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Abstract
We study compactness of product of Toeplitz operators with symbols continuous on
the closure of the polydisc in terms of behavior of the symbols on the boundary. For
certain classes of symbols f and g, we show that T f Tg is compact if and only if
f g vanishes on the boundary. We provide examples to show that for more general
symbols, the vanishing of f g on the whole polydisc might not imply the compactness
of T f Tg . On the other hand, the reverse direction is closely related to the zero product
problem for Toeplitz operators on the unit disc, which is still open.
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1 Introduction

Let� be a bounded domain inCn . The Bergman space A2(�) consists of all holomor-
phic functions on � that are square integrable with respect to the Lebesgue volume
measure dV . The orthogonal projection P : L2(�) → A2(�) is known as the
Bergman projection. For a boundedmeasurable function f on�, the Toeplitz operator
T f : A2(�) → A2(�) is defined as

T f h = P( f h)
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for h ∈ A2(�). We call f the symbol of T f .
There is an extensive literature on the study of Toeplitz operators on various

domains. In this paper, we are particularly interested in the case the domain is the poly-
disc and compactness of product of Toeplitz operators whose symbols are continuous
up to the boundary.

A classical approach to compactness of Toeplitz operators involves the Berezin
transform. For finite sum of finite products of Toeplitz operators on the Bergman space
of the unit disc, theAxler–ZhengTheorem [1, Theorem2.2] characterizes compactness
in terms of the behavior of the Berezin transform of the operator. In higher dimensions,
the Axler–Zheng Theorem is extended to the case of the polydisc as seen in [2] and
[3, p. 232], and the unit ball as shown in [4, Theorem 9.5]. Recently, there have been
a few generalizations of this result in different directions. See, for instance, [5–8].

In this paper, we study compactness of products of Toeplitz operators in terms of
the behavior of the symbols on the boundary. More specifically, we would like to
characterize functions f , g that are continuous on Dn such that T f Tg is compact.

Coburn [9, Lemma 2] showed that on the Bergman space over unit ball B, for f a
continuous function on B, the Toeplitz operator T f is compact if and only if f = 0 on
bB. Furthermore, [9, Theorem1] established a∗-isomorphismσ : τ(B)/K → C(bB)

satisfying
σ(T f + K ) = f |bB,

where τ(B) is the Toeplitz algebra generated by {Tϕ : ϕ ∈ C(B)} andK is the ideal of
compact operators on A2(B). As a consequence, we see that for f1, . . . , fN ∈ C(B),
the product T f1 · · · T fN is compact if and only if the product f1 · · · fN = 0 on bB.

On the polydisc Dn , the first author [10] showed that, in the context of weighted
Bergman spaces, for f ∈ C(Dn), the Toeplitz operator T f is compact if and only if
f vanishes on bDn , the (topological) boundary of Dn . Generalizing this result, the
second and the third authors in [11] proved that compactness of the Toeplitz operator
with a symbol continuous on the closure of a bounded pseudoconvex domain in C

n

with Lipschitz boundary is equivalent to the symbol vanishing on the boundary of the
domain.

Motivated by Coburn’s aforementioned result, one may expect that the necessary
and sufficient condition for T f Tg to be compact is that f g vanishes on bDn . However,
we shall see in our results and examples that while the above statement holds for a
certain class of symbols, sufficiency is false in general. On the other hand, necessity
is closely related with the famous “zero product problem” in the theory of Toeplitz
operators on the unit disc, which is still wide open.

2 Main Result

Let T = ∑N
j=1 T f j,1 · · · T f j,m j

be a finite sum of finite products of Toeplitz operators

with f j,k ∈ C(D). Coburn’s aforementioned result implies that compactness of the
operator T on A2(D) is equivalent to

∑N
j=1 f j,1 · · · f j,m j = 0 on the circle. Therefore,

throughout the paper we will assume that n ≥ 2 as the case n = 1 is well understood.
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Before we state our results, we define the restriction operator Rk,ξ : C(Dn) →
C(Dn−1) for ξ ∈ T and k = 1, . . . , n as follows.

R1,ξ f (z1, . . . , zn−1) = f (ξ, z1, . . . , zn−1),

Rn,ξ f (z1, . . . , zn−1) = f (z1, . . . , zn−1, ξ),

and
Rk,ξ f (z1, . . . , zn−1) = f (z1, . . . , zk−1, ξ, zk, . . . , zn−1)

for 2 ≤ k ≤ n − 1 and f ∈ C(Dn).
In our main result, we give a characterization of compactness of the finite sum of

finite products of Toeplitz operators in terms of the vanishing of the operator restricted
to the polydiscs in the boundary. We recall that bDn consists of all z = (z1, . . . , zn) ∈
Dn such that |z j | = 1 for some j .

