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Based on the experimentally reported stable and conductive two-dimensional covalent organic 
frameworks with copper phthalocyanine (CuPc) as building block and cyan substituted phenyl as 
connector (CuCOF-CN) as an electrocatalyst for CO2 reduction reaction (RR), first principle calculations 
were performed on CuCOF-CN and its analog with the CN being replaced by H (CuCOF). Comparatively 
studied on the crystal structures, electronic properties, and CO2RR performance of the two catalysts 
found that CuCOF has reduced crystal unit size, more positive charge on Cu and CuPc segments, 
smaller band gap, and lower reaction barrier for CO2 RR than CuCOF-CN. CuCOF is proposed to be good 
potential electrocatalyst with good environment friendliness. The substituent effect and structure-
property-performance relationship would help for designing and fabricating new electrocatalysts.
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Increasing energy crisis and global warming problems from carbon dioxide (CO2) emission have been 
caused by the utilization of non-renewable fossil fuels and mankind’s living requirements1. Reducing the 
CO2 concentration in the atmosphere therefore is highly desirable by transferring CO2   to other sustainable 
energies2–6. The thermodynamically stable molecule CO2 is highly inert and the electrochemical CO2 reduction 
(CO2RR) process is kinetically sluggish requiring very high potential (−1.90V vs.NHE)7,8 Many different kind 
of materials have been developed to seek highly efficient, selective and stable electrocatalyst that can reduce the 
activation energy barrier and expedite the kinetics of CO2RR9–11. Cheap transition metal copper-based catalysts 
had many advantages and were widely developed12–17.

Among the catalysts for CO2 RR, N4-macrocyclic complexes based molecular electrocatalysts including 
metal porphyrins, phthalocyanines and their related derivatives have emerged as the promising candidates18–22. 
To solve the problem of the relatively high over-potential due to the poor conductivity and sluggish electron 
transfer22, efforts have been tried to either coupling metal phthalocyanines or porphyrins with high conductive 
carbon nanomaterials or designing highly conjugated system20,22,23. A number of two-dimensional (2D) 
conductive covalent-organic frameworks (COFs) with extensive planar π-conjugation have been shown high 
electrical conductivity and developed for electrocatalysts24–27.

Series of metal phthalocyanine based 2D-COFs have been developed recently. Liao et al. reported a stable and 
conductive 2D-COF with copper phthalocyanine as building block and cyan substituted phenyl as connector 
(CuCOF-CN) in 202228. CuCOF-CN show good electrocatalytic performance for CO2 RR to acetate with a 
single-product Faradaic efficiency (FE) of 90.3(2)% at − 0.8  V (vs. RHE) and a current density of 12.5  mA 
cm−2 in 0.1 M KHCO3solution. They also performed theoretical calculation to explain why CuCOF-CN show 
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different catalysis property from other Cu-based catalyst including copper porphyrin and single-atom copper 
catalyst. However, the synthesis of CuCOF-CN was time-costing and not economy (it was synthesized by a 
condensation reaction at 150 ℃ for 3 days under vacuum). The crystal structures of the CuCOF-CN was also 
not discussed. In addition, the phenyl connector contain two -CN group, which is extremely toxic substance 
and has great harm to the environment and to human beings. Jiang et al. developed a solvent-free, facile, and 
fast synthesis strategy for fabricating two fully conjugated Pc-based COFs under ionothermal synthesis for 8 h29. 
One of the COF reported by Jiang et al. show very similar structure as CuCOF-CN reported by Liao et al.28, 
with the center metal of CuCOF-CN being changed to zinc and the CN substituents replaced with H (ZnCOF). 
Despite that the zinc center was not good candidate for catalyst, these COFs show high-performance K+storage 
in potassium-ion batteries in terms of the large reversible capacities, excellent rate performance, and long-term 
cycling stability. Recently and during the preparation of the present work, Chen et al. further improved the 
synthesis strategy of 2D-COF and synthesized series metal (M = Fe, Co, Ni, Cu, Zn) phthalocyanine based 
COFs (MCOFs) by a facile trace-solvent-assisted one-pot self-condensation method30. Among these MCOFs, 
NiCOF show excellent sensing properties for various analytes including neurotransmitters, organic pollutants, 
and heavy metal ions, with high sensitivity and low detection limit of 0.53 to 25.66 nM. However, the catalysis 
performance of these MCOFs were not reported though CuCOF-CN show good CO2 RR performance. The 
influence of CN substitution on crystal structure, electronic properties, and catalytic performance were not clear. 
Clarifying these questions with a theoretical prospective work would therefore have great significance.

