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Are we ready to cure post-stroke  
cognitive impairment? Many key 
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Abstract
Purpose: Post-stroke (PS) cognitive impairment (CI) is frequent and its devastating functional and vital consequences 
are well known. Despite recent guidelines, they are still largely neglected. A large number of recent studies have re-
examined the epidemiology, diagnosis, imaging determinants and management of PSCI. The aim of this update is to 
determine whether these new data answer the questions that are essential to reducing PSCI, the unmet needs, and steps 
still to be taken.
Methods: Literature review of stroke unit-era studies examining key steps in the management of PSCI: epidemiology 
and risk factors, diagnosis (cognitive profile and assessments), imaging determinants (quantitative measures, voxelwise 
localization, the disconnectome and associated Alzheimer’s disease [AD]) and treatment (secondary prevention, 
symptomatic drugs, rehabilitation and noninvasive brain stimulation) of PSCI.
Findings: (1) the prevalence of PSCI of approximately 50% is probably underestimated; (2) the sensitivity of screening 
tests should be improved to detect mild PSCI; (3) comprehensive assessment is now well-defined and should include 
apathy; (4) easily available factors can identify patients at high risk of PSCI; (5) key imaging determinants are the location and 
volume of the lesion and the resulting disconnection, associated AD and brain atrophy; WMH, ePVS, microhemorrhages, 
hemosiderosis, and cortical microinfarcts may contribute to cognitive impairment but are more likely to be markers of 
brain vulnerability or associated AD that reduce PS recovery; (6) remote and online assessment is a promising approach 
for selected patients; (7) secondary stroke prevention has not been proven to prevent PSCI; (8) symptomatic drugs are 
ineffective in treating PSCI and apathy; (9) in addition to cognitive rehabilitation, the benefits of training platforms and 
computerized training are yet to be documented; (10) the results and the magnitude of improvement of noninvasive 
brain stimulation, while very promising, need to be substantiated by large, high-quality, sham-controlled RCTs.
Discussion and conclusion: These major advances pave the way for the reduction of PSCI. They include (1) the 
development of more sensitive screening tests applicable to all patients and (2) online remote assessment; crossvalidation 
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of (3) clinical and (4) imaging factors to (5) identify patients at risk, as well as (6) factors that prompt a search for 
associated AD; (7) the inclusion of cognitive outcome as a secondary endpoint in acute and secondary stroke prevention 
trials; and (8) the validation of the benefit of noninvasive brain stimulation through high-quality, randomized, sham-
controlled trials. Many of these objectives can be rapidly and easily attained.
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Introduction

Post-stroke (PS) cognitive impairment (CI) is frequent and 
its consequences well known, with an increased risk of dis-
ability, institutionalization,1–3 stroke recurrence and 
death.4,5 International guidelines emphasize the importance 
of identifying patients with PSCI, referring them for appro-
priate neuropsychological evaluations and initiating early 
treatment.6–8 However, they are still largely overlooked.9 A 
large number of recent studies, pooled data analyses and 
meta-analyses have re-examined the epidemiology, diagno-
sis, imaging and management of PSCI. In this update based 
on literature review, our aim is to determine whether these 
new data answer the indispensable questions needed to 
define management that will reduce PSCI and its conse-
quences in the near future. This update summarizes the 
recent advances, unmet needs, and steps yet to be taken 
before these disorders can be reduced.

Methods: Selection of critical points 
for PSCI reduction

Since the ultimate goal is to provide effective treatment/
management for PSCI patients, recent advances in this 
area were reviewed. To achieve effective treatment/man-
agement, it is first necessary to diagnose patients with 
PSCI, so it is necessary to report on recent advances in 
diagnosis, that is, neuropsychological assessment (includ-
ing screening tests). Since it is impossible (and probably 
inappropriate) to assess the cognitive and behavioral sta-
tus of all stroke patients with sufficient accuracy, it is 
appropriate to review strategies for identifying patients at 
risk (i.e. patients who should be referred for neuropsycho-
logical assessment): we have focused on the two strate-
gies that have been previously explored on the basis of the 
clinical and imaging characteristics of these patients. 
Despite their interest, new and interesting aspects such as 
vascular dysfunction and inflammation were not addressed 
because they do not currently have practical implications 
for patient management. The data used were derived from 
recent literature reviews, ongoing works by the authors, 
their opinions and discussions in various international 
working groups.