Theorem 1 Let T = ∑N
j=1 T f j,1 · · · T f j,m j

be a finite sum of finite products of Toeplitz

operators on A2(Dn) for f j,k ∈ C(Dn) with n ≥ 2. Then T is compact on A2(Dn) if
and only if

N∑

j=1

TRk,ξ f j,1 · · · TRk,ξ f j,m j
= 0

on A2(Dn−1) for all ξ ∈ T and 1 ≤ k ≤ n.

As an immediate corollary we get the following.

Corollary 1 Let f j ∈ C(Dn) for 1 ≤ j ≤ m. Assume that for each ξ ∈ T and
1 ≤ k ≤ n there exists j such that Rk,ξ f j = 0 on D

n−1. Then T fm · · · T f1 is compact
on A2(Dn).

3 Applications

Let ϕ and ψ be two functions in C(D). We define f (z, w) = ϕ(w) and g(z, w) =
ψ(w) for z, w ∈ D. Then for any ξ ∈ T,

R1,ξ f (w) = f (ξ, w) = ϕ(w), R1,ξ g(w) = g(ξ, w) = ψ(w) for w ∈ D

and
R2,ξ f (z) = ϕ(ξ), R2,ξ g(z) = ψ(ξ) for z ∈ D.

By Theorem 1, the product T f Tg is a compact operator on A2(D2) if and only if
TϕTψ = 0 on A2(D) and ϕ(ξ)ψ(ξ) = 0 for all ξ ∈ T. Since the second condition
is actually a consequence of the first, we conclude that for such f and g, the product
T f Tg is compact on A2(D2) if and only if TϕTψ = 0 on A2(D), which is equivalent
to T f Tg = 0 on A2(D2).
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Example 1 Let

ϕ(w) =
{
1 − 2|w| for 0 ≤ |w| ≤ 1

2

0 for |w| > 1
2 ,

and

ψ(w) =
{
0 for 0 ≤ |w| ≤ 1

2

2|w| − 1 for |w| > 1
2 .

Using polar coordinates, one can check that both operators Tϕ and Tψ are diagonal-
izable with respect to the standard orthonormal basis and their eigenvalues are all
strictly positive. Hence TϕTψ �≡ 0 on A2(D). On the other hand, ϕψ = 0 on D. Then

for f (z, w) = ϕ(w) and g(z, w) = ψ(w), we have f g = 0 on D2 but T f Tg is not
compact on A2(D2) as TϕTψ �≡ 0. This example shows that the vanishing of f g on

bD2 (or even on D2) does not imply the compactness of T f Tg .

Example 2 Take f as in Example 1 and define

g(z, w) = ϕ(z) + ψ(w).

Then f g is not identically zero on D2 because f (0, 0) = g(0, 0) = 1 and f g = 0 on
bD2. Yet, by Theorem 1, the product T f Tg is not compact since for ξ ∈ T,

TR1,ξ f TR1,ξ g = TϕTψ

is not the zero operator on A2(D).

Remark 1 From the previous examples we see that f g = 0 on bD2 is not a sufficient
condition for the compactness of T f Tg . Is it a necessary condition? It turns out this
question is related to the zero product problem for Toeplitz operators on the disc. More
specifically, as in Example 1, we see that with f (z, w) = ϕ(w) and g(z, w) = ψ(w),
if the product T f Tg is compact on A2(D2), then TϕTψ = 0 on A2(D) (which gives
ϕψ = 0 on T). However, it is not known if this condition implies that ϕψ = 0 on D.
For ξ ∈ T and z, w ∈ D, we have f (ξ, w)g(ξ, w) = ϕ(w)ψ(w) and f (z, ξ)g(z, ξ) =
ϕ(ξ)ψ(ξ). So f g = 0 on bD2 if and only if ϕψ = 0 on D.

In Proposition 1 below, we show that if the symbols are harmonic along the discs in
the boundary, then we have necessary and sufficient conditions for the compactness of
the product of two Toeplitz operators. A function f ∈ C2(Dn) is said to be n-harmonic
if

� j f = 4
∂2 f

∂z j∂z j
= 0,

for all j = 1, 2, . . . , n. That is, f is harmonic in each variable separately [12, pg. 16].

