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Abstract
Background and aims: Acute ischemic stroke (AIS) outcome prognostication remains challenging despite available 
prognostic models. We investigated whether a biomarker panel improves the predictive performance of established 
prognostic scores.
Methods: We investigated the improvement in discrimination, calibration, and overall performance by adding five 
biomarkers (procalcitonin, copeptin, cortisol, mid-regional pro-atrial natriuretic peptide (MR-proANP), and N-terminal 
pro-B-type natriuretic peptide (NT-proBNP)) to the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) and age/
NIHSS scores using data from two prospective cohort studies (SICFAIL, PREDICT) and one clinical trial (STRAWINSKI). 
Poor outcome was defined as mRS > 2 at 12 (SICFAIL, derivation dataset) or 3 months (PREDICT/STRAWINSKI, pooled 
external validation dataset).
Results: Among 412 SICFAIL participants (median age 70 years, quartiles 59–78; 63% male; median NIHSS score 3, 
quartiles 1–5), 29% had a poor outcome. Area under the curve of the ASTRAL and age/NIHSS were 0.76 (95% CI 0.71–
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Introduction

An accurate prediction of functional outcome is essential in 
acute ischemic stroke (AIS) management in order to inform 
patients and their relatives and tailor therapeutic, preventive, 
and rehabilitation measures accordingly.1 However, even 
clinicians with stroke expertise may poorly predict clinical 
outcomes of individual patients.2,3 To support clinicians in 
predicting functional outcome, numerous prognostic scores 
have been developed in recent decades.4 Nevertheless, exist-
ing scores might be not accurate enough to allow reliable 
clinical decision-making due to limited predictive proper-
ties.5 It has been proposed, for example, by the PROGnosis 
RESearch Strategy (PROGRESS) partnership, that the addi-
tion of novel prognostic factors may be an alternative to 
update or improve the performance of existing prognostic 
scores.6 Blood-based biomarkers might provide such addi-
tional prognostic information, that is not currently available 
in clinical routine.7 Blood-based biomarkers have been 
investigated extensively and a recent systematic review 
reported the consistent association of several biomarkers 
with poor outcome.7 However, the few studies that have 
examined their added prognostic value on top of existing 
scores7 have focused mostly on the improvement of discrim-
ination (i.e., the ability of a model to assign higher risks to 
patients experiencing the outcome), overlooking other rele-
vant performance measures of prognostic scores such as 
calibration (i.e., agreement between observed outcomes and 
predictions). Among existing scores, the Acute Stroke 
Registry and Analysis of Lausanne (ASTRAL) score8 is cur-
rently considered the best performing model according to a 
systematic review4 and head-to-head comparison.5 However, 
a simple model based on age and initial stroke severity 
(National Institutes of Health Stroke Scale [NIHSS])9 is the 
hitherto most used alternative in studies reporting on the 
incremental value of biomarkers beyond clinical variables.7

Therefore, we investigated whether a panel of blood-
based biomarkers of three different domains (cardiac, 
inflammation, stress) selected via a recently updated sys-
tematic review7 may improve the predictive performance in 
terms of discrimination, calibration, and overall perfor-
mance over best practice prognostic models exemplified by 
the ASTRAL score and the age/NIHSS model.

Methods

Data sources

The Stroke Induced Cardiac FAILure in mice and men 
(SICFAIL) cohort study intended to describe the natural 
course of cardiac function after AIS (clinical trial registra-
tion: DRKS00011615).10 Patients ⩾18 years with symp-
toms suggestive of AIS (World Health Organization 
definition11) were recruited at the Stroke Unit, Department 
of Neurology, University Hospital Würzburg, Germany. We 
used this cohort as derivation dataset.