To further clarify the structures and rule of CN on the CO2 reduction performance, in the present work, 
we comparatively studied the crystal structures, electronic properties, and CO2 RR performance of CuCOF-
CN and CuCOF through first principle calculations. The substituent effect and structure-property-performance 
relationship would help for designing and fabricating new electrocatalysts.

Computational methods
The initial crystal structures of CuCOF and CuCOF-CN were built with Device Studio program31. Device Studio 
program provides a number of functions for performing visualization, modeling and simulation. The first 
principle simulation were performed using DS-PAW software32integrated in Device Studio program. The PBE 
exchange-correlation functional33and D3BJ Van der Waals correction34 were chosen.

Results and discussion
Structures
Figure 1 shows the optimized crystal structures of CuCOF and CuCOF-CN. Their main structure parameters 
are tabulated in Table 1. Both CuCOF and CuCOF-CN are 2D planar layer structure without any deviation from 
the 2D plane. The crystals are both P4/mmm symmetry with a = b and α = β = γ = 90.0º. To avoid interactions 
between layers, the c-axis are set to 10.000 Å after involving the vacumm layer. The a and b values of CuCOF-

Fig. 1. Top (top) and side view (bottom) of the optimized crystal structures of CuCOF (left) and CuCOF-CN 
(right). (Red: O, gray: C, blue: N, white: H, coral: Cu).
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CN is somewhat longer than those of CuCOF (20.197 vs. 20.192 Å), indicating that the substitution of H on 
the phenyl connector in CuCOF with electron-withdrawing CN group slightly enlarge the cell size of the COF 
crystals. More detail, the Cu-N bonds and the width of phenyl ring of phthalocyanine and the neighbour C4O2 
ring all reduce, while the pyrrole ring of Pc and phenyl connector enlarge largely. In addition, CN substitution 
also induces the increase of height of phenyl connector. The different changes suggest that the electron density in 
the COF is redistributed due to the involving of electron-withdrawing CN groups in CuCOF-CN, which in turn 
would induce their different electrocatalytic performance.

Bader charge
The introduction of electron-withdrawing CN groups would induce the redistribution of electrons. Table  2 
shows the calculated Bader charge on each atom of CuCOF and CuCOF-CN as well as the change of Bader 
charge upon CN substitution. The H atoms of phenyl connector in CuCOF have Bader charge of 0.112 e, while 
the CN substituents in CuCOF-CN have Bader charge of −0.435 e. The Bader charge on C connected with H 
or CN changes from negative − 0.179 in CuCOF to positive 1.272 e in CuCOF-CN. The phenyl connector (in 
a or b direction) and its neighbour four O atoms in CuCOF totally contain Bader charge of −2.068 e. Since 
there are two connector in each crystal cell and the crystal is neutral, the remaining CuPc segment in CuCOF 
thus has Bader charge of 4.136 e. For CuCOF-CN, the Bader charge on each connector and CuPc segment 
increases to −2.452 and 4.904 e, respectively. These results indicate that electron transfer from CuPc segment to 
the connector and CN substitution on connector increases the electron transfer extent. Considering the Barder 
charge on Cu atom, Cu in CuCOF however has larger value than that in CuCOF-CN, 1.101 vs. 0.913 e. Large 
charge on Cu is advantage for CO2 RR reaction.

Band structure
Figure 2 shows the calculated projected band structure of CuCOF and CuCOF-CN between − 2 and 2 eV. The 
calculated Fermi energies of CuCOF and CuCOF-CN are − 3.04 and − 3.40 eV, respectively. The lower Fermi 
energy upon electron-withdrawing CN substitution is consistent with the common knowledge that electron-
withdrawing groups would lower the orbital energy for molecule. Worth noting that when aligning the Fermi 
energy of both CuCOF and CuCOF-CN to 0 eV, the bands of CuCOF-CN appear above the corresponding bands 
of CuCOF. For CuCOF, the band around 0 eV is mainly composed from the p orbital of N atoms and d orbital 
of Cu. The band around − 0.5 eV of CuCOF including the p orbital of both C and O atoms, while that below it 
is mainly from C p orbital. Band around − 1.5 eV have large contribution from O p orbital in addition to major 
content from C p orbital. The bands around − 1.7 eV are composed from p orbital of both C and N. Similarly, 
the conduction band around 0.7 eV are also composed from p orbital of both C and N atoms. The shape and 
composition of band structures of CuCOF-CN are very similar to those of CuCOF. Some new bands appear 
around 1.6 eV in CuCOF-CN, which are composed of p orbitals of C and N and may due to the contribution 
of the CN substituents. The band gap from conducting band bottom to valence band top for CuCOF is 0.69 eV, 
much smaller than the gap for CuCOF-CN (0.88 eV), indicating that the conductivity of CuCOF is better than 
CuCOF-CN. Good conductivity is advantage for improving the electrocatalytic performance.