Proposition 1 Let f , g ∈ C(Dn) (with n ≥ 2) such that for ξ ∈ T, and 1 ≤ k ≤ n,
the functions Rk,ξ f and Rk,ξ g are (n − 1)-harmonic on Dn−1. Then T f Tg is compact
if and only if f g = 0 on bDn.
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We note that in Example 1, both f and g depend on the same single variable.
In Proposition 2 below, we give a characterization when the symbols are product of
single-variable functions.

Proposition 2 Let T = ∏M
k=1 T fk be a finite product of Toeplitz operators on A2(Dn)

such that fk(z) = ∏n
j=1 f j,k(z j ) for f j,k ∈ C(D) and z = (z1, . . . , zn) ∈ D

n. Let

F = ∏M
k=1 fk . Then the following statements hold.

(i) If T is a nonzero compact operator, then F = 0 on bDn.
(ii) If F = 0 on bDn and F is not identically zero on D

n, then T is compact.

Remark 2 We do not know whether (i) in Proposition 2 still holds in the case T is the
zero operator. This is closely related to the zero product problem. More specifically,
consider f (z, w) = ϕ(w) and g(z, w) = ψ(w), where ϕ,ψ ∈ C(D). Then T =
T f Tg = 0 on A2(D2) if and only if TϕTψ = 0 on A2(D). On the other hand, F =
f g = 0 on bDn if and only if ϕψ = 0 on D. It is still an open problem whether
TϕTψ = 0 on A2(D) implies that ϕψ = 0 on D.

Remark 3 The conclusion of (ii) in Proposition 2 does not hold if F is identically zero
on D

n . Indeed, the functions f and g in Example 1 are of the type considered here
and F = f g = 0 on D2 but T f Tg is not compact on A2(D2).

In the proposition below, we show that when all but at most one of the symbols
are polynomials, compactness of a Toeplitz product on A2(D2) is equivalent to the
vanishing of the product of the symbols on bD2. For this result, we need to restrict to
dimension two. It would be interesting to extend the result to all n ≥ 2. See Remark
4.

Proposition 3 Let f1, . . . , fM and g1, . . . , gN be polynomials in z, w and z, w, and
h ∈ C(D2). Then T f1 · · · T fM ThTg1 · · · TgN is compact on A2(D2) if and only if

f1 · · · fMhg1 · · · gN = 0 on bD2.

4 Proofs

Let BT (p) denote the Berezin transform of a bounded linear operator T : A2(Dn) →
A2(Dn) at p ∈ D

n . That is,
BT (p) = 〈T kp, kp〉

where

kp(z) = K (z, p)√
K (p, p)

is the normalized Bergman kernel of Dn .
Wewill need the following lemmawhose proof is contained in the proof of Theorem

1 in [13]. We provide a sketch of the proof here for the convenience of the reader. We
note that B f denotes BT f whenever f is a bounded function and we use the following
notation: z′ = (z2, . . . , zn) ∈ C

n−1 for z = (z1, . . . , zn) ∈ C
n . For functions h1
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defined onD and h2 defined onDn−1, we use h1h2 to denote the function h1(z1)h2(z′)
on Dn .

Lemma 1 Suppose n ≥ 2 and ψ ∈ C(Dn). Let q = (ζ, q ′) ∈ T × Dn−1 and define
ψζ (z) = ψ(ζ, z′) for z ∈ D

n.

(i) If {h p : p ∈ D
n} is a bounded set in L2(Dn−1), then

lim
p→q

∥
∥(ψ − ψζ )k

D

p1h p
∥
∥ = 0.

(ii) If ψ1, . . . , ψv ∈ C(Dn) are functions independent of z1 and W is any bounded
operator on L2(Dn), then

lim
p→q

∥
∥WTψ−ψζ Tψ1 · · · Tψvkp

∥
∥ = 0.

Proof (i) Let ε > 0 be given. By the uniform continuity of ψ , there exists δ > 0 such
that for all z′ ∈ D

n−1,

|ψ(z1, z
′) − ψξ (z1, z

′)| <
ε

sup{‖h p‖L2(Dn−1)} + 1
whenever |z1 − ξ | < δ.