After a brief epidemiological review highlighting the 
limitations of current estimates of the prevalence of PSCI, 
the study was organized around the following questions: 
(1) can we improve diagnosis both through the use of 
screening tests and with (2) comprehensive batteries, (3) 
can we identify patients at risk by both clinical (4) and 
imaging factors, analyzing features that account for the 
emergence of PSCI such as (5) post-stroke cavity charac-
teristics, (6) white matter hyperintensities (WMH), (7) 
markers of small vessel pathology, (8) the contribution of 
Alzheimer’s disease (AD) and Cerebral amyloid angiopa-
thy (CAA), and (9) structural and functional disconnection. 
Finally, we reviewed (10) more recent and promising 
approaches, including (11) remote cognitive assessment 
and (12) PSCI management, including (13) non-invasive 
stimulation.

Epidemiology: The prevalence of PSCI

PCSI has been assessed in numerous studies, most focusing 
on major CI (i.e. dementia), and reported varying preva-
lence10–12 (Table 1). A meta-analysis reported a PSCI preva-
lence of 53%, two-thirds corresponding to mild CI and 
one-third to dementia.11 Heterogeneity across studies is due 
to several factors (Table 1) the most important of which is 
probably the applicability of cognitive assessment, as 4%–
25% of patients are non-assessable and are at high risk of 
CI.13–15

This indicates that the prevalence of PSCI of approxi-
mately 50% among initially hospitalized patients is proba-
bly underestimated.

The diagnosis of PSCI

The diagnosis of PSCI relies on the accuracy of cognitive 
tools, which have evolved. The aim of this section is to 
examine whether we can improve the diagnosis of PSCI.

Screening tests

The use of cognitive-screening tests (Table 2) is part of the 
clinical assessment at the poststroke visit and sometimes 
before discharge from the acute stroke unit. The MiniMental 
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State Examination40 and Montreal Cognitive Assessment 
(MoCA)41 are the most frequently used but their sensitivity 
for PSCI is only moderate.21,22 A meta-analysis22 suggests 
that acute testing yields higher sensitivity (and lower speci-
ficity), although this is still too low to use it as a substitute 
for comprehensive assessment. Other screening tests are 
being developed (e.g.,42,43) but their superiority over exist-
ing tools still requires validation.

This indicates that the sensitivity of screening tests 
should be improved to detect mild PSCI in routine practice, 
or that an alternative strategy should be developed to select 
at-risk patients.

Comprehensive assessment

The comprehensive assessment19,24,31,44 (Table 2) is the gold 
standard, appears to be very sensitive19,24,27,45,57,65 and is 
independently related to disability.3,46 Assessment should 
include apathy because it is observed in approximately one-
third of patients27,51,52 and is independently associated with 
disability.3,27 The comprehensive battery needs to be sup-
plemented in specific situations: certain executive tests 
need to be added for certain causes of stroke,27 as well as 
language assessment in aphasics66 and hemineglect assess-
ment in certain right hemisphere stroke patients using 
recent recommendations48 and a parsimonious combination 
of tests50 (Table 1).

Given that it is impossible and unnecessary to carry out 
a comprehensive assessment of all stroke patients, and that 
the sensitivity of screening tests is moderate, we suggest 
developing alternative strategies based on the identification 
of at-risk patients.

Identification of patients at risk for PSCI on the 
basis of clinical factors

Although CI can be observed in all patients, clinical and 
gross imaging risk factors have been identified. CI is more 
frequent in cerebral hemorrhage and infarct11,24–26 than in 
ruptured aneurysm and cerebral venous thrombosis where 
the cerebral lesion is inconstant.27–30 Reviews have identi-
fied a long list (Table 1) of clinical factors10,24,45 and gross 
imaging markers.6,10,35,67 Other poststroke adverse out-
comes, such as fatigue68 or obstructive sleep apnea69 may 
also be associated with PSCI.

The predictive value of these factors has been exam-
ined in a few studies using initial data to determine the 
six-month risk. Models mainly based on vascular risk 
factors showed low predictive accuracy in crossvalida-
tion studies.39 The combination of five to six clinical fac-
tors (Table 1) can provide good to excellent sensitivity to 
predict six-month PSCI defined based on a comprehen-
sive battery35 or MoCA,36 although crossvalidation is 
required.

