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Abstract
Introduction: Formulating reliable prognosis for ischemic stroke patients remains a challenging task. We aimed to 
develop an artificial intelligence model able to formulate in the first 24 h after stroke an individualized prognosis in terms 
of NIHSS.
Patients and methods: Seven hundred ninety four acute ischemic stroke patients were divided into a training (597) 
and testing (197) cohort. Clinical and instrumental data were collected in the first 24 h. We evaluated the performance of 
four machine-learning models (Random Forest, K-Nearest Neighbors, Support Vector Machine, XGBoost) in predicting 
NIHSS at discharge both in terms of variation between discharge and admission (regressor approach) and in terms of 
severity class namely NIHSS 0–5, 6–10, 11–20, >20 (classifier approach). We used Shapley Additive exPlanations values 
to weight features impact on predictions.
Results: XGBoost emerged as the best performing model. The classifier and regressor approaches perform similarly in 
terms of accuracy (80% vs 75%) and f1-score (79% vs 77%) respectively. However, the regressor has higher precision 
(85% vs 68%) in predicting prognosis of very severe stroke patients (NIHSS > 20). NIHSS at admission and 24 hours, 
GCS at 24 hours, heart rate, acute ischemic lesion on CT-scan and TICI score were the most impacting features on the 
prediction.
Discussion: Our approach, which employs an artificial intelligence based-tool, inherently able to continuously learn and 
improve its performance, could improve care pathway and support stroke physicians in the communication with patients 
and caregivers.
Conclusion: XGBoost reliably predicts individualized outcome in terms of NIHSS at discharge in the first 24 hours after 
stroke.

Keywords
Prognosis, acute ischemic stroke, artificial intelligence (AI), machine learning (ML), outcome prediction

Date received: 12 January 2024; accepted: 21 April 2024

1Unit of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
2Real World Data Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
3Unit of High Intensity Neurorehabilitation, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
4Ammagamma s.r.l. Via Sant’Orsola 33, Modena, Italy
5Unit of Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
6Unit of Interventional Neuroradiology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
7Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
8Department of Oncology and Radiology, Ospedale Isola Tiberina-Gemelli Isola, Rome, Italy

Corresponding author:
Pietro Caliandro, Unit of Neurology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1-00168, Rome 00135, Italy. 
Email: pietro.caliandro@policlinicogemelli.it

1253366 ESO0010.1177/23969873241253366European Stroke JournalCaliandro et al.
research-article2024

Original Research Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/eso
mailto:pietro.caliandro@policlinicogemelli.it


1054	 European Stroke Journal 9(4)

Introduction

Ischemic stroke is a leading cause of disability and mortal-
ity worldwide.1 Moreover, the socio-economic burden 
associated with stroke is substantial, encompassing medical 
expenses, rehabilitation costs, lost productivity, and car-
egiver responsibilities. In Europe, projections show that 
with a “business as usual” approach, the burden of stroke 
will not decrease in the next decade. An important contrib-
uting factor is that the number of older persons in Europe is 
rising, with a projected increase of 35% between 2017 and 
2050. The total cost of stroke in the EU of an estimated 
45–60 billion euros in 2015 is set to rise, including both 
healthcare and non-healthcare costs.2 Ischemic stroke is a 
time-dependent pathology that requires a fast and effective 
management of the acute phase, because revascularization 
therapies, accessible in the first hours, strongly reduce the 
risk of death and the severity of post-stroke disability. The 
current guidelines rely on data that come from randomized 
controlled trials with specific inclusion and exclusion crite-
ria.3–9 However, from daily clinical practice, we know that 
real-world patients might not perfectly fit such criteria. 
Therefore, in individual patients treatments and outcomes 
might differ from what described in the current literature. In 
this view, prognostic models based on real-world data 
might contribute to identify factors influencing outcomes in 
each individual stroke patient and help stroke physicians to 
tailor assistance in the different stages of stroke pathway. 
Nevertheless, the current prognostic scores, such as 
ASTRAL,10 DRAGON, iScore, PLAN, and CoRisk often 
require information difficult to collect in the very early 
hours after stroke or only available at discharge (e.g. etiol-
ogy, medical complications, etc) and individualized, auto-
mated and fast prognostic models are still lacking. Artificial 
Intelligence (AI) based algorithms can evaluate otherwise 
overwhelming data and can provide useful individualized 
outcome prediction.11–13 Moreover, AI can provide reliable 
evidence based on the continuous and auto-correcting anal-
ysis of big real-world data.14–17 In fact, Machine Learning 
makes minimal assumptions on systems generating data; it 
can be effective even when data are collected without a 
controlled study design and in case of complicated non-
linear interactions.18 With the present study, our aims were: 
(1) to develop and train an AI based model able to formu-
late in the first 24 h after stroke an automated and individu-
alized stroke prognosis in terms of NIHSS score at discharge 
from the hospital; (2) to test the efficacy of such model.