Then,

‖(ψ − ψξ )k
D

p1h p‖2 = ‖(ψ − ψξ )k
D

p1h p‖2L2({z∈Dn :|z1−ξ |<δ})
+ ‖(ψ − ψξ )k

D

p1h p‖2L2({z∈Dn :|z1−ξ |≥δ})
≤ ε2 + π‖h p‖2L2(Dn−1)

‖(ψ − ψξ )k
D

p1‖2L∞({z∈Dn :|z1−ξ |≥δ}).

However,
sup

{∣
∣
∣kDp1(z1)

∣
∣
∣ : |z1 − ξ | ≥ δ

}
→ 0 as p1 → ξ.

Then, lim supp→q ‖(ψ −ψξ )kDp1h p‖ ≤ ε. Since ε > 0 was arbitrary, we conclude
that

lim
p→q

∥
∥(ψ − ψζ )k

D

p1h p
∥
∥ = 0.

(ii) We note that kp = kDp1k
D
n−1

p′ for p = (p1, p′). We define

h p = Tψ1 · · · Tψvk
D
n−1

p′ for p ∈ D
n .

Since each ψ j is independent of z1, h p is independent of z1 and hence it can be
considered as an element of L2(Dn−1). Note that the set {h p : p ∈ D

n} is bounded
by ‖Tψ1 · · · Tψv‖. Furthermore, we have Tψ1 · · · Tψvkp = kDp1h p. It follows that

∥
∥WTψ−ψζ Tψ1 · · · Tψvkp

∥
∥ ≤ ‖W‖ · ∥∥(ψ − ψζ )k

D

p1h p
∥
∥,

which, by (i), converges to zero as p → q. ��
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Proof of Theorem 1 We first make an observation. If ϕ is a bounded function onDn−1,
then Tϕ , while initially defined on A2(Dn−1), can be naturally considered as a Toeplitz
operator with symbol E1ϕ(z1, z′) = ϕ(z′) acting on A2(Dn). This will not create any
confusion due to the fact that for h ∈ A2(Dn) independent of z1, the function TE1ϕh
is also independent of z1 and (TE1ϕh)(z) = (Tϕh)(z′) for all z = (z1, z′) ∈ D

n .
Let ξ ∈ T. For each j and m j , the function f j,m j can be written as f j,m j =

( f j,m j − R1,ξ f j,m j ) + R1,ξ f j,m j . We then expand T = ∑N
j=1 T f j,1 · · · T f j,m j

as

T =
N∑

j=1

(

TR1,ξ f j,1 · · · TR1,ξ f j,m j
+ T f j,1−R1,ξ f j,1TR1,ξ f j,2 · · · TR1,ξ f j,m j

+ T f j,1

·T f j,2−R1,ξ f j,2TR1,ξ f j,3 · · · TR1,ξ f j,m j
+ · · · + T f j,1T f j,2 · · · T f j,m j−1T f j,m j

−R1,ξ f j,m j

)

=
N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
+

N∑

j=1

(

T f j,1−R1,ξ f j,1TR1,ξ f j,2 · · · TR1,ξ f j,m j
+ T f j,1

·T f j,2−R1,ξ f j,2TR1,ξ f j,3 · · · TR1,ξ f j,m j
+ · · · + T f j,1T f j,2 · · · T f j,m j−1T f j,m j

−R1,ξ f j,m j

)

.

Note that in the second sum, each summand has the form considered in Lemma 1(ii).
We then conclude that for any q = (ξ, q ′) ∈ T × Dn−1,

lim
p→q

∥
∥
∥T kp −

N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
kp

∥
∥
∥ = 0. (1)

Now suppose that T is compact. Fix p′ ∈ D
n−1. Since k(p1,p′) → 0weakly as p1 → ξ ,

the compactness of T implies that ‖T k(p1,p′)‖ → 0 as p1 → ξ . Equation (1) then
gives

lim
p1→ξ

∥
∥
∥

N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
k(p1,p′)

∥
∥
∥ = 0. (2)

Since

N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
k(p1,p′) =

N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
(kDp1k

D
n−1

p′ )

= kDp1 ·
N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
kD

n−1

p′

and ‖kDp1‖ = 1 for all p1, (2) implies that

N∑

j=1

TR1,ξ f j,1 · · · TR1,ξ f j,m j
kD

n−1

p′ = 0.
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Because p′ was arbitrary, it follows that
∑N

j=1 TR1,ξ f j,1 · · · TR1,ξ f j,m j
is the zero

operator on A2(Dn−1). Applying the same method for other values of k, we have

N∑

j=1

TRk,ξ f j,1 · · · TRk,ξ f j,m j
= 0

on A2(Dn−1) for 1 ≤ k ≤ n and all ξ ∈ T.
We now prove the converse. Let q = (ξ, q ′) ∈ bDn with ξ ∈ T and q ′ ∈ Dn−1.