Table 1.  Epidemiology of poststroke cognitive impairment (PSCI): Facts and knowledge taken for granted versus yet to be 
clarified-unmet needs.

Taken for granted To be clarified-unmet needs

Prevalence • � Dementia: 26.5% (varies from 7% to 67%)10,11 •  Underestimation of prevalence is likely11,14,15

• � Mild CI: 36.4% ( varies from 5% to 64%)11,12 • � Need for sensitive cognitive tool adapted to 
severe strokes21,22

• � Overall PSCI: 53% with about two thirds of mild CI 
in initially hospitalized patients11,14,15

•  Utility of remote administration23

• � Depends on selection at baseline,10,13,16,17 attrition at 
follow-up,18 applicability of cognitive assessment,13–15 
sensitivity of cognitive evaluation, criterion of 
cognitive deficit11,19 and time of assessment11,20

Risk factors  
Stroke subtype More frequent in hemorrhage and infarct10,11,24–26 

than in ruptured aneurysm27–29 and cerebral venous 
thrombosis27,30

Cognitive impairment in pure cerebellar lesions to be 
documented31–34

Others factors Age,10,11,35,36 cognitive reserve and educational 
attainment,6,10,35 APOE genotype,37 prestroke CI, 
disability or frailty,38 stroke severity,35,36 recurrent 
stroke, multiple or large lesions,10,35,36 left hemisphere 
stroke, acute complications or cognitive disorders 
(including delirium), low score on cognitive screening 
test10,35,36 and gross imaging markers6,10,35

Predictive model based on:
•  vascular risk factors: low predictive accuracy39

• � clinical and gross imaging factors (age, stroke 
severity, multiple strokes, low score on screening 
test, extensive to confluent WMH): good to 
excellent sensitivity35,36 but large validation studies 
needed

WMH: white matter hyperintensities.
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This indicates that easily available factors can identify 
patients at high risk of PSCI, although crossvalidation stud-
ies on large cohorts are warranted.

Imaging determinants of PSCI and 
their use to identify patients at risk

In addition to the vascular lesions themselves, associated 
diseases such as Alzheimer’s disease may contribute to 
PSCI.1,70–72 In terms of imaging, several features are associ-
ated with CI (Table 3): WMH, microhemorrhages and 
hemosiderosis, microinfarcts, enlarged perivascular spaces 
(ePVS), and cerebral and hippocampal atrophy.10,25,32,56,57,73 

Quantitative measures have recently refined these imaging 
features (e.g. lesion volume, voxelwise analysis of lesion, 
brain connectivity).

Imaging characteristics responsible for PSCI 
occurrence

Lesion location and volume.  Voxelwise lesion symptom 
mapping analysis showed the prominent role of left fronto-
temporal, thalamus, and right parietal lesions.31 The “strate-
gic stroke” classically encompasses a large number of 
locations45 that have been variably defined. Five strategic 
locations were identified using a strict definition, involving 

Table 2.  Diagnosis of poststroke cognitive impairment: Facts and knowledge taken for granted versus yet to be clarified-unmet 
needs.

Taken for granted To be clarified-unmet needs

Screening test MMSE40 and MoCA41: moderately good 
sensitivity21,22

Need for sensitive screening tool adapted to severe 
strokes

Comprehensive 
battery

- standard battery (e.g. Harmonization standards 
battery24,44) assesses:

• � The usual executive tests (trail making, digit symbol 
coding and fluency tests) need to be supplemented for 
some causes of stroke such as aneurysm rupture27

• � 6 major domains: processing speed, executive 
functions, episodic memory, language, 
visuoconstructive abilities and behavioral-
socio-emotional changes-depression

- Crossvalidation of optimal and parsimonious 
combination of tests needed for hemineglect assessment

• � to be supplemented by optional modules if 
necessary

• � most frequently impaired domains in stroke45

• � closely related to disability3,46

• � executive functions and speed: the most 
vulnerable functions19,24,27,47

- Hemineglect assessment:
• � cancelation test associated if possible with line 

bisection, figure copying and baking tray tasks 
(EAN recommendation)48

• � 3 tests (cancelation Bell test, bisection of 
long lines and a reading task)49: most sensitive 
and parsimonious test combination to detect 
hemineglect50