The multicentric PREDICT cohort intended to identify 
predictors of post-stroke pneumonia and recruited patients 
⩾18 years with AIS in any territory and within 36 h of 
symptom onset with NIHSS ⩾ 1 (clinical trial registration: 
NCT01079728).12

The STRoke Adverse outcome is associated WIth 
NoSoKomial Infections (STRAWINSKI) multicentric, ran-
domized clinical trial investigated whether a procalcitonin-
guided antibiotic therapy could improve the functional 
outcome of patients ⩾18 years with moderate to severe 
(NIHSS > 9 points) AIS in the middle cerebral artery terri-
tory (clinical trial registration: NCT01264549).13 Exclusion 
criteria and baseline investigations of all studies are listed 
in the supplemental material. We used a pooled dataset of 
the STRAWINSKI and PREDICT studies for external 
validation.14

0.81) and 0.77 (95% CI 0.73–0.82), respectively. Copeptin (0.79, 95% CI 0.74–0.84), NT-proBNP (0.80, 95% CI 0.76–0.84), 
and MR-proANP (0.79, 95% CI 0.75–0.84) significantly improved ASTRAL score’s discrimination, calibration, and overall 
performance. Copeptin improved age/NIHSS model’s discrimination, copeptin, MR-proANP, and NT-proBNP improved its 
calibration and overall performance. In the validation dataset (450 patients, median age 73 years, quartiles 66–81; 54% men; 
median NIHSS score 8, quartiles 3–14), copeptin was independently associated with various definitions of poor outcome 
and also mortality. Copeptin did not increase model’s discrimination but it did improve calibration and overall model 
performance.
Discussion: Copeptin, NT-proBNP, and MR-proANP improved modest but consistently the predictive performance of 
established prognostic scores in patients with mild AIS. Copeptin was most consistently associated with poor outcome 
in patients with moderate to severe AIS, although its added prognostic value was less obvious.
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Baseline investigation

Demographic characteristics, comorbidities, pre-stroke 
functional status, and lifestyle factors were documented at 
baseline in all studies (for definitions see supplemental 
material). Patients with symptoms suggestive of acute AIS 
underwent routine diagnostic and etiological workup at the 
respective centers (see supplemental material).10,12,13

Blood-based biomarkers

In SICFAIL, fasting blood samples were collected the 
morning after enrollment, at a median of 3 (quartiles 2–4) 
days after symptom onset. Blood samples in the 
STRAWINSKI and PREDICT studies were collected at a 
median of 1 day (quartiles 1–1) after symptom onset. 
Additional samples were drawn at days 2–4.

Based on a systematic review of the literature,7 we 
selected five biomarkers from three domains with previous 
evidence showing an incremental value over established 
prognostic markers that could be measured with kits avail-
able in routine clinical care: stress domain (copeptin; corti-
sol), inflammatory domain (procalcitonin), and cardiac 
domain (N-terminal pro-B-type natriuretic peptide, 
NT-proBNP; mid-regional pro-atrial natriuretic peptide, 
MR-proANP). For external validation, one cardiac 
(MR-proANP), stress (copeptin), and inflammatory (proc-
alcitonin) biomarker were available for modeling. For 
details regarding sample storage and biomarker measure-
ment see the supplemental material.

Endpoints and follow-up

In SICFAIL, we defined poor outcome as major disability 
or death (mRS > 2) 1 year after stroke. In STRAWINSKI/
PREDICT, poor outcome was defined as mRS > 2 three 
months after AIS, with further sensitivity analyses includ-
ing mRS 4-6, mRS 5-6, and death. Outcome assessment 
was performed in all studies blinded to biomarker data.

Standard protocol approvals, registrations, and 
patient consents

All studies complied with the Declaration of Helsinki and 
were approved by the respective Ethics Committee 
(SICFAIL: 176/13; PREDICT: EA1/216/09, PR_IR_170-
2012; STRAWINSKI: EA1/267/10, AS 30(a)/2011, 2013-
0195, TFS-ANT-2012-01; for details see supplemental 
material). All patients or their legal representatives pro-
vided written informed consent.

