the effect of
mutations on binding affinity.

Discrimination of high- and low-affinity
mutation
We attempted to utilize the predicted ��G values for discrimi-
nating high- and low-affinity mutations in the MP–protein com-
plexes. We classified the mutations as increasing (��G < 0) and
decreasing (��G ≥ 0) affinity [8]. The classification performance
revealed that the developed model achieved a sensitivity of 81%
and a specificity of 80%, with an overall accuracy of 80%.

Comparison of prediction performance with
existing methods
We initially employed the simple average assignment method [34]
to predict binding affinity changes upon mutation. This method
involved averaging affinities within mutation groups (e.g. Ala to
Val) and assigning the same average affinity to all mutations
within each group. It yielded a slightly lower MAE (0.7 kcal/mol)
than our ML model (0.73 kcal/mol). However, upon further investi-
gation, we found that the average assignment method resulted in
an MAE of zero for mutations with only one data point (n = 71),
limiting its ability to capture individual mutation effects. After
removing them, the MAE increased to 0.77 kcal/mol in training
and 1.41 kcal/mol in the jack-knife test. Additionally, for proteins
with a greater number of mutations (>5), we observed that the
MAE is 1.13 kcal/mol in the jack-knife test, while our method
showed an MAE of 0.70 kcal/mol. Thus, our model addresses
the limitations and outperforms the average assignment method,
resulting in a more accurate prediction.

We assessed our method by comparing its performance with
existing ML-based methods including Mcsm-PPI2 [9], SAAMBE-
3D [12], and SAAMBE-SEQ [13], as well as deep learning–based
methods such as GeoPPI [14], and DDMut-PPI [16], with the results
shown in Table 1 and Supplementary Figure S9. The analysis
revealed that our method achieved an MAE of 0.77 kcal/mol in
predicting ��G, outperforming other methods, which showed an
MAE of ≥1 kcal/mol. Additionally, while these methods exhibited
correlations in the range of 0.4–0.7, our method demonstrated a
superior correlation of 0.85. The improved performance of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae598#supplementary-data
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Figure 6. Structure of SECRET/CX3CL1 complex (3ONA), where (a) Arg 44 – Asp 167, and (b) Arg 47 – Asp 310 and Arg 47 – Glu 169, form electrostatic
interactions in the interface.

Table 1. Comparative evaluation of performance with existing
methods on the blind dataset.

Method r MAE (kcal/mol)

mCSM-PPI2 0.67 1.12
SAAMBE-3D 0.38 1.68
SAAMBE-SEQ 0.43 1.51
DDMut-PPI 0.74 0.96
GeoPPI 0.53 1.28
MPA-MutPred (our work) 0.85 0.77

method can be due to the fact that it is specifically designed
for mutations in MP–protein complexes, while others are for
protein–protein complexes in general. Our model incorporates
a unique combination of both structure- and sequence-based
features that specifically capture the biophysical properties of
MP interfaces.

We also attempted to compare the performance with MPA-Pred
by predicting the wild-type and mutant �G values for the MP
complexes and then calculating ��G using Equation (1). However,
the average MAE obtained with MPA-Pred is >2 kcal/mol when
compared to the present method, which is 0.77 kcal/mol. This
result indicates that our method, tailored specifically for assess-
ing binding affinity changes due to mutations in MP complexes,
performs better than MPA-Pred.

Case study: SECRET/CX3CL1 complex
The SECRET domain in complex with the chemokine CX3CL1
plays a critical role in the immune evasion strategy of the
viruses causing smallpox [35]. Figure 6 shows the structure
of SECRET/CX3CL1 complex (3ONA). Mutating the charged
residue Arg 44 to Ala (R44A) results in an experimental ��G
of 1.88 kcal/mol, which our method predicted as 1.56 kcal/mol,
demonstrating a close alignment with the experimental value.
Positive ��G indicates that the mutation has caused a decrease
in the binding affinity. A careful analysis of the structure revealed
that there is electrostatic interaction between Arg 44 and Asp
167 in the wild type, which is lost in the mutant structure,
which is Ala 44. Also, the mutation caused the relative ASA to
be more than the wild type, reducing the binding affinity. For
the R47A mutation, with an experimental ��G of 2.36 kcal/mol,
our method estimated the ��G to be 2.14 kcal/mol, showing a
deviation of 0.21 kcal/mol. This mutation also led to a significant
reduction in binding affinity, highlighting the critical role of
salt–bridge interactions in the formation of the complex. For
the reverse mutation A47R, our method predicted the ��G as
−1.72 kcal/mol. The combination of the selected parameters likely

enabled accurate predictions of the ��G, with deviations within
1 kcal/mol.

Prediction on the web
MPA-MutPred is available as a free and user-friendly web server,
accessible at https://web.iitm.ac.in/bioinfo2/MPA-MutPred/. To
submit a prediction job, users need to provide the MP complex
structure by either entering a valid PDB ID or uploading a PDB file.
Users also have to provide the interacting chains and mutation
information. The output page predicts and displays the ��G
value. The tutorials page on the web server provides prediction
examples and instructions for the supported input file formats.

Conclusions
This study introduces a novel method for predicting the mutation-
induced changes in the binding affinity of MP–protein complexes.
Breaking from conventional approaches, our method harnesses
the strengths of both linear and nonlinear models, potentially
leading to a more robust model for predicting the ��G. While
MLR explicitly identifies informative features, a nonlinear model
helps to capture complex relationships between the features
to make more accurate predictions. This novel approach holds
significant promise in the realm of interpretable artificial intel-
ligence by achieving a balance between prediction accuracy and
interpretability.

Our extensive analysis of the features revealed that change in
the stability of the complex, conservation of the site, electrostatic
interaction, relative solvent accessibility, and interface contacts
are crucial for accurately predicting the binding affinity in MP
complexes. The method achieved a correlation of 0.75 and an MAE
of 0.73 kcal/mol in the jack-knife test. In the test set, it achieved
a higher correlation of 0.85 and an MAE of 0.77 kcal/mol for pre-
dicting changes in binding free energy caused by mutations. While
the method has demonstrated a good performance, it has few
limitations, which is mainly the scarcity of experimental affinity
data across diverse mutations, with some mutation types having
none or few data points. The under-representation of certain
mutation types in our dataset may impact the generalizability of
the model. This issue could be addressed with the availability of
more representative mutation data in the future.

Further, we also developed a web server for ��G prediction
in MP complexes, designed to assist with large-scale analyses.
We believe that our work will serve as a useful resource for
understanding the relationship between changes in binding affin-
ity and disease-causing mutations, elucidating the mechanisms
underlying specific diseases, and thereby aiding in targeted drug
design.

https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
https://web.iitm.ac.in/bioinfo2/MPA-MutPred/
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Key Points

• Developed a novel machine-learning approach for pre-
dicting mutation-induced changes in membrane protein
binding affinities.

• The method harnesses the strengths of both linear and
nonlinear models, leading to a more robust model for
prediction.

• Changes in the stability of the complex, conservation
score, electrostatic interaction, relative solvent accessi-
bility, and interface contacts are important for predic-
tion.

• Our method achieved a correlation of 0.75 and an MAE
of 0.73 kcal/mol in the jack-knife test.

• Developed a web server for predicting the ��G in MP
complexes for large-scale analysis.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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