Materials and methods

Patient population
This is an observational study conducted on acute ischemic 
stroke patients admitted to Fondazione Policlinico Gemelli 
between July 2019 and June 2023. The cohort compre-
hended all consecutive patients who were discharged from 

the hospital with a diagnosis of acute ischemic stroke, iden-
tified through the ICD-9 code (International Statistical 
Classification of Diseases). Patients with haemorrhagic 
stroke and patients with stroke mimics were excluded from 
the study. There were no other inclusion or exclusion crite-
ria, meaning any limit of age, etiology, clinical severity or 
type of acute revascularization treatment. This approach 
guarantees to assess a real-world scenario including a large 
range of patients’ characteristics without selection accord-
ing to anamnestic features, clinical severity, findings of 
laboratory exams, neuroimaging findings and type of 
acute treatment (thrombolysis/endovascular treatment). 
Moreover, missing data in any of the collected variables 
was not an exclusion criteria as our approach preserves the 
real-world setting where AI algorithms can add more trust-
worthy insight even with incomplete datasets.19 The study 
was approved by the ethics committee of Fondazione 
Policlinico Universitario A. Gemelli-IRCCS (prot n. 
0020981/21).

Clinical and instrumental data collected

Clinical and instrumental data were collected in the first 
24 h after stroke. Data were available in databases of the 
hospital and stored as text in clinical and radiological 
reports or as structured data. At arrival at the emergency 
department we collected personal information (age and 
gender) and medical history of the patients (history of 
hypertension, diabetes mellitus, atrial fibrillation, cardiac 
diseases, anemia, dementia, previous transient ischemic 
attack (TIA)/ischemic/haemorrhagic stroke, ongoing anti-
platelet/anticoagulant therapy before the index event as 
dichotomic variables) from the text of clinical reports, as 
well as clinical characteristics of the index ischemic event 
such as known onset of symptoms (dichotomic variable) 
and clinical severity measured with NIHSS, along with 
vital parameters (systolic and diastolic blood pressure, 
heart and breathing rate). Moreover, at the emergency 
department we collected relevant information as dichoto-
mic variables from the first brain CT and brain 
CT-angiography such as presence of acute ischemic lesion 
and/or chronic leukoencephalopathy occlusion of intra/
extracranial large vessels, site of occlusion, evidence of 
good/poor collateral blood flow qualitatively defined by the 
radiologist in the radiological report, execution of perfusion 
studies. Finally, we collected the reperfusion treatment type 
(thrombolysis/endovascular treatment), if any, and the rep-
erfusion grade by TICI score for endovascular treated 
patients.

We also evaluated clinical severity within 24 h after the 
admission (NIHSS or Glasgow Coma Scale in case of dis-
order of consciousness). Table S1 of Supplemental 
Materials shows all variables acquired and depict how each 
variable is encoded. Specifically, dichotomic variables 
were classified as present and encoded as 1 when the text 
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mining procedure identified it in the medical/instrumental 
report. When the search produced no matching finding, the 
variable was set to 0. Therefore, for each variable, “0” com-
prises both the absence of that feature in a specific patient 
or that the text mining procedure was not able to detect it.