Statistical analysis

We report standard descriptive summary statistics for the 
complete cohorts and groups with poor and good outcome. 
In line with current statistical guidance,15 we do not report 

significance tests for the comparison between groups in the 
descriptive tables. We used multivariable logistic regression 
to identify biomarkers independently associated with poor 
outcome after adjustment for the ASTRAL or age/NIHSS 
scores and report odds ratios (OR) with 95% confidence 
intervals (CI). In a sensitivity analysis we further adjusted 
for atrial fibrillation. Furthermore, we investigated the 
association of the biomarkers with varying definitions of 
poor outcome and in patients with moderate to severe 
stroke (NIHSS > 5). Due to limited statistical power in 
SICFAIL, these sensitivity analyses were done only in the 
STRAWINSKI/PREDICT dataset. Concentrations of bio-
markers were logarithmically transformed due to skewed 
distribution. Reported ORs correspond to logarithmic incre-
ments of base 10.

We evaluated the performance of the ASTRAL score in 
the SICFAIL dataset.8 First, we calculated the sum score for 
each patient using the tables provided in the development 
paper.8 Then, we calculated a logistic regression including 
the ASTRAL score as the only predictor, allowing both 
coefficient and intercept to be freely estimated (logistic rec-
alibration). We derived a second model including only age 
and NIHSS,9 since most available studies reported the 
incremental value of blood-based biomarkers over a model 
consisting of these two variables.7 However, as the original 
model was developed to predict a different outcome 
(Barthel Index ⩾ 95),9 we allowed for free estimation of 
coefficients and intercept. We externally evaluated the age/
NIHSS model in the pooled dataset of STRAWINSKI/
PREDICT, as previously described by Vergouwe et al.:16 (i) 
using the linear predictor of the original model with its 
coefficient set to 1 and intercept to 0, (ii) allowing the inter-
cept to be freely estimated (recalibration in the large), (iii) 
allowing both the intercept and the coefficient of the linear 
predictor to be freely estimated (logistic recalibration), and 
(iv) allowing the coefficients for age and NIHSS and the 
intercept to be recalculated in the STRAWINSKI/PREDICT 
dataset (model revision). The respective coefficients and 
intercepts for each model are presented in the supplemental 
Table S8 (for details see supplemental material).16,17 We did 
not validate the ASTRAL score in the STRAWINSKI/
PREDICT dataset because not all required variables were 
documented prospectively and their retrospective collec-
tion was not possible.

We investigated the improvement in predictive perfor-
mance by generating a logistic regression including the 
ASTRAL or age/NIHSS models and selected biomarkers as 
independent variables. We assessed discrimination using 
the area under the receiver operator curve (AUROC). We 
used the DeLong test to investigate the increase in the 
AUROC provided by the addition of the different biomark-
ers. We assessed calibration with plots of predicted versus 
observed risk and report Harrell’s Emax (maximal absolute 
difference between the smoothed calibration curve and the 
diagonal line denoting best fit) and Eavg (average absolute 
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difference in predicted and calibrated probabilities).18 We 
evaluated the overall model’s performance using the 
rescaled Brier score (range 0–1), with higher values indi-
cating better performance.19 We provide a detailed explana-
tion of these statistical measures in the supplemental 
material. We report bootstrapped 95% CI for the four per-
formance metrics (Brier score, AUROC, Emax, and Eavg) 
based on 500 resampled replicates. We investigated propor-
tion of the variance for functional outcome explained by 
single independent variables using Nagelkerke–Cox–
Snell–Maddala–Magee R2 test. Statistical analyses were 
performed using R (version 4.1.2.).

Results

SICFAIL study

Between January 2014 and February 2017, 696 with 
patients with AIS were recruited.10 Blood samples were 
available from 544 of 696 patients (78%). Baseline 

characteristics did not differ between patients with and 
without available samples,20 while they differed only 
regarding glomerular filtration rate between patients who 
did and did not take part of the follow-up (supplemental 
Table S1). Calculation of the ASTRAL score was feasible 
for 520 patients (median 18 points, quartiles 16–21). Of 
those, 1-year follow-up was available from 412 (81%). 
Median age of included patients was 70 years (quartiles 
59–78), median NIHSS score on admission was 3 points 
(quartiles 1–5) and 261 (63%) were men (Table 1).

STRAWINSKI/PREDICT studies

Four-hundred and eighty-six AIS patients were recruited 
between January 2010 and December 2012 in the PREDICT 
study.12 Between February 2011 and April 2014, 227 
patients with moderate to severe stroke were recruited in 
the STRAWINSKI study.13 Twenty-nine patients were 
recruited in both studies.14 Of a total 683 patients (from 
both studies), blood samples were available in 573 patients, 

Table 1. Characterization of the SICFAIL study population.

