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This study, for the first time, explores the integration of data science and machine learning for the 
classification and prediction of coronary artery calcium (CAC) scores. It focuses on tooth loss and 
patient characteristics as key input features to enhance the accuracy of classifying CAC scores into 
tertiles and predicting their values. Advanced analytical techniques were employed to assess the 
effectiveness of tooth loss and patient characteristics in the classification and prediction of CAC scores. 
The study utilized data science and machine learning methodologies to analyze the relationships 
between these input features and CAC scores. The research evaluated the individual and combined 
contributions of patient characteristics and tooth loss on the accuracy of identifying individuals at 
higher risk of cardiovascular issues related to CAC. The findings indicated that patient characteristics 
were particularly effective for tertile classification of CAC scores, achieving a classification accuracy of 
75%. Tooth loss alone provided more accurate predicted CAC scores with the smallest average mean 
squared error of regression and with a classification accuracy of 71%. The combination of patient 
characteristics and tooth loss demonstrated improved accuracy in identifying individuals at higher 
risk with the best sensitivity rate of 92% over patient characteristics (85%) and tooth loss (88%). The 
results highlight the significance of both oral health indicators and patient characteristics in predictive 
modeling and classification tasks for CAC scores. By integrating data science and machine learning 
techniques, the research provides a foundation for further exploration of the connections between 
oral health, patient characteristics, and cardiovascular outcomes, emphasizing their importance in 
advancing the accuracy of CAC score classification and prediction.
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The intersection between oral health and cardiovascular well-being has been a subject of growing interest in the 
medical and dental research communities1–9. Among various oral health indicators, tooth loss has emerged as a 
potential marker linked to systemic health conditions, including cardiovascular diseases10,11.

In an early investigation, Holmlund et al.12 presented a study with an extended follow-up period. Their 
aim was to explore whether various parameters of oral health exhibit an association with future mortality in 
distinct cardiovascular disorders. The finding highlighted a link between oral health and cardiovascular diseases, 
underscoring the suitability of the number of teeth as a meaningful indicator for oral health in this specific 
context.

Gao et al.13 found that periodontitis stands as a risk factor for coronary heart disease (CHD), establishing a 
positive correlation between the number of extracted teeth and CHD risk. Recognizing the significance of these 
factors in clinical assessments is crucial due to their association with cardiovascular risks.

Additional insights from Cheng et al.14 underscore a significant increase in the association between tooth loss 
and the risk of cardiovascular disease and stroke. Subgroup analyses revealed links, especially within Asian and 
Caucasian populations, and across both fatal and non-fatal cases. The study also identified a noteworthy dose-
response relationship between tooth loss and the risk of cardiovascular disease and stroke.
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Another study by De Angelis et al.15 highlighted that individuals with over 18 missing teeth face a 2.5 times 
greater risk of cardiovascular disease, which exhibits associations with Type 2 diabetes mellitus, underweight, 
and obesity. These findings affirm a connection between cardiovascular disease and oral health.

Beukers et al.16 contributed to the discourse by emphasizing tooth loss as an outcome of prevalent dental 
conditions, dental caries, and periodontitis, constituting 2% of the global burden of human diseases. The 
systematic review and meta-analyses conducted in this study demonstrated that a diminished number of teeth 
serves as a risk factor for atherosclerotic cardiovascular diseases and mortality.

Beyond tooth loss, patient characteristics play a pivotal role in cardiovascular risk assessment. Factors such 
as age, gender, body mass index (BMI), smoking habits, and comorbidities have been extensively studied in 
the context of cardiovascular health17. A meta-analysis by Wong et al.18 highlighted the multifactorial nature 
of cardiovascular risk, emphasizing the need to consider a spectrum of patient characteristics for accurate risk 
assessment. Research has sought to elucidate the intricate connections between tooth loss, patient characteristics, 
and CAC19.

CAC is a measure of the amount of calcium in the walls of the coronary arteries, which supply blood to 
the heart muscle20. The presence of calcium is an indicator of atherosclerosis, a condition characterized by 
the buildup of plaque that can lead to coronary heart disease (CHD) and potentially to heart attacks or other 
cardiovascular events. The CAC score, derived from a specialized CT scan, quantifies the amount of calcified 
plaque in the coronary arteries. This score is a valuable tool for assessing an individual’s risk of developing 
CHD21,22. Higher CAC scores are strongly associated with a greater risk of CHD and cardiovascular mortality, 
making it an important predictor for clinical outcomes.