Machine learning models construction

Data preprocessing.  The dataset included acute ischemic 
stroke patients admitted to Policlinico Gemelli between the 
period from July 2019 to June 2023, considering that the 
management of stroke care pathway was different before 
July 2019 and remained unchanged during this time-frame. 
Research studies that aim to provide AI-based predictive 
models, such as this one, imply a heuristic process, where 
key aspects of the clinical research, such as the size effect, 
the desired statistical power and the minimum sample size 
are not available at the time of the study design. Therefore, 
an evaluation of the performance of these models on previ-
ously unseen data is of the utmost importance. Thus, the 
cohort was randomly divided into two samples: 75% of the 
patients were allocated to the machine learning model train-
ing set, while the remaining 25% was utilized as testing set 
for evaluating the performance of the trained models. The 
primary sources from which features were extracted consist 
of two main categories: clinical/radiological reports (in tex-
tual form), as well as pre-existing tabulated data. To ensure 
the integrity and uniformity of the dataset, the textual con-
tent of clinical documents underwent preprocessing proce-
dures as conversion to lowercase to ensure consistency in 
text case, removal of punctuation marks to streamline the 
text, elimination of diacritics and accents to simplify the 
text representation, rectification of known errors, such as 
“NHISS” corrected to “NIHSS,” among others. We devel-
oped a specific ontology for identifying unstructured infor-
mation from the hospital registries and coding them in 
structured variables to be used in the AI models. This ontol-
ogy has been used for text mining and automatically col-
lecting significant anamnestic features, clinical severity 
and neuroimaging findings from clinical and radiological 
reports. Text mining techniques such as pattern matching 
with regular expression and lemmas co-occurrence analysis 
were employed to make the ontology actionable at the soft-
ware level. Categorical variables underwent the procedure 
of one-hot encoding, a technique employed to transform 
categorical data into a numerical format suitable for 
machine learning algorithms. Notably, some variables, as 
TICI score, possess an inherent ordinal nature and under-
went transformation into ordinal variables. This adjustment 
preserved the intrinsic ordering of the variable, thus allow-
ing for a more meaningful representation within the model.

To ensure the accuracy, consistency, and completeness 
of data used for analysis, a two-part quality control pro-
cess is implemented. First, daily batch procedures running 
during off-peak hours check data extracted from hospital 

operational systems. Each data stream has a designated pro-
cess owner who tracks and corrects errors. Data quality 
checks then delve deeper. These checks include ensuring 
clear definitions (meaning, units, and standardized classifi-
cations) for each indicator, identifying missing or duplicate 
values in key fields (like dates), verifying data consistency 
(e.g. discharge after admission), and comparing trends with 
data providers. Finally, the Service Desk rectifies any 
flagged inconsistencies in the original registration applica-
tion. The output of this validation process is compared 
against benchmark distributions taken from historical data 
and is considered fair if the level of agreement is above a 
predefined threshold, which is set at the 95% confidence 
level. Any residual discrepancy or outlier is further investi-
gated on a case-by-case basis with the clinical team in 
charge of the study. This combination of automated checks 
and human oversight safeguards the quality of the data used 
for the analysis.

Definition of the prediction target.  The designated target 
variable in this study is the NIHSS score at the time of dis-
charge, as an indicator of the patient’s prognosis and 
response to therapeutic interventions. Discharge occurred 
during the acute phase when the diagnostic workflow had 
been completed and patients had not any complication 
requiring specific medical and/or surgical interventions. 
Patients were transferred to a rehabilitation center or at 
home according to the clinical severity. Patients coming 
from the spoke hospitals with indication to endovascular 
treatment were transferred back to the spoke center if no 
further interventions were required after endovascular pro-
cedure. Two different prediction tasks have been devel-
oped: a multiclass classifier task and a regressor task. For 
the multiclass classifier approach NIHSS score at discharge 
is categorized into four classes: NIHSS 0–5 (absence of 
symptoms or minor stroke), NIHSS 6–10 (mild stroke), 
NIHSS 11–20 (severe stroke), NIHSS > 20 (very severe 
stroke). Regarding the regressor approach, the prediction 
output is defined as variation of NIHSS score between the 
value at discharge and at admission and it incorporates the 
sign (positive for deterioration, negative for improvement). 
Deceased patients were classified as having a NIHSS score 
of 43 (60 deceased patients in the training cohort and 19 
deceased patients in the testing cohort).