Predominant 
impairment 
of speed and 
executive 
functions

- slowing of processing speed: - crossvalidation studies needed to relate patient slowing 
to:

• � observed in 88% [75%–95%] of PSCI in the 
STROKCOG cohorts24

• � prominent motor slowing54,55 subsequent to disruption 
of frontostriatal54 and thalamofrontal56 tracts

• � optimal sensitivity of digit symbol coding and 
Trail Making tests part B27

• � primary attention disorders19,24,45,57: restricted to 
lesions of the dorsomedial prefrontal cortex,58–61 
thalamus62 and right ventrolateral prefrontal cortex54,58

-apathy: - crossvalidation studies needed to support 2 main 
mechanisms:

• � observed in approximately one third of 
patients27,51,52

• � “pure apathy” due to primary loss of motivation 
and effort estimation63: lesions of ventral striatum, 
amygdala, mesencephalon, anterior cingulate, thalamus 
and inferior frontal gyrus63,64

• � independently associated with disability3,27,51,53 • � may be secondary to sensory-motor, cognitive and 
depressive disorders51,52 (i.e. secondary apathy)52

MMSE: MiniMental State Examination; MoCA: Montreal Cognitive Assessment; EAN: European Academy of Neurology; PSCI: post-stroke cognitive 
impairment; VCI: vascular cognitive impairment; WMH: white matter hyperintensities; PET: positron emission tomography.
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the left middle frontal gyrus, the temporoparietal junction, 
antero-middle thalamus, and both pyramidal tracts.32 The 
contribution of cerebellar lesions, especially in the crus 
VIII, warrants further studies.31–33

This indicates that the location of lesions within the 
hemisphere should be used to identify patients at risk. A 
risk score based on lesion location31 has been developed 
and requires crossvalidation.

White matter hyperintensity and features of small 
vessel disease: Simple markers or key-players?

White matter hyperintensity.  Confluent WMH promote the 
emergence of cognitive decline when a focal ischemic or 
hemorrhagic lesion has occurred24,78–80 (Table 3). However, 
the underlying mechanisms remain unclear. WMH may 
reduce the brain resources needed for efficient recovery and 
promote persistent cognitive manifestations associated 
with a sudden ischemic or hemorrhagic lesion.81,82 Further-
more, they may themselves contribute to a greater cognitive 
deficit. When extensive, they are associated with psycho-
motor slowing.83 Finally, WMH may increase the risk of 
recurrent stroke that will finally result in a larger number of 
lesions, with subsequent cognitive decline.83,84 In clinical 
practice, the degree of CI specifically associated with 
WMH in stroke patients remains difficult to estimate. 
Accumulating data in the literature suggest that the impact 
of WMH may largely vary depending on (1) their extent 
within the cerebral connectivity network,85 (2) their exact 
location with a larger impact of lesions affecting anterior 
thalamic radiations or the forceps minor,86 (3) the severity 
of the underlying tissue lesions, varying from simple water 
accumulation to severe neuronal and axonal loss,87–89 (4) 
the age and clinical status prior the stroke event, with pro-
tective factors, such as cognitive reserve,90 and (5) the pre-
vious cerebral status, with the presence or absence of 
lacunes, neurodegenerative lesions, and cerebral atrophy.91 

Overall, these multiple factors explain why the exact impact 
of WMH is ultimately highly variable after stroke at the 
individual level, despite their generally pejorative predic-
tive value.

Markers of small-vessel disease.  Cerebral microbleeds, 
hemosiderosis, cortical microinfarcts, and ePVS constitute 
MRI manifestations of small-vessel disease (Table 3). 
There is an expanding literature on microbleeds, ePVS, and 
microinfarcts as predictors of PSCI.56,92–94 Some studies 
found a modest association between these MRI markers 
and the occurrence of PSCI, whereas others did not (sys-
tematic review92), likely reflecting small effect sizes. 
Indeed, a recent study that included a head to head compari-
son of these various imaging markers reported much 
smaller effect sizes for microbleeds and ePVS in relation to 
PSCI than for WMH.56

Overall, the available data suggest that the observed 
associations with PSCI do not so much reflect a causative 
effect of these tiny lesions themselves on cognitive perfor-
mance, but rather their presence indicates much more wide-
spread microvascular disease in the brain, with a global 
impact on brain tissue and its resilience, thus predisposing 
affected individuals to a poor cognitive outcome in the 
event of a stroke.