Since it is assumed that
∑N

j=1 TR1,ξ f j,1 · · · TR1,ξ f j,m j
= 0, equation (1) implies that

limp→q ‖T kp‖ = 0. As a consequence,

lim
p→q

BT (p) = lim
p→q

〈T kp, kp〉 = 0.

The same argument is applicable for all q ∈ bDn . By Axler–Zheng Theorem for Dn

([2] and [3, p. 232]), we conclude that T is compact on A2(Dn).

Proof of Corollary 1 We assume that for each ξ ∈ T and 1 ≤ k ≤ n there exists j
such that Rk,ξ f j = 0. Then TRk,ξ fm · · · TRk,ξ f1 = 0 on A2(Dn−1). Hence, Theorem 1
implies that T fm · · · T f1 is compact on A2(Dn).

Proof of Proposition 1 To prove the forward direction, we first use Theorem 1 to con-
clude that the operator TRk,ξ gTRk,ξ f is zero on A2(Dn−1) for all ξ ∈ T and 1 ≤ k ≤ n.
Since the symbols Rk,ξ f and Rk,ξ g are (n−1)-harmonic onDn−1, we apply [14, The-
orem 1.1] (or [15, Corollary 2] in the case n = 2) to conclude that either Rk,ξ f = 0
or Rk,ξ g = 0. Then f g = 0 on bDn as desired.

To prove the converse we argue as follows. For each 1 ≤ k ≤ n and ξ ∈ T, since
both Rk,ξ f and Rk,ξ g are (n − 1)-harmonic and their product is zero on Dn−1, either
Rk,ξ f = 0 or Rk,ξ g = 0. Then TRk,ξ gTRk,ξ f = 0 on A2(Dn−1) for all ξ ∈ T and
1 ≤ k ≤ n. Theorem 1 now implies that TgT f is compact.

Proof of Proposition 2 Wefirst prove (i). Assume that T is a nonzero compact operator.
Then by Theorem 1 when restricted on the first coordinate, for any ξ ∈ T,

0 =
M∏

k=1

TR1,ξ fk =
( M∏

k=1

f1,k(ξ)
) M∏

k=1

T f̃k

on A2(Dn−1), where f̃k(z2, . . . , zn) = f2,k(z2) · · · fn,k(zn). Since T is not the zero
operator, the second factor on the right hand side above is a nonzero operator. This
follows from the fact that T can be written as the product

( M∏

k=1

T f1,k

) · ( M∏

k=1

T f̃k

)
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where the first factor acts on functions in z1 and the second factor acts on functions in
z′ = (z2, . . . , zn). Hence,

∏M
k=1 f1,k(ξ) = 0. It follows that

F(ξ, z2, . . . , zn) =
M∏

k=1

fk(ξ, z2, . . . , zn) =
(

M∏

k=1

f1,k(ξ)

)⎛

⎝
n∏

j=2

M∏

k=1

f j,k(z j )

⎞

⎠ = 0

on T×D
n−1. The same argument applies to other coordinates and we have F = 0 on

bDn .
Next we prove (ii). Assume that F = ∏M

k=1 fk = 0 on bDn and F is not identically
zero on D

n . Choose q = (q1, . . . , qn) ∈ D
n such that fk(q) �= 0 for all k, which

implies that f j,k(q j ) �= 0 for all j and k. For any ξ ∈ T, since z = (ξ, q2, . . . , qn) ∈
bDn , we have

0 = F(z) =
( M∏

k=1

f1,k(ξ)
)

·
n∏

j=2

M∏

k=1

f j,k(q j ).

Because the second factor is nonzero, it follows that
∏M

k=1 f1,k(ξ) = 0. As a result,

M∏

k=1

TR1,ξ fk =
( M∏

k=1

f1,k(ξ)
) M∏

k=1

T f̃k = 0

on A2(Dn−1), where, as before, f̃k(z2, . . . , zn) = f2,k(z2) · · · fn,k(zn). The same
argument applies to other parts of bDn . Then Theorem 1 implies that T = ∏M

k=1 T fk
is compact on A2(Dn).

The proof of Proposition 3 hinges on several elementary facts about polynomials
that we describe below. We use C[z, z] to denote the vector space of all polynomials
in z and z.