Classifying CAC scores into tertiles and predicting these values are crucial because they provide a stratified 
risk assessment23,24. This stratification helps in identifying individuals at varying levels of risk, enabling tailored 
preventive and therapeutic strategies. By enhancing the precision of CAC score classification and prediction, 
this study aims to improve risk stratification, which can lead to more personalized patient care. This, in turn, can 
result in better management of CHD, potentially reducing the incidence of adverse cardiovascular events and 
improving overall patient outcomes.

The existing literature demonstrates a significant correlation between tooth loss and an increased risk of 
cardiovascular disease. However, these findings were primarily derived from meta-analyses or clinical studies. 
This study employs a data-driven approach, offering objective insights based on empirical data. This method 
allows for concrete evidence and measurable results, providing a more robust assessment of the impact.

In this attempt, a pioneering exploration is carried out, employing advanced data science of tensor 
decomposition25 and generalized additive models (GAMs)26 in machine learning to address the classification 
and prediction of CAC scores. In particular, the methods of tensor decomposition have been pervasively applied 
to many areas of life and medical sciences27–36. The focus centers on tooth loss and patient characteristics to 
elucidate the intricate interplay between these health indicators and the broader spectrum of cardiovascular 
well-being. Tensor decomposition, a powerful analytical tool, is designed to uncover multidimensional patterns 
within the dataset, offering an understanding of the intricate relationships that may influence CAC scores. 
Simultaneously, the application of GAMs provides a flexible and robust framework, capable of capturing non-
linear relationships within the data. This flexibility is especially crucial in the context of medical data, where 
relationships between variables are often complex and multifaceted.

The primary objective of this research endeavor is to investigate the precision of classifying CAC scores into 
tertiles and predicting their values. By leveraging the insights provided by tooth loss and patient characteristics, 
this study seeks to unravel latent patterns and contribute to the evolving landscape of predictive modeling in 
cardiovascular health assessments.

Materials and methods
Patient data
This investigation utilized a publicly available dataset19 comprising 212 patients gathered from three hospitals 
located in the Netherlands, of which 114 were male. The average age of the participants was 57.8 years, 
with a mean body mass index (BMI) of 28 kg/m2. Among the participants, 32 had diabetes, 85 experienced 
hypercholesterolemia, and 128 were undergoing treatment for hypertension. The smoking history for all patients 
was categorized into three groups: 86 were non-smokers, 86 were former smokers, and 39 were current smokers.

This study included the following patient characteristics: sex, age, smoking status, diabetes mellitus, 
hypercholesterolemia, hypertension, and BMI. These characteristics were extracted from electronic health 
records as documented in the referenced study19. If diabetes mellitus, hypercholesterolemia, or hypertension 
were not explicitly mentioned in a patient’s file but corresponding medications such as metformin, insulin, 
statins, or antihypertensive drugs were present, the patient was recorded as having that condition. BMI was 
calculated using the height and weight recorded on the day of the CT scan for the CAC score. For more detailed 
information on patient characteristics, coronary artery calcification, and dental pathology, the reader is referred 
to the original data description in the referenced study19.

The inclusion criteria for this study encompassed patients for whom both a CAC score and an 
orthopantomogram (OPG) were available, with both assessments recorded within a maximum period of 365 
days spanning from 2009 to 2017. The CAC score, determined using the Agatston method, was measured 
through computed tomography scans.

The count of present teeth included all visible teeth on the OPG, encompassing third molars and radices 
relictae (remnants of tooth roots that remain in the jawbone after a tooth has been partially extracted or has 
broken off). Pontics of fixed partial dentures and prosthetic dentures were excluded from the tally of present 
teeth. The number of missing teeth was calculated by subtracting the count of present teeth from the expected 
total of 32 teeth. Dental implants were individually recorded.
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The patients’ CAC scores were divided into tertiles. The first tertile consists of the lowest CAC scores, the 
second tertile comprises intermediate CAC scores, and the third tertile includes the highest CAC scores.

All the data were anonymized prior to access. Approval for the study was obtained from the Medical Ethical 
Committee (15.06107) of the Isala Hospital, Zwolle, and was also accepted by other participating hospitals. The 
Medical Ethical Committee waived the need for informed consent19. The methods employed in this study adhere 
to established ethical guidelines governing the utilization of publicly available data for research purposes. A 
statement regarding data availability is included following the Conclusion section.

Tensor decomposition of tooth loss and patient characteristics in coronary artery 
calcification
A tensor is a multiway or n-way array with different orders, where an order one tensor is a vector, an order two 
tensor is a matrix, and an order three tensor is a volume. An n-th order or n-way tensor takes the form of an 
n-hypershape.