Models selection and evaluation metrics.  We evaluated four 
machine-learning models for both regression and classifi-
cation tasks: Random Forest (RF), K-Nearest Neighbors 
(kNN), Support Vector Machine (SVM), and XGBoost 
(XGB). To select the best model we used a fivefold cross 
validation. For the multiclass classifier approach we 
adopted f1-score weighted on classes as evaluation metric 
while for the regression approach we used the Root Mean 
Squared Error (RMSE). The four machine-learning models 
underwent distinct training procedures for the classifier and 
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regressor approaches. The training of the classifier was 
executed utilizing the softprob (softmax) loss function. 
Conversely, the training for the regressor was meticulously 
designed to optimize the squared error.

The best performing models in the training cohort, both 
in the classifier and regressor approaches, were applied in 
the testing cohort. We assessed the performance of the 
models on the testing set using a variety of metrics. For the 
classification task we considered accuracy, precision, 
recall, f1-score, macro average (average of the precision, 
recall, and f1-score across all classes, without considering 
class imbalance) and weighted average (average of the pre-
cision, recall, and f1-score) where each class is weighted by 
its support (the number of instances in each class). In the 
regression task, we computed the absolute error distribution 
over the testing set (5th, 10th, 25th, 75th, 90th Percentiles). 
The absolute error was also computed by clinically relevant 
classes of NIHSS at admission, because the impact of the 
error for these classes is different (e.g. if the model predicts 
the NIHSS at discharge with an error of 4 points that error 
is more meaningful for patients with a NIHSS at admission 
0–5 than for patients with an admission NIHSS > 20). In 
order to compare the performances of the two tasks (multi-
class classifier and regressor), we used the NIHSS variation 
predicted by the regressor to predict NIHSS numerical 
value at discharge with the following formula:

NIHSS NIHSS
discharge admission pred
� �= + ∆

Then we assigned the obtained NIHSS value to the same 
NIHSS classes used for the classification task. In this way 
we converted the findings from the regressor into classes of 
severity.

We used Shapley Additive exPlanations (SHAP) values 
to get a consistent and objective explanation of how each 
feature impacts the models’ prediction.

The code used to perform the study has been developed 
using Python 3.8. All the libraries used for the Artificial 
Intelligence modules are open source, available online and 
listed in the Appendix 1 of Supplemental Materials.

Statistical analysis

We assessed normality of continuous variables distribu-
tion by the Shapiro-Wilk test. Differences between 
groups regarding clinical characteristics and duration of 
hospital stay were calculated using Mann-Whitney U 
test. For each variable, Agresti-Caffo test was conducted 
to compare distribution of the variables between the 
training and the testing cohort. The Pearson’s correlation 
coefficient was used as a measure of linear correlation 
between two variables. Statistical significance was 
defined as p < 0.05.

Results

A total of 794 acute ischemic stroke patients were included 
in the study. The training and testing cohorts (597 and 197 
patients respectively) did not differ in terms of duration of 
hospital stay (respectively 7 ± 8 days and 8 ± 11 days), dis-
tribution of the variables (Supplemental Materials Table 
S1), in the clinical severity as measured by NIHSS [Figure 
1] and number of deaths (60 and 19 respectively). Figure 2 
shows the correlation matrix between features in the train-
ing cohortF2. In the training cohort XGB resulted as the 
best performing model for both the classifier (weighted 
f1-score: 75.3%) and regressor approaches (RMSE: 8.91), 
so it was applied in the testing cohort to assess its perfor-
mance on previously unseen data. Table 1 shows the perfor-
mance metrics for the classifier and regressor in the training 
cohort.

Classifier performance in the testing cohort

In the testing cohort the classifier approach showed a 
weighted f1-score of 79% and an accuracy of 80% (Figure 
3(a) shows the confusion matrix with evaluation metrics)
F3. For the classifier the main difficulty was to predict the 
6–10 NIHSS class (f1-score 46%). Figure S1 of 
Supplemental Materials shows the confusion matrix with 
evaluation metrics excluding dead patients from the analy-
sis. The most important features, computed using SHAP 
values, are the following: NIHSS at admission, 24 h NIHSS, 
24h GCS, TICI score, heart rate, presence of acute ischemic 
lesion at the first brain CT scan (Figure 4(a) shows the 
SHAP plot)F4. For the global feature importance interpre-
tation, it is possible to state that a high NIHSS value (both 
at admission and within 24 h) tends to increase the probabil-
ity of a higher NIHSS at the discharge, as well as a low 
GCS value within 24 h increases the probability of having a 
high NIHSS at discharge. Moreover, higher heart rate val-
ues at admission as well as the presence of an acute ischemic 
lesion at the first brain CT-scan increases the probability of 
having higher NIHSS at discharge, while higher values of 
TICI score after the endovascular procedures decreases the 
probability of a high NIHSS at discharge. However it is 
important to state that the single prediction on the single 
patient depends on the combination of values of all 
variables.