Variable All patients (n = 412) Good outcome  
(mRS ⩽ 2) (n = 290)

Poor outcome  
(mRS ⩾ 3) (n = 122)

Demographics
 Age (years) 70 (59–78) 66 (57–76) 76.5 (70–83)
 Male sex 261 (63) 197 (68) 64 (52)
 NIHSS 3 (1–5) 2 (1–4) 4 (2–9)
 ASTRAL score 18 (16–21) 17 (15–20) 21 (18–26)
Etiology
 Large artery atherosclerosis 55 (13) 39 (13) 16 (13)
 Cardioembolism 121 (30) 71 (25) 50 (41)
 Small artery occlusion 56 (14) 45 (16) 11 (9)
 Other cause 14 (3) 10 (3) 4 (3)
 Undetermined 163 (40) 125 (43) 41 (34)
Risk factors
 Atrial fibrillation 98 (24) 47 (16) 51 (42)
 Hypertension 308 (75) 202 (70) 106 (87)
 Diabetes mellitus 111 (27) 65 (23) 46 (39)
 Previous stroke 43 (10) 25 (9) 18 (15)
 Hyperlipidemia 114 (28) 81 (28) 33 (28)
 Coronary heart disease 74 (18) 43 (15) 31 (25)
 Heart failure 29 (7) 14 (5) 16 (13)
 Estimated glomerular filtration rate (mL/min/1.73 m2) 87 (71–96) 88 (73–99) 81 (62–92)
Biomarkers
 NT-proBNP (pg/mL) 276 (89–940) 188 (65–606) 753 (303–1991)
 MR-proANP (pmol/L) 122 (74–2017) 101 (69–171) 198 (119–292)
 Procalcitonin (ng/mL) 0.05 (0.03–0.07) 0.04 (0.03–0.07) 0.05 (0.03–0.09)
 Copeptin (pmol/L) 7.9 (5.3–13.6) 7.2 (5.0–7.3) 12 (6.4–23.9)
 Cortisol (μg/dL) 21.0 (16.8–25.7) 20.4 (15.9–24.7) 22.7 (18.6–27.2)
Events during follow-up
 Any stroke 35 (8.5) 23 (7.9) 12 (9.8)
 Myocardial infarction 1 (0.2) 1 (0.3) 0 
 Pneumonia requiring rehospitalization 3 (0.7) 1 (0.3) 2 (1.6)

mRS: modified Rankin scale; NIHSS: National Institutes of Health Stroke Scale; ASTRAL: Acute Stroke Registry and Analysis of Lausanne; NT-proB-
NP: N-terminal B-type natriuretic peptide; MR-proANP: mid-regional proatrial natriuretic peptide.
Data are median (quartiles) or n (percent).
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Table 2. Characterization of the pooled STRAWINSKI and PREDICT population.

Variable All patients  
(n = 450)

Good outcome  
(mRS ⩽ 2) (n = 195)

Poor outcome  
(mRS ⩾ 3) (n = 255)

Demographics
 Age (years) 73 (66–81) 69 (61–76) 78 (70–84)
 Male sex 242 (54) 122 (63) 120 (47)
 NIHSS 8 (3–14) 4 (2–6) 13 (8–17)
Etiology
 Large artery atherosclerosis 137 (31) 72 (37) 65 (26)
 Cardioembolism 165 (37) 48 (24) 117 (46)
 Small artery occlusion 40 (9) 28 (14) 12 (5)
 Other determined cause 15 (3) 7 (4) 8 (3)
 Undetermined etiology 91 (20) 40 (21) 51 (20)
Risk factors
 Atrial fibrillation 161 (36) 43 (23) 118 (46)
 Hypertension 376 (84) 154 (79) 222 (87)
 Diabetes mellitus 119 (27) 37 (19) 82 (32)
 Hyperlipidemia 234 (52) 103 (53) 131 (52)
 Previous stroke 90 (20) 34 (18) 56 (22)
Biomarkers
 MR-proANP (pmol/L) 156 (90–257) 114 (71–174) 206 (116–321)
 Procalcitonin (μg/L) 0.034 (0.023–0.052) 0.030 (0.022–0.044) 0.038 (0.023–0.066)
 Copeptin (pmol/L) 10.5 (6.1–26.1) 7.3 (5.0–13.7) 17.8 (7.8–35.8)

mRS: modified Rankin scale; NIHSS: National Institutes of Health Stroke Scale; MR-proANP: midregional proatrial natriuretic peptide.
Data are median (quartiles) or n (percent).