In a general form, the elements of an n-way tensor, denoted as T (where the underline indicates a tensor), 
are given as37,38

 
tij...n ≈

F∑
f=1

aif bjf · · · znf , (1)

where F represents the number of factors, tij...n are the elements of T, and aif , i = 1, . . . , I , bjf , j = 1, . . . , J , and 
znf , n = 1, . . . , N , are elements of the loading matrices A, B, and Z, respectively.

Alternatively, a tensor can be expressed as

 
T ≈

F∑
f=1

af ⊗ bf ⊗ · · · ⊗ zf , (2)

where ⊗ denotes the outer product, and af , bf , and zf  are the f-column vectors of A, B, and Z, respectively.

The loading matrices A, B, and Z can be computed using the PARAFAC decomposition model39,40.
To examine the separability of tooth loss in terms of different CAC tertiles for classifying tertiles and 

predicting coronary artery calcium scores, two-way tensors for three cohorts of patients with different CAC 
tertiles, denoted as Tk, can be modeled as:

 Tk = Sk × Lk, (3)

where k = 1, 2, 3 representing tertiles 1, 2, and 3, respectively; Sk is the number of patients in tertile k, and Lk is 
the corresponding numbers of missing teeth for patients in tertile k.

GAM for classification and prediction of coronary artery calcification
In statistical analysis, a GAM is a type of generalized linear model where the linear response variable is 
influenced by unknown smooth functions of specific predictor variables. This model establishes a connection 
between a univariate response variable, denoted as y, and a set of predictor variables, xi, i = 1, 2, . . . , p, which 
is mathematically expressed as

 y = a0 + a1x1 + a2x2 + · · · + apxp + δ, (4)

where a0, a1, · · · , ap are estimated coefficients, and δ is the error term.

To accommodate non-linear effects, a GAM substitutes each linear component with a smooth function:

 y = a0 + f1(x1) + f2(x2) + · · · + fp(xp) + δ, (5)

where fj, j = 1, 2, . . . , p, are smooth functions.

Equation (5) is referred to as a GAM since each smooth function is independently estimated, and the sum of 
these individual contributions is then combined. It is pointed out41 that GAMs exhibit great flexibility because 
these models allow for distinct smooth functions corresponding to each predictor. Consequently, a GAM can 
incorporate various techniques, such as: (a) non-linear polynomial methods for continuous predictors, (b) step 
functions, particularly suitable for handling categorical predictors, and (c) linear models, chosen when deemed 
more suitable for certain predictors.

In this study, GAM fitting was carried out by employing boosted trees42 as smooth functions for the 
predictors. The fitting process involved constructing a set of predictor trees during each boosting iteration, 
with the initial learning rate determined through Bayesian optimization. In binary classification of CAC tertiles, 
the GAM yielded class scores (the logit of class probabilities) by summing univariate smooth functions of the 
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predictors. In regression tasks for predicting CAC scores, the GAM generated a response variable through the 
aggregation of univariate smooth functions of the predictors.

Deep learning neural networks
A deep learning neural network (DLNN) consists of multiple layers of nodes, often referred to as neurons, 
designed to model complex relationships in data. Each layer in the network transforms the input data before 
passing it on to the next, allowing the network to learn hierarchical patterns. The DLNN architecture developed 
in this study includes:

• Input layer: This layer receives the tooth loss information (non-categorical data) as input data and feeds them 
into the network.

• Hidden layers: These layers contain neurons that apply a series of mathematical transformations to the input 
data. The depth of the network is determined by the number of hidden layers, set to 32, and the neurons in 
these layers use activation functions ReLU to introduce non-linearity, allowing the network to capture com-
plex patterns and relationships.

• Output layer: This layer produces the CAC classification.The DLNN was trained by adjusting the weights 
and biases of the neurons through a process called backpropagation, which minimized the error between 
the predicted and actual outcomes. This optimization was performed using stochastic gradient descent with 
momentum. The hyperparameters used during training included a cross-entropy loss function, a mini-batch 
size of thirty for each training iteration, and a maximum of fifty epochs (full passes through the data). The 
training data was shuffled once before training, with an initial learning rate of 0.01 and a momentum value of 
0.9, which incorporated the parameter update of the previous iteration into the current iteration to improve 
convergence.