Density of states
The projected density of states (PDOS) of CuCOF and CuCOF-CN are shown in Fig.  3. In line with the 
assignments in Band structure section, PDOS peak around 0 eV are mainly contributed from the Cu d orbital 
and N p orbital, while the other peaks are attributed from the p orbital of C, N, and O atoms. The PDOS peaks 
of CuCOF are stronger than those of CuCOF-CN, indicating CN substitution reduces the electron density in the 
range of −2 to 2 eV. Large electron density on CuPc segment is advantage for CO2RR reaction.

Parameter CuCOF CuCOF-CN

Symmetry group P4/mmm P4/mmm

a 20.192 20.197

b 20.192 20.197

c 10.000 10.000

α 90.0 90.0

β 90.0 90.0

γ 90.0 90.0

Cu-N 1.963 1.961

Width(Py) 2.195 2.197

Width(Ph of Pc) 2.381 2.373

Width(C4O2) 2.356 2.351

Width(Ph connector) 2.403 2.432

Height(Ph connector) 2.799 2.815

Table 1. Main structure parameters of the optimized crystal of CuCOF and CuCOF-CN (length in Å, angle in 
º).
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CuCOF CuCOF-CN Change of bader charge

Atomic number Element Bader charge Atomic number Element Bader charge

1 C 0.59784 1 C −0.34203 −0.93987

2 C 0.59784 2 C −0.33591 −0.93375

3 C 0.3899 3 C −0.34191 −0.73181

4 C 0.38819 4 C −0.33602 −0.72421

5 C 0.38819 5 C 0.67422 0.28603

6 C 0.3899 6 C 0.67433 0.28443

7 C 0.59785 7 C 0.67422 0.07637

8 C 0.59785 8 C 0.67433 0.07648

9 C 0.00882 9 C 0.64228 0.63346

10 C 0.00882 10 C 0.64225 0.63343

11 C 0.00882 11 C 0.64223 0.63341

12 C 0.00882 12 C 0.64228 0.63346

13 C 0.00882 13 C 0.64227 0.63345

14 C 0.00882 14 C 0.64223 0.63341

15 C 0.00882 15 C 0.64223 0.63341

16 C 0.00882 16 C 0.64226 0.63344

17 C −0.10487 17 C −1.00724 −0.90237

18 C −0.10487 18 C −0.09079 0.01408

19 C −0.10487 19 C −0.09079 0.01408

20 C 0.10195 20 C −1.00724 −1.10919

21 C 0.10196 21 C −1.00724 −1.1092

22 C 0.10196 22 C −0.09079 −0.19275

23 C 0.10196 23 C −1.00724 −1.1092

24 C −0.10487 24 C −0.09079 0.01408

25 C 0.59277 25 C −0.38101 −0.97378

26 C 0.39143 26 C −0.38116 −0.77259

27 C 0.59277 27 C −0.38116 −0.97393

28 C 0.39143 28 C −0.38101 −0.77244

29 C 0.59278 29 C 0.58038 −0.0124

30 C 0.39144 30 C 0.58022 0.18878

31 C 0.39144 31 C 0.58037 0.18893

32 C 0.59278 32 C 0.58022 −0.01256

33 C 0.99682 33 C 1.37397 0.37715

34 C 0.99682 34 C 1.37433 0.37751

35 C 0.99682 35 C 1.37397 0.37715

36 C 0.99682 36 C 1.37397 0.37715

37 C 0.99682 37 C 1.37436 0.37754

38 C 0.99682 38 C 1.37436 0.37754

39 C 0.99682 39 C 1.374 0.37718

40 C 0.99682 40 C 1.37436 0.37754

41 C −0.01794 41 C 1.2717 1.28964

42 C −0.01794 42 C 1.2717 1.28964

43 C −0.01793 43 C 1.27171 1.28964

44 C −0.01794 44 C 1.2717 1.28964

45 Cu 1.1009 49 Cu 0.9131 −0.1878

46 H 0.070138 50 H 0.356329 0.286191

47 H 0.07014 51 H 0.356392 0.286252

48 H 0.070142 52 H 0.356217 0.286075

49 H 0.070137 53 H 0.356631 0.286494

50 H 0.070138 54 H 0.356769 0.286631

51 H 0.070143 55 H 0.356355 0.286212

52 H 0.070143 56 H 0.356657 0.286514

53 H 0.070141 57 H 0.356594 0.286453

58 N −1.13474 62 N −1.35308 −0.21834

Continued

Scientific Reports |        (2024) 14:28300 4| https://doi.org/10.1038/s41598-024-79563-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


CO2 RR
Figure 4 shows the free energy diagram of CO2 RR on CuCOF and CuCOF-CN surface at U = 0 V. The structures 