Regressor performance in the testing cohort

In the testing cohort, the regressor approach showed a 
median absolute error of 2 in predicting the variation 
between NIHSS at discharge and at admission (Figure 5 
shows the distribution of the absolute error)F5. Table S2 of 
Supplemental Materials shows the distribution of absolute 
error by NIHSS class at admission. Figure 3(b) shows the 
confusion matrix for the regressor results. In the figure, the 
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Figure 1.  NIHSS distribution at admission and at discharge in training and testing cohorts.

Figure 2.  Correlation matrix between features in the training cohort.

predicted NIHSS class at discharge has been calculated by 
using the predicted NIHSS variation. In the testing cohort 
the regressor approach showed a weighted f1-score of 77% 
and an accuracy of 75%. For the regressor approach the 
main difficulty was to identify the 6–10 NIHSS class 

(f1-score 43%). Figure S1 of Supplemental Materials 
shows the confusion matrix with evaluation metrics exclud-
ing dead patients from the analysis.

The global feature importance plot (Figure 4(b)), com-
puted using SHAP values, shows that a high NIHSS value 



1058	 European Stroke Journal 9(4)

Table 1.  Performance metrics for each machine learning model 
for classifier and regressor in the cross-validation evaluation. 
f1-score weighted on classes was used for the classifier and the 
Root Mean Squared Error (RMSE) for the regression approach.

Model Classifier Regressor

Random Forest 0.702 10.1

K-NN 0.687 12.90

SVM 0.623 14.32

XGBoost 0.753 8.91

at admission generally is linked to a prediction of improve-
ment (negative delta). Moreover, a low GCS and high 
NIHSS value at 24 h are linked to a prediction of clinical 
worsening (positive NIHSS delta), as well as a higher heart 
rate and the presence of acute ischemic lesion at the first 
brain CT-scan. On the other hand, high TICI values are 
associated to a prediction of improvement (negative delta).

Comparison between classifier and regressor 
performance

The two approaches perform similarly in terms of both 
accuracy (80% for the classifier and 75% for the regressor) 
and f1-score (79% for the classifier and 77% for the regres-
sor). The f1 score is essentially the same for the two 
approaches even when we compare the f1 score values 
within each class (Figure 3).

Looking more deeply, we see that the two approaches 
performed better for NIHSS class 0–5 and 11–20, 
(Figure 3), while they performed worse for the NIHSS 
class 6–10, that was the most difficult to predict with 
similar f1 scores (46% for the classifier and 43% for the 
regressor). However, for the NIHSS class 6–10 the 
regressor task performs better than the classifier in 
terms of recall (60% vs 45%), that is, the regressor cor-
rectly identifies 60% of the patients with a true value of 
NIHSS of 6–10. The majority of patients in the remain-
ing 40% is predicted to have a NIHSS value in the class 
of clinical severity 0–5 (Figure 3). The regressor per-
forms worse than the classifier in terms of precision 
(33% vs 47%). This means that among patients pre-
dicted to have a NIHSS 6–10, 33% actually belongs to 
that class. However, the majority of the remaining 67% 
has a NIHSS value of 0–5. In clinical terms, this means 
that these patients will have a better outcome than 
predicted.

If we look at the NIHSS class >20, the two approaches 
perform equally in terms of f1 score (63%). The regressor 
has higher precision (85% vs 68%), meaning that among 
patients predicted to have a NIHSS > 20, 85% actually 
belongs to that class. The remaining 15% of patients whose 
outcome is not correctly predicted by the regressor actually 
belong to the nearest lower class of severity (NIHSS 

11–20). On the other hand, the regressor performs slightly 
worse than the classifier in terms of recall (50% vs 59%), 
meaning that among all patients with a NIHSS > 20, the 
regressor correctly identifies 50% of them. However, as 
reported in Figure 3(b), among patients that actually have a 
NIHSS > 20 the majority of the incorrectly predicted 
patients are predicted as having a NIHSS value of 11–20 by 
the regressor, while they are predicted to have NIHSS 
between 0 and 5 by the classifier.