and measurements for the three biomarkers MR-proANP, 
procalcitonin, and copeptin were available from 545. 
Three-month functional outcome was available in 450 
patients of them. We restricted the external validation to 
these patients. The median age was 73 years (quartiles 66–
81), median NIHSS score on admission was 8 (quartiles 
3–14) points and 242 (54%) were men (Table 2).

ASTRAL score

Discrimination (AUROC) of the ASTRAL score in the 
SICFAIL dataset was good (0.76, 95% CI 0.71–0.81), while 
calibration (Figure 1) was acceptable (Emax0.08 (95% CI 
0.04–0.18)).

Age/NIHSS model

In the SICFAIL derivation dataset the age/NIHSS model 
showed good discrimination with AUROC 0.77 (95% CI 
0.73–0.82), and satisfactory calibration with Emax of 0.06 
(95% CI 0.03–0.18; Figure 2). In the derivation dataset, 
stroke severity alone explained 14.3% of the observed vari-
ance. In the STRAWINSKI/PREDICT dataset, the age/
NIHSS model showed very good discrimination (AUROC 
0.86, 95% CI 0.83–0.90) and overall performance (Brier 
score 0.38, 95% CI 0.30–0.45), while calibration was 
poorer (Emax 0.10, 95% CI 0.06–0.17; Figure 3). 
Recalibration in the large, logistic calibration and model 

revision did not improve discrimination (Supplemental 
Table S10), although rescaled Brier score and calibration 
improved (Supplemental Table S7). In the validation data-
set, stroke severity alone explained 44.9% of the observed 
variance. Coefficients and intercept are provided in supple-
mental Table S8.

Blood-based biomarkers and prognostic 
performance of the ASTRAL score in the 
SICFAIL cohort

In the SICFAIL cohort, all biomarkers were associated at 
the univariable level with poor outcome (Table 3). 
Copeptin, NT-proBNP, MR-proANP, and cortisol were 
associated with poor outcome after adjustment for the 
ASTRAL score, while procalcitonin was not (Table 3). 
After further adjustment for atrial fibrillation, cortisol was 
no longer associated with poor outcome (supplemental 
Table S3). The addition of copeptin (AUROC 0.79, 95% 
CI 0.74–0.84), NT-proBNP (AUROC 0.80, 95% CI 0.76–
0.84), and MR-proANP (AUROC 0.79, 95% CI 0.75–
0.84) led to similar improvements in discrimination (all 
p < 0.05 when compared to ASTRAL score), calibration, 
and overall model’s performance. Cortisol and procalci-
tonin did not improve any performance measure of 
ASTRAL (supplemental Table S7). The best discrimina-
tion was observed with the combination of copeptin and 
one cardiac marker (AUROC 0.80, 95% CI 0.76–0.85 for 
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Figure 1. Calibration plots for the prediction of poor outcome using the ASTRAL score and single biomarkers in the SICFAIL 
dataset. Predicted probability in the X-axis.

MR-proANP; 0.81, 95% CI 0.77–0.85 for NT-proBNP), 
although this combination did not excel the models includ-
ing solely ASTRAL and one cardiac marker (p = 0.11 for 
MR-proANP; p = 0.078 for NT-proBNP, supplemental 
Table S9). The models including copeptin and one cardiac 

marker yielded the highest Brier scores: 0.24 (95% CI 
0.15–0.35 for MR-proANP, and 0.25 (95% CI 0.17–0.36) 
for NT-proBNP (supplemental Tables S7). Calibration 
plots are depicted in Figure 1.
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Figure 2. Calibration plots for the prediction of poor outcome using a model including age and the NIHSS score and single 
biomarkers in the SICFAIL dataset. Predicted probability in the X-axis.