Classification performance metrics
Let P represent the count of instances in higher CAC tertiles, N denote the count of instances in lower CAC 
tertiles, TP (true positive) indicate the count of correctly classified higher tertile cases, TN (true negative) be 
the count of correctly classified lower tertile cases, FP (false positive) stand for the count of misclassified higher 
tertile cases, and FN (false negative) refer to the count of misclassified lower tertile cases.

Table 1 defines the performance measures, including accuracy (ACC), sensitivity (SEN), specificity (SPE), 
precision (PRE), and F1 score. Additionally, the assessment of binary classification performance involves 
employing the receiver operating characteristic (ROC) curve. The ROC curve is constructed by plotting TP 
against FP across different thresholds. In certain contexts, the true positive rate (TP rate) corresponds to the 
probability of correct classification, while the false positive rate (FP rate) is the probability of false alarm. A 
higher area under the curve (AUC) in the ROC analysis indicates superior discriminative ability of the model.

Results
Figure 1 shows the 2D and 3D plots depicting three tensor-decomposition factors (F1, F2, and F3) obtained 
through the PARAFAC scheme.

Table 2 shows the results obtained from a ten-fold cross-validation employing the univariate GAM for the 
classification of two distinct classes. In this context, class 1 includes the first tertile, whereas class 2 encompasses 
the second and third tertiles. The classification process used various input features, encompassing patient 
characteristics, tooth loss data, and the combination of patient characteristics with tooth loss information.

Similarly, Table 3 exhibits the outcomes of a ten-fold cross-validation utilizing the univariate GAM for 
the classification of two distinct classes. In this instance, class 2 is defined by the second tertile, while class 
3 is the third tertile. The classification process incorporated a diverse set of input features, including patient 
characteristics, tooth loss data, and the combination of patient characteristics with tooth loss information.

Figure 2 visually presents the confusion matrices and AUCs corresponding to the classification outcomes 
depicted in Tables 2 and 3.

In the prediction analysis, a male patient with a CAC score of 20,000 was excluded from the dataset due to 
its singular and notably high value, which qualifies as an outlier. Table 4 shows the ten-fold cross-validation 
regression errors produced from the univariate GAM, using five input scenarios: patient characteristics, patient 
characteristics with tooth loss (both male and female), tooth loss (both male and female), female tooth loss, and 
male tooth loss. Figure 3 accompanies Table 4, visually portraying the predicted and observed CAC scores as 
derived from the univariate GAM for regression.

Table 5 presents the CAC classification results obtained by the DLNN. The model was trained using 90% 
of the tooth loss data, which were well-suited for the model due to their non-categorical nature, allowing the 
network to capture continuous patterns effectively. The remaining 10% of the data was set aside for testing, 
enabling an evaluation of the model performance on unseen data.

ACC SEN SPE PRE F1 score
TP + TN

P +N

TP

P

TN

N

TP

TP + FP

2TP

2TP + FP + FN

Table 1. Performance measures of binary classification.
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Input feature %ACC %SEN %SPE %PRE F1 AUC

Patient characteristics 63.38 59.72 67.14 65.15 0.78 0.66

Tooth loss 55.63 51.39 60.00 56.92 0.54 0.51

Patient characteristics & tooth loss 62.68 66.67 58.57 62.34 0.64 0.66

Table 3. Ten-fold cross-validated GAM-based categorization of CAC into tertile 2 (class 1) and tertile 3 (class 
2).

 

Input feature %ACC %SEN %SPE %PRE F1 AUC

Patient characteristics 75.00 84.51 55.71 79.47 0.82 0.78

Tooth loss 71.23 88.03 37.14 73.96 0.80 0.64

Patient characteristics & tooth loss 73.11 91.55 35.71 74.29 0.82 0.76

Table 2. Ten-fold cross-validated GAM-based categorization of CAC into tertile 1 (class 1) and tertiles 2 & 3 
(class 2).

 

Fig. 1. PARAFAC tensor-decomposition factors of patient tooth-loss model.
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Discussion
Table 2 reveals insights into the classification of CAC tertiles, where the utilization of tooth loss as an input 
feature (71%) stands competitively against patient characteristics (75%) in terms of accuracy. Interestingly, the 
combination of patient characteristics and tooth loss (73%) does not yield an improvement in classification 
accuracy compared to using patient characteristics alone. It is also worth noting an observation: tooth loss, when 
employed as a singular feature, surpasses in identifying tertiles 2 and 3 (88%), which are indicative of a higher 
risk of coronary artery disease, outperforming the sensitivity achieved with patient characteristics alone (85%). 
However, the result obtained from the combined features of patient characteristics and tooth loss achieved the 
highest sensitivity (92%).