of the main intermediates are given in Fig. 5. For both catalysts, the formation of *COOH is the rate determine 
step, with reaction energy of 1.75 and 1.78 eV for CuCOF and CuCOF-CN, respectively. The smaller reaction 
energy for CuCOF than CuCOF-CN indicates that changing CN groups to H is advantage for CO2 RR. The 
desorption of CO need very small energy of only 0.13 and 0.14 eV for CuCOF and CuCOF-CN, respectively. The 
smaller reaction energy for CO desorption in CuCOF comparing to CuCOF-CN is also advantage for the whole 
CO2 RR process. The different free energy of the intermediates for CuCOF and CuCOF-CN could be explained 
from the main structure parameter of the intermediates. The Cu-C distance of *CO2 for CuCOF is shorter than 
that for CuCOF-CN (Fig. 5), well explaining the better stability of the former than the latter. Similarly, the longer 
Cu-C distance of *CO for CuCOF than CuCOF-CN reasons the less stable fact for the former than the latter. 

Fig. 2. Projected band structure of CuCOF (red dot line) and CuCOF-CN (black line).

 

CuCOF CuCOF-CN Change of bader charge

Atomic number Element Bader charge Atomic number Element Bader charge

59 N −1.13474 63 N −1.35302 −0.21828

60 −1.13474 64 N −1.35304 −0.2183

61 N −1.13474 65 N −1.35295 −0.21821

62 −1.23937 66  N −1.49621 −0.25684

63 N −1.23937 67 N −1.49621 −0.25684

64 −1.23937 68  N −1.49621 −0.25684

65 N −1.23937 69 N −1.49621 −0.25684

66 O −1.05733 70 O −1.19894 −0.14161

67 O −1.05733 71 O −1.19894 −0.14161

68 O −1.05733 72 O −1.19894 −0.14161

69 O −1.05733 73 O −1.19894 −0.14161

70 O −1.05733 74 O −1.19894 −0.14161

71 O −1.05733 75 O −1.19894 −0.14161

72 O −1.05733 76 O −1.19894 −0.14161

73 O −1.05733 77 O −1.19894 −0.14161

54 H 0.111745 45 C 0.7974

55 H 0.111748 46 C 0.7974

56 H 0.111757 47 C 0.7974

57 H 0.111753 48 C 0.7974

78 58 −1.2327

79 59  N −1.23243

80 60 N −1.23239

81 61 N −1.23252

Table 2. Calculated bader charge (in e) on each atom of CuCOF and CuCOF-CN (see Fig. 1 for atomic label).
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Though the Cu-C length of *COOH for CuCOF is slightly longer than that of CuCOF-CN, the more positive 
charge of Cu in the former than the latter render CuCOF-COOH more stable than CuCOF-CN-COOH.

Conclusion
The crystal structures, electronic properties, and CO2RR performance of CuCOF and CuCOF-CN were 
comparatively studied through first principle calculations. CuCOF was found to have reduced crystal unit 
size, more positive charge on Cu, smaller band gap, and lower reaction barrier for CO2 RR, in comparing with 
CuCOF-CN. The good CO2 RR catalytic performance and lower poisonousness for CuCOF than CuCOF-CN 
renders it good potential electrocatalyst with good environment friendliness.

Fig. 3. Projected density of states of CuCOF (top) and CuCOF-CN (bottom).
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Fig. 4. The free energy diagram of CO2RR on CuCOF (black) and CuCOF-CN (red) at U = 0 V.
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Data availability
Data availability The data of this work including the input and output calculation files are available upon require-
ment from the corresponding authors.
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