Blood-based biomarkers and prognostic 
performance of the age/NIHSS model in the 
SICFAIL cohort

Copeptin, NT-proBNP, MR-proANP, and cortisol were 
associated with poor outcome after adjustment for age and 

NIHSS, while procalcitonin was not (Table 3). Compared 
to age/NIHSS alone (AUROC 0.77, 95% CI 0.73–0.82), 
copeptin improved discrimination (0.80, 95% CI 0.76–
0.84, p = 0.022), while the other biomarkers did not (see 
supplemental Tables S6 andS9). NT-proBNP, MR-proANP, 
and copeptin improved calibration (Figure 2), reducing 
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Table 3. Association of selected biomarkers with poor outcome in univariable and multivariable logistic regression analysis in the 
SICFAIL cohort and in the STRAWINSKI/PREDICT pooled dataset.

Biomarker Odds ratio* (95 % CI) Odds ratio** (95 % CI) Odds ratio*** (95 % CI)

Copeptin
 SICFAIL 5.69 (3.10–10.42) 2.93 (1.57–5.45) 3.29 (1.75–6.18)
 STRAWINSKI/PREDICT 6.44 (3.87–10.70) 2.11 (1.11–3.98)  
Procalcitonin
 SICFAIL 2.07 (1.18–3.64) 1.17 (0.59–2.31) 1.22 (0.60–2.45)
 STRAWINSKI/PREDICT 1.11 (0.97–1.27) 0.99 (0.85–1.16)  
Mid-regional pro atrial natriuretic peptide
 SICFAIL 15.49 (7.05–34.02) 3.74 (1.39–10.01) 6.01 (2.46–14.67)
 STRAWINSKI/PREDICT 13.98 (7.05–27.74) 1.76 (0.69–4.48)  
N-Terminal B-type natriuretic peptide
 SICFAIL 3.72 (2.63–5.26) 2.15 (1.43–3.24) 2.52 (1.71–3.71)
Cortisol
 SICFAIL 16.60 (3.50–78.72) 4.43 (0.81–24.32) 5.74 (1.04–31.54)

Odds ratios are reported for logarithmic increases of base 10.
*Univariable analysis. **Adjusted for age and NIHSS. ***Adjusted for ASTRAL score.

Figure 3. Calibration plots for the prediction of poor outcome using a model including age and the NIHSS score and single 
biomarkers in the STRAWINSKI/PREDICT dataset. Predicted probability in the X-axis.
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Emax from 0.06 to 0.03–0.02 and improving the Brier score 
up to 0.24 for both copeptin and NT-proBNP (supplemental 
Table S7).

Blood-based biomarkers and prognostic 
performance of the age/NIHSS model in the 
STRAWINSKI/PREDICT dataset

In the validation dataset, all biomarkers were associated 
with poor outcome at univariable level, but it remained sig-
nificant only for copeptin after adjustment for age and 
NIHSS (Table 3). This association was stable across differ-
ent mRS cutoffs (supplemental Table S5) and time points of 
sampling (days 1–4, supplemental Table S4), but not in the 
group of patients with NIHSS > 5, in which copeptin was 
only associated with very poor outcome (mRS 5–6) and 
death (supplemental Table S6). No studied biomarker 
improved discrimination significantly (p > 0.05 for all 
comparisons against age/NIHSS; supplemental Table S11). 
However, after model revision, the addition of MR-proANP, 
copeptin, or procalcitonin improved calibration. Copeptin 
led to the largest improvement in calibration (Emax reduc-
tion from 0.06 to 0.01; supplemental Table S7).