The AUC value (0.64) of using tooth loss, which are lower than the patient characteristics (0.78) and the 
combination of both features (0.76), as a singular input to the GAM suggest a more severe trade-off between 
sensitivity and specificity– indicating an imbalance between sensitivity and specificity, with the classifier favoring 
one at the expense of the other. Precision and F1 score obtained from the input of the patient characteristics (PRE 

Input feature Average mean squared error (105)

Patient characteristics 5.816

Tooth loss 4.823

Patient characteristics & tooth loss 6.016

Male tooth loss 5.119

Female tooth loss 4.271

Table 4. Regression loss of ten-fold cross-validated GAM-based prediction of CAC scores.

 

Fig. 2. Confusion matrices and AUCs obtained from ten-fold cross-validated GAM-based binary classification 
of CAC tertiles using patient characteristics (a)–(d), tooth-loss (e)–(h), and combined patient characteristics 
and tooth-loss (i)–(l).
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= 79%, F1 = 0.82) are higher than those obtained from the tooth loss (PRE = 74%, F1 = 0.80) and the combined 
features (PRE = 74%, F1 = 0.82). However, the differences are minor between the three cases of input.

The above results underscore the intricate relationship between tooth loss, patient characteristics, and their 
independence in the classification of CAC tertiles. The observations also suggest that the combination of tooth 
loss and patient characteristics information can enhance the ability to detect higher-risk categories, emphasizing 

Fig. 3. Observed CAC scores and predicted values obtained from ten-fold cross-validated GAM for regression 
using: (a) patient characteristics, (b) patient characteristics with male and female tooth loss, (c) male and 
female tooth loss, (d) female tooth loss, and (e) male tooth loss.
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the importance of considering both dental and patient-specific factors in refining the sensitivity of CAC tertile 
classification.

The 2D and 3D plots depicting the three PARAFAC tensor-decomposition factors derived from the tooth-loss 
model becomes evident in their ability to effectively distinguish between the three CAC tertiles. This observation 
holds meaningful implications, suggesting that tooth loss can serve as a useful feature for the classification and 
prediction of CAC scores. The separability demonstrated in the graphical representations underscores the 
potential utility of tooth loss as a valuable marker in understanding and predicting coronary artery calcium 
levels.

The classification between tertiles 2 and 3, as illustrated in Table 3, reveals a discernible drop in performance 
compared to the differentiation of tertile 1 from both tertiles 2 and 3. The performance metrics derived from the 
patient characteristics feature and the combination of patient characteristics and tooth loss exhibit similarities, 
while the metrics stemming from tooth loss alone register a lower performance.

Examining the specificities, the combined features of patient characteristics and tooth loss demonstrate 
enhanced capability in identifying CAC tertile 3 (67%), which is indicative of higher risk of coronary artery 
disease. On the other hand, patient characteristics alone exhibit superior performance in pinpointing CAC 
tertile 2 (67%). These differences in performance underscore the differential contributions of individual and 
combined features in classifying CAC tertiles, shedding light on the potential of specific feature combinations 
for improved predictive modeling in coronary health assessment.

To gain a deeper understanding of the classification of CAC tertiles, Figures 4 and 5 illustrate the local and 
partial dependence effects43, showcasing examples of correctly and incorrectly classified CAC tertiles 2 and 3 in 
both male and female subjects.

In Fig. 4, the bar graphs represent the local effects of clinical and tooth loss attributes on GAM-based 
classification. Each local effect value denotes the contribution of a specific term to the classification score for a 
given tertile, which is the logit of the posterior probability for that tertile in the observation.

For the accurate classification of tertile 2 in a female patient (Fig. 4a), tooth loss emerges as the most influential 
factor. In the correct classification of tertile 3 in a male patient (Fig. 4b), BMI takes precedence, while tooth loss, 
age, and sex contribute equally to a positive influence. On the other hand, the misclassification of tertile 2 as 
tertile 3 in a male patient (Fig. 4c) is driven by smoking, BMI, and sex. Similarly, the misclassification of tertile 3 
as tertile 2 in a male patient (Fig. 4d) is primarily influenced by sex and hypertension.

Moving to the partial dependence effects in Fig. 5a,b, these illustrate the partial dependence of score values 
for classifying tertile 2 (class 2) and tertile 3 (class 3) based on sex and tooth loss, respectively. The plots suggest 
that tooth loss has a more pronounced impact on the classification of tertile 2 in female patients, while tooth loss 
in male patients exerts a stronger influence on the classification of tertile 3.