The synergistic contribution of multiple imaging 
features

The imaging features that contribute to the assessment of 
cognitive performance are usually examined separately, 
whereas they contribute together. The few studies that have 
used statistical modeling of multiple imaging features sug-
gest a dominant role for lesion location, followed by stroke 
volume, hippocampal and cerebral atrophy, and WMH vol-
ume, whereas the contribution of ePVS and microhemor-
rhages appears to be minor.32,95–98

Table 3.  Imaging characteristics of white matter hyperintensities and markers of small vessel disease (adapted from Strive 274).

Definition

White matter 
hyperintensities

Signal abnormality of variable size hyperintense on T2-weighted images, such as FLAIR, without cavitation 
(signal different from CSF)

Microbleeds - Small, usually up to a few mm, round low signal intensity dots on susceptibility weighted MRI sequences,74

- Typically result from small hemosiderin deposits that are remnants of tiny past hemorrhages75

- Strictly lobar cerebral microbleeds are often a manifestation of cerebral amyloid angiopathy, whereas deep 
and brainstem microbleeds are more likely to relate to arteriolosclerosis75

Hemosiderosis Thin areas of hypointensity on MRI sequences sensitive to susceptibility effects, in or overlying the superficial 
cortex

Cortical 
microinfarcts

Small lesions (size ⩽ 4 mm) strictly cortical seen on multiple MRI sequences with an appearance compatible with 
ischemia (hypointense on T1-weighted, hyperintense on T2-weighted or FLAIR, and isointense on T2*-weighted 
MRI)76

Enlarged 
perivascular space

Tubular, fluid-filled spaces, following the course of small penetrating vessels through the white, and—in the 
brainstem and basal ganglia—also the gray matter, with signal intensity on MRI similar to CSF77

FLAIR: fluid-attenuated inversion recovery.
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Pending crossvalidation studies, this indicates that, in 
addition to lesion location, multiple imaging features 
(including stroke volume, hippocampal and cerebral atro-
phy, and WMH volume), should be used to refine the iden-
tification of at-risk patients.

The contribution of Alzheimer disease to PSCI

Although PSCI is generally attributed solely to the vascular 
lesions, pioneering studies suggested that a third of PS 
dementia is due to associated AD.1,70–72 The contribution of 
AD has been refined following amyloid positron emission 
tomography (PET) studies. First, PET studies refuted the 
promotion of amyloid deposition by stroke lesions.99–101 
Second, they showed a prevalence of amyloid positivity of 
approximately 15%–20% depending on the age and fre-
quency of CI in the sample.99,100,102–104 Third, the largest 
studies showed that the amyloid burden is associated with a 
more severe cognitive status at baseline99,102 and a high risk 
of developing severe CI at follow-up.102,105,106 Accordingly, 
PET positivity was found in 30% to 38%99,104 of PS demen-
tia cases, thus supporting the pioneering studies.1,70,72 This 
converges with the additive effect of vascular and neurode-
generative lesions on cognitive outcome.107–109 Fourth, a 
high burden of posterior WMH, cortical microbleeds, cen-
trum semiovale ePVS, and hippocampal atrophy has been 
shown to be suggestive of amyloïdopathy,99 although this 
requires replication. Fifth, the use of cognitive profiles 
(based on the executive/memory contrast) to orient the 
cause of PSCI (i.e. pure vascular vs CI associated with AD) 
has been called into question by the finding of overlapping 
cognitive profiles in the two diseases47,99 due to a high rate 
of dysexecutive disorders in AD110 and the predominance 
of the encoding-storage (also known as hippocampal) pro-
file of vascular memory deficit.65 Thus, only severe mem-
ory deficits (relative to executive disorders) that are not 
explained by stroke location should be considered an indi-
cation of associated AD. In addition to documenting the 
highly deleterious effect of associated AD, these data offer 
imaging possibilities for identifying associated AD in PSCI 
patients.