Moreover, since important clinical changes could occur 
in the first 24 h after the index event, we evaluated the per-
formance of XGBoost model (both classifier and regressor 
approaches) using only NIHSS at 24 h as predictor of 
NIHSS at discharge and verified that this last approach is 
less performing than a full model using a more comprehen-
sive approach with all the variables we selected (Table S3 
of Supplemental Materials).

Discussion

This study demonstrated that XGBoost algorithm was able 
to reliably predict patients’ NIHSS at discharge based on 
real-world data collected within the first 24 h after ischemic 
stroke onset. The classifier and regressor approaches per-
form similarly in terms of accuracy (80% for the classifier 
and 75% for the regressor) and f1-score (79% for the clas-
sifier and 77% for the regressor). However, we have to con-
sider that when the regressor fails to correctly predict the 
NIHSS of a patient with an actual NIHSS > 20, it generally 
predicts a NIHSS value of 11–20, so it still predicts a severe 
clinical condition. On the other hand, when the classifier 
fails to correctly predict the NIHSS of a patient with an 
actual NIHSS > 20 at discharge, it more probably predicts a 
NIHSS 0–5, that is a minor stroke, being this more optimis-
tic prediction obviously unacceptable from a clinical point 
of view. In light of this, we should prefer the regressor 
approach over the classifier, even if their global perfor-
mance is similar. In fact, while the number of patients not 
correctly classified by the regressor in the class NIHSS > 20 
is higher, the prediction error is less serious from a clinical 
perspective. In other words, we could say that the regressor 
prediction is more pessimistic than that of the classifier 
approach in those cases of misclassified patients with actual 
NIHSS > 20.

With respect to the interpretation of global importance 
of the variables in making prediction, in both the approaches 
SHAP plots demonstrate that a high NIHSS value at 24 h, a 
low GCS score at 24 h and higher heart rate values at admis-
sion, as well as the presence of an acute ischemic lesion at 
the first brain CT increase the probability of having higher 
NIHSS at discharge, while higher values of TICI score after 
the endovascular procedures decrease the probability of a 
higher NIHSS at discharge. The only difference between 
these two approaches was the NIHSS value at admission. In 
the classifier approach, high NIHSS values at admission 
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Figure 3.  Evaluation metrics and confusion matrices between predicted and true NIHSS for classifier (a) and regressor (b). For 
the regressor approach, we have converted the predicted NIHSS variation into predicted NIHSS classes to make comparable the 
findings from classifier and regressor approaches.

Figure 4.  SHAP plots describing the main features ordered according to their importance in making For Peer Review prediction as 
classifier (a) and regressor (b).

shift the prediction toward high NIHSS classes at discharge, 
while low NIHSS values at admission shift the prediction 
toward low NIHSS classes at discharge. On the other hand, 
the regressor task works in a less intuitive way. In fact, low 
NIHSS values at admission generally shift the prediction 
toward a positive variation of NIHSS between discharge 
and admission meaning neurological deterioration. This is 
due to the fact that, in case of clinical worsening of a patient 

with low NIHSS at admission, the amount of positive vari-
ation can theoretically be very wide for example, from 
NIHSS 5 at admission to 43 at discharge (the highest pos-
sible variation is +38). On the other hand, in case of clini-
cal improvement of patients with low NIHSS at admission 
(negative NIHSS variation), necessarily the amount of vari-
ation must be little, for example, from NIHSS 5 at admis-
sion a patient cannot improve more than 5 points, meaning 
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that the highest possible variation is −5. Therefore, low 
NIHSS at admission cannot be associated to great negative 
variation but only to great positive variations. The same 
interpretation works if we consider high NIHSS values at 
admission: high NIHSS values at admission tend to shift 
the prediction toward a negative variation. However, it is 
crucial to bear in mind that the outcome prediction on the 
single patient depends on the combination of all the varia-
bles collected and AI-modeled from real-world big data, 
making the prediction tailored and unique for each and 
every patient.