Discussion

Our study showed that copeptin, MR-proANP, and 
NT-proBNP led to modest but similar and consistent 
improvements in discrimination, calibration, and overall 
performance of both the ASTRAL and age/NIHSS models 
for the prediction of poor 1-year outcome in patients with 
mostly mild to moderate AIS. Cardiac biomarkers improved 
calibration and overall performance of the ASTRAL and 
age/NIHSS models, while it improved discrimination of the 
ASTRAL score in the derivation dataset only. We observed 
no improvement in discrimination but modest improve-
ments in calibration with the addition of some biomarkers 
in the pooled STRAWINSKI/PREDICT external validation 
dataset, including mostly patients with moderate to severe 
stroke and 3-month follow-up. Our work adds to the exist-
ing literature by demonstrating that blood-based biomark-
ers can also improve calibration and overall model’s 
performance, independently of improvement in discrimina-
tion for the prediction of poor outcome after AIS.

The integration of biomarker measurements in the clini-
cal practice can be challenging and dichotomization into 
normal/abnormal categories is common. This approach, 
while intuitive, is both biologically implausible and statisti-
cally inefficient.21 In addition, we can speculate that the 
use of cutoffs may lead practitioners to make decisions 
based on individual biomarkers, although a single predic-
tor is rarely a reliable estimator of prognosis.22 However, 
using continuous variables like biomarkers in their  
continuous scale (the methodologically recommended 
approach) may be difficult to interpret in clinical practice. 

Using blood-based biomarkers to update or to optimize 
existing clinical models6 allows harmonizing the need for 
clinical actionability with best analytical practice. Despite 
multiple calls to action, to date only few publications have 
implemented this approach in biomarker prognostic 
research after AIS. Of those, the majority investigated only 
the improvement in discrimination over a simple age/
NIHSS model, neglecting the assessment of calibration and 
overall model performance as well as more complex prog-
nostic models, despite current best practice recommenda-
tions.23 In a previous systematic review of prognostic stroke 
biomarkers, only 5% of identified studies investigated cali-
bration. Of those, the majority reported only the Hosmer–
Lemeshow test,7 which has limited statistical power and 
reduced informative value regarding the type and extent of 
miscalibration.23 Therefore, current statistical guidance 
suggests not assessing calibration using this test.23 Our 
work adds to the existing literature by demonstrating that 
blood-based biomarkers can also improve calibration (and 
overall model’s performance), independently of improve-
ment in discrimination for the prediction of poor outcome 
after AIS. Calibration is especially important when sup-
porting risk-based decision-making,24 since the systematic 
over- or underestimation of risk can render a prognostic 
model useless, despite good discrimination. In the case of 
functional outcome, strong over- or underestimation of the 
risk of poor outcome could lead to unwanted decisions 
regarding, for example, early withdrawal of life sustaining 
therapies in patients who otherwise may have had an 
acceptable outcome. Our work underscores the importance 
of integrating biomarkers into existing prognostic models 
as an alternative to successfully bridging the gap between 
biomarker research and implementation in routine clinical 
care, as opposed to considering them in isolation, for exam-
ple, using cutoffs. Moving forward, further research is 
needed to investigate the clinical implications of more 
accurate risk prediction in routine care, which might require 
conducting cluster-randomized trials to properly assess the 
benefits (e.g., continuation of therapy in patients with pre-
dicted good outcome despite current clinical status suggest-
ing otherwise) or potential risks (e.g., improving survival at 
the expense of increased disability) of routine implementa-
tion of prognostic scores. Importantly, the existence of 
accurate prognostic models is a prerequisite for the conduc-
tion of such studies.

The incremental value of copeptin is consistent with the 
previous published literature,7 although the pathophysio-
logic link between copeptin and poor outcome is unclear.25 
Importantly, the association of copeptin with poor outcome 
has been identified in diseases other than stroke, like myo-
cardial infarction,26 suggesting that the additional informa-
tion provided (likely a marker of internal homeostasis), is 
not exclusive to stroke and beyond routinely collected clini-
cal variables.25 Remarkably, especially in the validation 
cohort consisting of moderate to severe strokes, copeptin 
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was independently associated with all possible definitions 
of disability based on mRS-cutoffs and with mortality and 
at all time points from days 1 to 4. Despite the lack of 
improvement in discrimination, copeptin improved calibra-
tion and overall model performance. Also the cardiac mark-
ers MR-proANP and NT-proBNP consistently improve 
model’s prognostic performance. In the derivation dataset 
we provide a head-to-head comparison between these 
markers, showing that both improve the model’s perfor-
mance to a similar extent in all measures, probably because 
they depict the same pathophysiological mechanism. The 
improvement in performance may be mediated by etiology, 
since natriuretic peptides are associated with cardioembo-
lism.27 However, after adjustment for atrial fibrillation both 
natriuretic peptides were still associated with poor out-
come. Further, natriuretic peptides are associated with car-
diac comorbidities (e.g., heart failure),28 which in turn is 
associated with poor outcome.29 Therefore, the improve-
ment in prognostic performance may be mediated by a 
more accurate prediction of cardiac-related risk of poor out-
come. Importantly, our works intends to optimize outcome 
prediction after AIS using biomarkers and our results 
should not be interpreted as causal effects.