Concerning the CAC score prediction utilizing GAM for regression, as depicted in Table 4 and Fig. 3, the 
inclusion of tooth loss as an independent feature yielded the smallest average mean squared error (4.82× 105

). Conversely, the integration of patient characteristics and tooth loss resulted in the highest error (6.02× 105), 
with patient characteristics alone falling in between the other two input features (5.82× 105).

Regarding the prediction of male and female CAC scores, both use of patient characteristics and the 
combined input of patient characteristics and tooth loss resulted in largest errors. The use of individual tooth 
loss feature is more favorable, where the female tooth loss resulted in the smallest error. As shown in Fig. 3, large 
errors resulted in the regression model were mainly due to some relatively very large observed CAC scores of the 
patients indexed toward the right end of the plots.

In the context of CAC score prediction using GAM for regression, as shown in Table 4 and Fig. 3, the 
incorporation of tooth loss as an independent feature led to the lowest average mean squared error (4.82× 105

). Conversely, when patient characteristics and tooth loss were combined, the highest error was observed 
(6.02× 105), while using patient characteristics alone fell in between the errors associated with the other two 
input features (5.82× 105). Concerning the prediction of male and female CAC scores, opting for the individual 
tooth loss feature, female tooth loss yielded the smallest error (4.27× 105).

As depicted in Fig. 3, substantial errors in the regression model primarily arose from some exceptionally 
large observed CAC scores of patients situated towards the right end of the plots.

The occurrence of significant errors can be attributed to the imbalance in the dataset, leading to bias in the 
regression learning process. This imbalance stems from the disproportionate distribution of very small and very 
large CAC scores, with the majority of values falling within the category of very small scores. The dataset exhibits 
a skew toward these lower values, contributing to the observed imbalance.

In other words, although the accuracy of using patient characteristics is slightly higher than using tooth 
loss information, machine learning shows much better ability to identify coronary artery calcifications based 

%ACC %SEN %SPE %PRE F1 AUC

CAC into tertile 1 (class 1) and tertiles 2 & 3 
(class 2)

77.27 92.86 50.00 76.47 0.84 0.84

CAC into tertile 2 (class 1) and tertile 3 (class 
2)

60.00 62.50 57.14 62.50 0.63 0.54

Table 5. DLNN-based categorization of CAC using tooth loss information.
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on tooth loss information compared to patient characteristics. Additionally, Table 4 reveals that the average 
mean squared error of predicting CAC scores using tooth loss information is smaller than when using patient 
characteristics. This indicates that the predictive model performs better when leveraging tooth loss information 
rather than patient characteristics.

Including both age and tooth loss in the same model may lead to reduced model performance. These variables 
are often highly correlated because tooth loss tends to increase with age. When predictors are strongly correlated, 
the model may struggle to distinguish their individual effects on the response variable. Overfitting occurs when 
a model becomes overly complex relative to the training data, potentially capturing noise rather than true 
relationships. For instance, if a model attempts to capture all variations in tooth loss across different ages, it may 
overfit to specific patterns in the training data, leading to poor performance on new data. To mitigate potential 
overfitting from highly correlated predictors like age and tooth loss in a GAM, ten-fold cross-validation was 
applied. This technique systematically validates model performance across multiple data subsets, providing a 
robust assessment of how well the model generalizes to unseen data. By doing so, cross-validation enhances 
confidence in the model’s predictions and evaluates its overall reliability and practical usefulness in real-world 
applications.

Fig. 4. Local effects in: (a) correct classification of tertile 2 for a female patient (age = 36 years, smoking 
= never, diabetes = no, hypercholesterolemia = no, hypertension = no, BMI = 30.3, and tooth loss = 12); 
(b) correct classification of tertile 3 for a male patient (age = 66 years, smoking = never, diabetes = no, 
hypercholesterolemia = no, hypertension = no, BMI = 22.64, and tooth loss = 32); (c) misclassifying tertile 
2 as tertile 3 for a male patient (age = 73 years, smoking = never, diabetes = yes, hypercholesterolemia = yes, 
hypertension = yes, BMI = 25.25, and tooth loss = 7); and (d) misclassifying tertile 3 as tertile 2 for a male 
patient (age = 56 years, smoking = never, diabetes = no, hypercholesterolemia = no, hypertension = no, BMI 
= 23.99, and tooth loss = 16).
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This study employed ten-fold cross-validation to assess the predictive performance of the model. This 
method is widely recognized and utilized in the machine learning and statistical community due to its efficiency 
in providing an unbiased estimate of the model’s performance. Cross-validation allows for the entire dataset to 
be used for both training and validation purposes, ensuring that the model’s performance metrics are averaged 
over multiple runs. This results in a more reliable and stable estimate of the model’s accuracy. By using different 
subsets of the data for training and validation in each fold, cross-validation helps mitigate the risk of overfitting. 
This is particularly important when working with datasets where the total number of samples may not be large 
enough to confidently split into separate training, validation, and test sets.