CAA can also be positive on amyloid PET111,112 and is a 
factor associated with cognitive impairment independent of 
associated AD.113 Accordingly, the presence of MRI mark-
ers of CAA is associated with an increased risk of CI.25 This 
suggests that CAA may represent a therapeutic target: a 
phase 2 trial targeting Aβ1-40, the major Aβ species depos-
ited in the arterial wall in CAA, did not show the expected 
result.114

Pending more precise predictors, this indicates that asso-
ciation with AD should be sought, given its frequency 
and major prognostic impact, in at-risk patients which 
include age, severe memory deficits (vs executive disor-
ders) not explained by stroke location, high posterior 
WMH load, cortical microbleeds, centrum semiovale 

ePVS, and hippocampal atrophy. Diagnostic approach 
(annual cognitive and imaging follow-up, CSF biomarkers, 
or amyloid PET) depends on patient status, the evolving 
availability of amyloid PET, the development of 
AD-modifying drugs, and the demonstration of their bene-
fit in patients with mild to moderate stroke.

Is disconnection the key player that determines 
the occurrence of PSCI?

Current predictions for PSCI based on lesion location are 
satisfying, although limited by the accuracy of the current 
model of brain function.115 Recent evidence suggests that 
brain function relies more on connections within the brain 
than on the local contribution of regions to functions.116–119 
This can be explained by the importance of the interaction 
between brain regions in the achievement of brain func-
tions, as well rapid plasticity, allowing for other connected 
regions to take over the additional workload.120,121 In the 
context of brain damage, the contribution of disconnections 
to behavior has frequently shown higher statistical and 
explanatory power for the symptoms observed in patie
nts.95,97,122–127 Hence, disconnection could be a key player 
in determining the occurrence of PSCI.128 Despite the 
improvement provided by disconnexion, the amount of 
variance explained by these models is still limited.95,123

To sum up, these data suggest that the key players are the 
location and volume of the lesion and the resulting discon-
nection, associated AD and brain atrophy. WMH, ePVS, 
microhemorrhages, hemosiderosis, and cortical microin-
farcts may contribute to cognitive impairment but are more 
likely to be markers of brain vulnerability or associated AD 
that reduce PS recovery. Further studies are warranted to 
accurately determine the minimal lesion load (or discon-
nection) that induces PSCI and refine the modeling of 
imaging determinants of PSCI. Thus, additional improve-
ment is needed before using such modeling to accurately 
predict patients at risk of PSCI.

Recent and promising approaches

Improving the diagnosis: Remote online cognitive 
assessment

Pending the development of more sensitive screening tests, 
comprehensive cognitive assessment is needed for patients 
at risk of PSCI based on clinical and imaging risk factors8,83 
(see above). The recent development of remote and online 
assessment may offer such an opportunity for selected 
patients.23

Tools such as the Telephone Interview for Cognitive 
Status and telephone short MoCA41 were the first available 
methods for remotely measuring cognitive performance in 
stroke patients.129 Recent results, obtained on a small stroke 
sample, showed that a self-administered tablet-based 
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neurocognitive platform is widely acceptable and has good 
convergent validity.130 The organization of a remotely 
accessible detailed cognitive assessment on an internet 
platform that can be controlled under professional supervi-
sion also appears promising. The feasibility of this proce-
dure has already been established using a flexible, integrated 
system.131 Other organizational (links with professionals) 
and practical factors (financing of equipment, cost) must 
also be taken into consideration. The development of digi-
tal ecological momentary assessment presents a promising 
approach to monitor at-risk patients outside the hospital 
environment and provide access to digital therapeutics.132 
This approach needs to be validated on a large control pop-
ulation before standards can be established for their clinical 
use. Finally, remote cognitive assessment will necessarily 
remain limited to patients who have the necessary computer 
skills, are free of major deficit and who can access a high-
performance internet communication network. Professional 
supervision will remain crucial to ensure reproducible and 
high-quality data. Several studies are currently underway to 
document these critical points.

Another advantage of online remote assessment is that it 
facilitates continuous assessment. PSCI is a dynamic pro-
cess that can be exacerbated by mood or sleep disturbances 
and external factors such as social support and environ-
ment. Therefore, continuous follow-up is needed to capture 
potential changes in cognition and to assess the impact of 
these symptoms on daily life, which is not addressed in the 
guidelines. The current development of digital ecological 
momentary assessment is a promising approach to monitor 
patients outside the hospital setting and provide access to 
digital therapeutics.