The following lemma is well known. The proof follows from the fact that if a real
analytic function vanishes on a non-empty open set, it must be identically zero.

Lemma 2 Let f ∈ C[z, z] be not identically zero. Then the set

{z ∈ C : f (z) = 0}

has an empty interior.

Lemma 3 Let f ∈ C[z, z]. Assume that there exist infinitely many ξ ∈ T such that
f (ξ) = 0. Then there is a polynomial g ∈ C[z, z] such that f (z) = (1− |z|2)g(z). In
particular, f (ξ) = 0 for all ξ ∈ T.

Proof For non-negative integers s, t , we write

zs zt =
{

|z|2 s zt−s if t ≥ s,

|z|2t zs−t if t < s.
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As a result, there are integers m, M ≥ 0 and polynomials p j (for 0 ≤ j ≤ M) and q j

(for 0 ≤ j ≤ m) of a single variable such that

f (z) =
M∑

j=0

p j (|z|2)z j +
m∑

j=0

q j (|z|2)z j .

By the hypothesis, there exists infinitely many ξ ∈ T such that

M∑

j=0

p j (1)ξ
j +

m∑

j=0

q j (1)ξ
j = f (ξ) = 0.

This implies that p j (1) = q j (1) = 0 for each j . As a consequence, all p j (r) and
q j (r) are divisible by 1− r . We then conclude that f (z) is divisible by 1− |z|2, from
which the conclusion of the lemma follows.

Lemma 4 Let f (z, w) be a polynomial in z, w, z, w and let h ∈ C(D2). Assume that
f h = 0 on bD2. Then f |

T×D
= 0 or h|

T×D
= 0 and f |

D×T
= 0 or h|

D×T
= 0.

Proof Assume that h does not vanish identically on T × D. By continuity, there exist
a non-empty arc J ⊆ T and a non-empty open set V ⊆ D such that h(ξ, w) �= 0 for
all ξ ∈ J and w ∈ V . It follows that f (ξ, w) = 0 for all such ξ and w. For each
ξ ∈ J , applying Lemma 2, we conclude that f (ξ, w) = 0 for all w ∈ D. Then for
each w ∈ D, since f (ξ, w) vanishes on J (which is an infinite set), Lemma 3 implies
that f (ξ, w) = 0 for all ξ ∈ T. Therefore, f vanishes identically on T×D. The proof
for D × T is similar.

Lemma 5 [[16, Corollary 1.8]] Supposeϕ1, . . . , ϕM andψ1, . . . , ψN are polynomials
of z, z in D and g ∈ L2(D). If Tϕ1 · · · TϕM TgTψ1 · · · TψN = 0 on A2(D), then one of
the symbols must be zero.

Proof of Proposition 3 Assume that T f1 · · · T fM ThTg1 · · · TgN is compact on A2(D2),
then by Theorem 1,

TR1,ξ f1 · · · TR1,ξ fM TR1,ξ hTR1,ξ g1 · · · TR1,ξ gN = 0

on A2(D) for all ξ ∈ T. By Lemma 5, one of R1,ξ f1, . . . , R1,ξ fM , R1,ξh, and
R1,ξ g1, . . . , R1,ξ gN is a zero function onD. Thus, f1 · · · fMhg1 · · · gN = 0 onT×D.
Similar argument works for D × T. Therefore, f1 · · · fMhg1 · · · gN = 0 on bD2.

For the converse, by Lemma 4, one of the symbols is identically zero on T × D. It
then follows that

TR1,ξ f1 · · · TR1,ξ fM TR1,ξ hTR1,ξ g1 · · · TR1,ξ gN = 0.

Similarly,
TR2,ξ f1 · · · TR2,ξ fM TR2,ξ hTR2,ξ g1 · · · TR2,ξ gN = 0.
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Therefore, by Theorem 1, we conclude that T f1 · · · T fM ThTg1 · · · TgN is compact on
A2(D2).

Remark 4 It is desirable to generalize Proposition 3 toDn for all n ≥ 2.While Lemmas
2, 3 and 4 remain true for all n, Lemma 5 has only been known for the disc. In order
to extend Proposition 3 to all n ≥ 2, one needs to prove a several-variable version of
Lemma 5. Some partial results have been obtained in the literature. For example, the
main results of [17] imply that Lemma 5 holds in several variables when g = 1 or
when all ϕ j , ψk are monomials. As a result, Proposition 3 holds on D

n for all n ≥ 2
in the case h = 1, or in the case all f j and gk are monomials.
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