While a separate test set can provide an additional layer of validation, it is not strictly necessary when cross-
validation is appropriately applied. The primary goal of using cross-validation is to evaluate the model’s ability 
to generalize to unseen data. Since each fold serves as both training and validation set in different iterations, 
cross-validation effectively simulates multiple training-test splits, thus providing a robust measure of the model’s 
generalization capability. In scenarios where the dataset is not extensive, retaining a portion of the data as a test 

Fig. 5. Partial effects in classifying: (a) class 2 (tertile 2), and (b) class 3 (tertile 3) in terms of tooth loss and 
sex.

 

Scientific Reports |        (2024) 14:28315 10| https://doi.org/10.1038/s41598-024-79900-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


set can reduce the amount of data available for training the model. Cross-validation optimizes the use of all 
available data, enhancing the reliability of the model’s performance evaluation.

The results obtained through ten-fold cross-validation in the study have demonstrated that tooth loss and 
patient characteristics are indeed significant predictors of coronary artery calcification scores. This conclusion 
is based on consistent performance across all folds, indicating that the model is robust and reliable. The 
performance metrics, such as accuracy, precision, F1 score, and AUC, reported are averaged across all folds, 
ensuring that the reported results are not dependent on a single split of the data. The consistency of these metrics 
across multiple folds underscores the predictive capability of the model.

Further discussion focuses on the performance of the DLNN in classifying CAC scores using tooth loss data. 
For distinguishing low CAC (tertile 1) from higher CAC (tertiles 2 & 3), the model achieved high sensitivity 
(93%), a solid F1 score (0.84), and an AUC of 0.84, indicating strong performance in identifying patients at 
higher risk. However, specificity was lower at 50%, suggesting some misclassification of low-risk individuals. In 
the second task, differentiating moderate (tertile 2) from high CAC (tertile 3), the model performance dropped, 
with an accuracy of 60%, a lower F1 score of 0.63, and an AUC of 0.54, reflecting difficulty in distinguishing 
between these closer risk levels. Overall, the DLNN model was effective at identifying higher CAC scores but 
struggled with finer gradations.

Although this study employs machine learning with an emphasis on prediction, this does not preclude 
the analysis and interpretation of the contributing factors. Machine learning has been leveraged not only to 
predict coronary artery calcifications but also to identify and elucidate key variables, such as tooth loss and 
patient characteristics, that significantly influence these predictions. This dual focus enables the study to achieve 
accurate forecasting while simultaneously providing a deeper understanding of the underlying risk factors.

Several closely related future directions can expand upon these findings and enhance their practical 
implications. One potential direction is to conduct more extensive longitudinal studies. These studies would 
follow participants over extended periods to observe how CAC scores evolve over time and their correlation 
with real-world cardiovascular outcomes. Such an approach could provide deeper insights into the long-term 
predictive power of CAC scoring in assessing cardiovascular risk. Another important avenue is the development 
and validation of improved predictive models. By integrating additional biomarkers and genetic information 
with CAC scores, these models can offer more precise risk assessments. This would lead to more personalized 
and effective prevention strategies for cardiovascular disease. Lastly, a potential future research issue involves the 
deeper exploration of tensor decomposition techniques to gain insights into the complex relationships between 
oral pathology, patient characteristics, and CAC contributing to cardiovascular disease. Tensor decomposition 
can help unravel multi-dimensional data structures, identifying latent patterns and interactions among these 
variables. Investigating how these decomposed factors correlate with cardiovascular outcomes could enhance 
the understanding of underlying mechanisms and improve risk stratification and targeted interventions for 
patients with oral health issues linked to cardiovascular disease.

In the context of classifying CAC scores, where higher scores are strongly linked to an elevated risk of CHD 
and cardiovascular mortality, evaluating model performance requires careful consideration of several metrics, 
especially in relation to the specific patient population.

One of the most critical metrics is sensitivity, which in this case refers to the ability of the model to correctly 
classify patients with higher CAC scores. Given the strong association between high CAC and increased risk of 
CHD, failing to identify these high-risk individuals could result in missed opportunities for early intervention. 
Sensitivity is vital because it ensures that those who need preventive care or further evaluation are not overlooked, 
potentially reducing cardiovascular events and mortality in the long run.