Finally, such an online assessment can feed a collabora-
tive digital platform that offers the opportunity to optimize 
collaboration between physicians, including neurologists, 
gerontologists, and primary care physicians, speech-lan-
guage pathologists, occupational therapists, neuropsychol-
ogists, nurses, and allied health professionals for optimal 
identification and management of cognitive problems after 
stroke. This indicates that remote and online assessment is 
a promising approach for selected patients, and their value 
should be clarified by ongoing studies.

Management of PSCI

Interventions (Table 4) for secondary stroke prevention 
including vascular risk factors (hypertension, smoking, dia-
betes, hyperlipidemia, obesity, obstructive sleep apnea and 
physical activity) are mandatory but their contribution to 
prevent CI remains to be proven.6,7,133 The cognitive benefit 
of lacunar infarction treatment demonstrated in a recent 
small phase 2 trial requires validation in further studies.134

In addition, there are no standard pharmacological 
treatments for the treatment of PSCI as cholinesterase 
inhibitors, glutamate N-Methyl-D-aspartate receptor 

antagonist, dopamine agonists and selective serotonin 
reuptake inhibitors have failed to demonstrate a signi
ficant benefit on global cognitive function after 
stroke.7,135,136,145 The lack of efficacy of symptomatic 
drugs on PSCI (Table 4) may also be due to their multiple 
mechanisms, as recently suggested for two leading impair-
ments in PSCI, psychomotor slowing45,54,57–62 and apa-
thy51,52,63,64,146 (Table 1). To date, the management of PSCI 
mainly relies on cognitive rehabilitation, including a com-
bination of restorative and compensatory approaches, 
both using traditional paper-and-pencil tasks. Recent 
approaches offer new opportunities to improve cognitive 
rehabilitation. The benefits of training platforms and com-
puterized training are yet to be documented.6,7,137

Noninvasive brain stimulation

New hope has arisen from the promising results of noninva-
sive brain stimulation (Table 4), including repeated tran-
scranial magnetic stimulation (rTMS), theta-burst 
stimulation (TBS), and transcranial direct current stimula-
tion (tDCS).140 These approaches assume that, under nor-
mal circumstances, the left and right hemispheres are in a 
balanced state of mutual inhibition. After a stroke, the lack 
of inhibitory effect of the damaged hemisphere on the 
undamaged hemisphere causes a relative increase in excit-
ability of the intact hemisphere, ultimately resulting in an 
increase in inhibition of the damaged hemisphere. In addi-
tion noninvasive brain stimulation can induce changes in 
the excitability of the underlying cortex and potentially 
induce long-lasting neuroplastic changes by promoting 
neurogenesis, angiogenesis, anti-inflammatory, antioxi-
dant, and anti-apoptosis effects.138 Different stimulation 
frequencies have different effects on cortical activity, with 
high frequency (>1 Hz) stimulation (HF-rTMS) promoting 
local neuronal excitability and low frequency (⩽1 Hz) 
stimulation (LF-rTMS) showing inhibitory effects.140

Given the small size of these studies, meta-analyses 
have been invaluable in assessing their interest. Concerning 
rTMS, systematic reviews and meta-analyses of rand-
omized controlled trials (RCT) indicate a positive effect on 
cognitive outcome.138 In a systematic review of 12 RCTs 
involving 497 patients with PSCI, Gong et al.147 reported 
that rTMS had a positive effect on cognitive rehabilitation. 
Another study148 pooling data from 8 studies and 336 par-
ticipants found a large effect of rTMS combined with cog-
nitive training on global cognition, executive function, and 
working memory, but no effect on memory. With regards to 
aphasia, a large number of studies converge on its bene-
fits,149 and it is now recommended in some countries.150

TBS is a novel rTMS consisting of three pulse bursts at 
50 Hz. Compared with conventional rTMS, TBS can 
induce longer and more intense neural activity with low-
intensity, short-duration stimulation. Intermittent TBS 
(which plays a facilitating role in local cortical 
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excitability140) applied to left dorsolateral prefrontal cortex 
has been reported to improve executive function and 
semantic comprehension.151,152

Research findings on tDCS show contradictory 
effects153–155 with a slight improvement in general cognitive 
performance and attention provided by anodal tDCS.155 In a 
meta-analysis155 of 15 studies (N = 820 participants) of 
tDCS compared with sham tDCS or control, anodal tDCS 
was associated with small improvements in general cogni-
tive and attention performance, but not in memory. 
However, most of these studies lacked sham tDCS and 
safety data.