To our knowledge, while there are other research studies 
that used AI-based models to predict long term clinical out-
comes,11–13,20 this is the first study aimed to predict a short-
term neurological outcome in terms of NIHSS. In fact, 
almost all of the studies published up to this point pre-
dicted the mRS at 90 days.11–13,20 Lin et al.12 excluded 
patients who died before discharge, Heo et al.11 excluded 
patients who received recanalization treatment, while Xie 
et al.13 excluded patients with vertebrobasilar occlusions.  
Moreover, in building their models, these Authors consid-
ered some information which could be available only after 
a diagnostic workflow performed during the overall hospi-
tal stay, as clinical and instrumental information aimed to 
assess stroke etiology according to the TOAST classifica-
tion11,20 or clinical severity at discharge in terms of NIHSS, 
Barthel index, and mRS scores.12 Our approach instead pre-
serves the real-world setting avoiding selection of patients 
according to their clinical severity, treatment options and 
anterior/posterior circulation involvement and allow a 
prognostic prediction based only on features acquired in the 
first 24 h, the most crucial. Other studies focused on pre-
dicting long-term clinical outcome, especially in order to 
improve selection of patients for endovascular treatment.21

In our opinion, the possibility to predict a short-term 
outcome such as NIHSS at discharge adds a new value to 

Figure 5.  Absolute error distribution of the predicted 
variation between NIHSS at discharge and at admission.

the potential application of this technology in a clinical 
context. In fact, it could be really useful to have a tool that 
could accurately predict the clinical pathway of the patients. 
First of all, it could support stroke physicians in communi-
cation with patients and caregivers in the first 24 h. In fact, 
it is known that stroke physicians’ personal expertise and 
judgment are not sufficiently accurate in making reliable 
prognosis.22,23 In our opinion, a tool which bases its predic-
tions on a large amount of data, constantly evolving and 
performing better, could be a valuable aid in answering 
prognostic questions. Moreover, we have to consider that 
NIHSS at discharge is strongly related to mRS at 3 months.24 
Indeed, NIHSS in the acute phase, specifically at 7 days, 
has been proposed as surrogate outcome of mRS at 
90 days.25 Therefore our approach, which in the first 24 h 
after stroke makes a prediction of NIHSS at discharge, 
gives important insights on the level of disability at 
3 months and contributes to depict a tailored clinical evolu-
tion for each and every patient. Moreover, since the study 
was conducted in a hub hospital of a stroke network, 
patients arrive at our center both directly as first aid and 
from spoke hospitals in order to potentially undergo revas-
cularization procedures. In light of this, the studied cohorts 
comprised a wide scenario of stroke patients which is 
indeed difficult to find in smaller hospitals where revascu-
larization treatments might not be available.

Of course this study presents some limitations. First of 
all in our approach we aimed to predict clinical severity in 
terms of NIHSS which however does not score dead 
patients. This aspect is a well known limit of NIHSS25 and 
a defined approach to overcome this issue is not available. 
Given that dead patients were arbitrarily scored as having a 
NIHSS value of 43, our models include dead patients in the 
severity class NIHSS > 20. Conceptually it is challenging 
to consider dead patients in the same category of very 
severe patients, but this approach allows to avoid a more 
serious methodological issue as the selection bias of exclud-
ing dead patients from analysis. Secondly, the study was 
conducted in a single clinical center and therefore the 
model needs to be externally validated in different clinical 
sites also at an international level in order to develop a 
model as generalizable as possible. In this view, the pro-
cess of integrating data from different hospitals must nec-
essarily consider specificities of the different settings such 
as different health care system organizations, availability 
of variables and languages in which the variables are 
expressed. Following this approach, different machine 
learning models should be evaluated in order to choose 
the best performing models in these different contexts. 
Then, algorithms should undergo a process of re-training 
and updating to confirm that XGBoost is the best perform-
ing model in a wider scenario. Moreover, this process will 
be useful for the overall improvement of the accuracy of 
the models. However, there could be potential privacy 
issues regarding the sharing of sensitive personal data 
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among different institutions, that could be overcome with a 
federated learning approach. In this view, the described 
methodology and the findings obtained with this study 
could represent a first step toward that ambitious target.

Conclusions

In conclusion, our data demonstrated that in the first 24 h 
after stroke XGBoost may reliably predict clinical evolu-
tion in terms of NIHSS at discharge.
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