Specificity, on the other hand, measures the correct classification of lower CAC scores, identifying those 
at lower risk of CHD. In this population, ensuring high specificity is equally important, especially to avoid 
over-diagnosing low-risk individuals. If specificity is too low, many patients with lower CAC scores could be 
incorrectly flagged as high-risk, leading to unnecessary anxiety, follow-up tests, or even unwarranted medical 
treatments. This can not only create undue stress for patients but also strain healthcare resources. Therefore, 
in a clinical setting where resource optimization and patient well-being are critical, low specificity could be 
unacceptable.

While accuracy provides a general measure of how well the model performs across all classifications, it can 
be misleading in cases where there is class imbalance. For example, if the majority of the patient population 
falls into the lower CAC category, the model could achieve high accuracy simply by correctly classifying most 
of those cases, even if it performs poorly in detecting the more critical high-risk patients. In this case, accuracy 
might give a false sense of the effectiveness of the model, making it less meaningful without taking into account 
the balance between class outcomes.

Precision, or the positive predictive value, reflects the proportion of true positives (correctly classified higher 
CAC scores) out of all cases classified as positive. High precision is important for reducing false alarms, ensuring 
that when a patient is flagged as high-risk, there is a strong likelihood that the prediction is correct. This metric 
becomes especially important when considering the potential harm of unnecessary treatments or interventions 
for those incorrectly classified as high-risk.

The F1 score offers a balanced metric by considering both precision and sensitivity, making it useful in 
scenarios where class imbalance exists. By providing a single score that reflects the trade-off between detecting 
high-risk cases and minimizing false positives, the F1 score ensures that both objectives are accounted for 
without disproportionately emphasizing one over the other.

The AUC is another valuable metric, as it measures the ability of the model to distinguish between classes 
across different threshold settings. A high AUC indicates that the model is effective in differentiating between high 
and low-risk cases, regardless of the threshold, and provides a comprehensive view of the overall performance 
of the model.
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In this patient population, where early identification of cardiovascular risk is critical, sensitivity takes 
precedence to ensure high-risk patients are identified and receive timely intervention. At the same time, 
specificity is essential to avoid unnecessary follow-ups and interventions for patients with lower CAC scores. 
The ideal model, therefore, strikes a balance between these metrics, ensuring both high sensitivity to catch at-
risk patients and high specificity to minimize false positives.

Metrics like the F1 score and AUC are particularly useful in this context, as they offer a more detailed 
view of model performance, balancing the need to correctly identify high-risk individuals while avoiding 
misclassification of low-risk patients. This balance is critical in ensuring that the model performs optimally for 
both patient safety and healthcare resource management.

Conclusion
The exploration of patient characteristics and tooth loss information in the classification and prediction of CAC 
scores has been presented and discussed in the preceding sections. The results suggest that patient characteristics 
is advantageous in the classification of tertiles, while tooth loss exhibits the potential for providing more accurate 
predicted CAC scores.

The tensor decomposition employed in this study involves breaking down a multi-dimensional array 
(tensor) into simpler, interpretable components. This process helps uncover hidden patterns between tooth loss 
information and coronary artery calcium scores, facilitating a deeper analysis of their complex relationship. 
With the availability of additional data that addresses the bias in small CAC scores, there is a strong anticipation 
that the accuracies of GAM-based score prediction and GAM-based and DNN-based tertile classification will 
significantly improve. The integration of patient characteristics and tooth loss emerges as a promising avenue, 
contributing to enhanced accuracy in identifying individuals at a higher risk of cardiovascular health issues, 
particularly in the realm of coronary artery calcium.

Furthermore, the methods presented in this study were tested exclusively on a single dataset from one center. 
To demonstrate the generalizability and robustness of these methods, it is essential to validate them using 
external datasets from other centers. This would help ensure that the approaches are not overfitted to the specific 
characteristics of the initial dataset and can be applied more broadly to diverse patient populations.

Data availibility
The dataset used during the current study is available in the Figshare repository  (   h t t p  s : / / fi   g s h a r e  . c o m / a  r t i c l e s / d 
a t a s e t / S 1 _ D a t a _ - / 1 3 3 9 1 2 3 9     ) .  

Code availability
MATLAB codes implemented in this study are freely available at the first author’s (TDP) personal website: 
https://sites.google.com/view/tuan-d-pham/codes, under the title “Dental and vascular diseases”.
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