A network meta-analysis140 of RCTs comparing any 
active noninvasive brain stimulation with sham stimulation 
in stroke survivors showed that high-frequency rTMS 
improved global cognitive function while dual-tDCS 
improved memory performance.

Although promising, these results and the magnitude of 
improvement still need to be substantiated by large, high-
quality, sham-controlled RCT. They should examine the 
influence of the timing of stimulation, treatment frequency 
and duration, and stimulation parameters, particularly the 
stimulation site.156 Indeed, the location of the lesion and 
its effects on connectivity can help to select the most 

appropriate stimulation parameters to individualize the 
location of the stimulation.149,157,158 Finally, the potential 
benefit of combining noninvasive brain stimulation meth-
ods in the same patient should be examined, as recently 
suggested.159

Conclusions

This update shows the major advances and provides guid-
ance on the main issues to be resolved before reducing 
PSCI. This mainly includes (1) crossvalidation of factors 
that identify PS patients at risk of CI, (2) identification of 
the minimal vascular lesion that induces PSCI and (3) fac-
tors to prompt the search for associated AD; (4) develop-
ment and validation of screening tests to improve the 
sensitivity and applicability to all patients, as well as (5) 
digital ecological momentary assessment and (6) cogni-
tive assessment that are remotely administered online, and 
(7) used to monitor the course PSCI and (8) to provide 
access to digital therapeutics; (9) validation of the benefit 
of noninvasive brain stimulation by high-quality, individ-
ually-based, sham-controlled RCT; (10) systematic inclu-
sion of cognitive outcome as a secondary endpoint in both 
acute and secondary prevention stroke trials, and (11) 

Table 4.  Classical and promising approaches in management and brain stimulation.

Taken for granted To be clarified-unmet needs

Secondary stroke 
prevention

Interventions for hypertension, smoking, diabetes, 
hyperlipidemia, obesity, obstructive sleep apnea and 
physical activity are mandatory

But effect on cognition remains 
unproven6,7,133

Pharmacological 
symptomatic treatments

Cholinesterase inhibitors, memantine, dopamine agonists 
and selective serotonin reuptake inhibitors: no significant 
benefit on pure vascular PSCI7,135,136

Refine mechanisms of certain cognitive 
and behavioral impairments

Cognitive rehabilitation Combination of restorative and compensatory: traditional 
paper and pencil-based training

Platforms and computerized training: 
benefit to be documented6,7,137

Noninvasive brain 
stimulation (NIBS)

Change in excitability of the underlying brain cortex 
potentially induces long-lasting neuroplastic changes138,139

Overall benefit and its magnitude of all 
NIBS methods: needs to be substantiated 
by large, high-quality sham-controlled 
randomized trials

Repeated transcranial 
magnetic stimulation 
(rTMS)

Effects on cortical activity depends on frequency:  
- high-frequency (>1 Hz) stimulation promotes local 
neuronal excitability,

 

- low-frequency (⩽1 Hz) stimulation shows inhibitory 
effects140

 

Theta-burst stimulation rTMS technique consisting of 3 pulse bursts at 50 Hz 
in continuous (inhibition of local cortical excitability) 
or intermittent forms (facilitation of local cortical 
excitability)140,141

Could induce longer duration and 
more intense neural activity with low-
intensity, short duration stimulation than 
conventional rTMS142

Transcranial direct 
current stimulation 
(tDCS)

Constant, low-intensity direct current (intensity of 0.5–
2 mA) applied through two electrodes placed on the scalp; 
subdivided into anodal (enhances activity of superficial 
cortical neurons), cathodal (reduces activity of superficial 
cortical neurons) and dual (both anodal and cathodal)143

 

Transcutaneous vagus 
nerve stimulation

May modulate brain neurotransmitters 
release and blood flow to brain areas such 
as hippocampus and thalamus144
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development of symptomatic drug trials targeting behavio-
ral and cognitive disorders of pre-defined mechanisms. A 
significant number of these objectives can be easily and 
rapidly attained. Their findings may be incorporated into a 
revised version of the VASCOG criteria for vascular cogni-
tive impairment.160
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