We found no improvement in discrimination in the vali-
dation cohort. Two elements in our study suggest that this 
finding is explained by case mix. First, stroke severity 
explained only 14.3% of the variance regarding 1-year 
functional outcome in the derivation dataset (mostly mild 
strokes), compared to 44.9% of the variance explained at 
3 months in patients with mostly moderate to severe stroke. 
The results are consistent with previous data (n = 614, 
median NIHSS = 5)30 showing that NIHSS accounts for 
25% of the explained variance regarding functional out-
come at 3 months. Second, among patients of the validation 
cohort with NIHSS > 5, copeptin was only associated with 
very poor outcome (mRS 5–6) and mortality but not with 
poor outcome defined as mRS 3–6. Importantly, the age/
NIHSS model in the validation dataset (AUROC 0.86, 95% 
CI 0.83–0.90) outperformed that in the derivation dataset 
(AUROC 0.77, 95% CI 0.73–0.82), leaving little room for 
improvement with the addition of new variables. The rele-
vance of initial stroke severity for adjustment is reinforced 
by the remarkable consistency in the magnitude of the odds 
ratios at the univariable level, despite the different time 
points of outcome assessment. However, the latter cannot 
be ruled out as a further possible source of discrepancy. 
Taken together, our data suggests that the relevance of 
stroke severity as a determinant of functional outcome 
depends on (1) stroke severity, being more important in 
more severely affected patients, and (2) its relevance may 
be higher shortly after the index event and diminish with 
time. Furthermore, it must be stressed that comparison of 
rank statistics (such as the AUROC) is a procedure that 
does not reward sufficiently extreme predictions, leading to 
reduced statistical power.24 Thus, assessment of prognostic 

relevance cannot be based solely on improvement of 
discrimination.

Importantly, our results do not permit to conclude that a 
simple age/NIHSS model outperforms the ASTRAL score, 
since the calculation of the later was performed using the 
tables provided in the development paper and the linear 
predictor could not be calculated, because the intercept was 
not reported. Thus, we cannot exclude that rounding error 
affected the overall performance of the ASTRAL score.

The major strength of this work is the structured 
approach we undertook to evaluate the integration of 
blood-based biomarkers for functional outcome prognosti-
cation, building up on our previous systematic review7 and 
using prospectively collected (and in the case of the 
STRAWINSKI/PREDICT dataset multicentric) data.10,12–

14 Importantly, we evaluated the incremental prognostic 
value not only regarding discrimination, but also calibra-
tion and overall model’s performance. Furthermore, by 
reanalyzing data from the STRAWINSKI/PREDICT data-
set in the external validation,14 we were able to gain rele-
vant insights regarding the (possibly) distinctive role of 
biomarkers in poor outcome prediction in patients with dif-
ferent stroke severities and at different time points after 
AIS, which would not have been possible otherwise. Our 
study has, however, limitations. First, we performed a 
complete-case analysis. While the follow-up rate was 
around 80%, in line with comparable previous studies,31 
and although only estimated glomerular filtration rate dif-
fered between patients participating in follow-up from 
those lost-to-follow-up, we cannot completely exclude that 
lost-to-follow-up mechanisms other than missing-com-
pletely-at-random may have introduced bias in our results. 
However, the lack of differences between groups in terms 
of age, stroke severity on admission, ASTRAL score, etiol-
ogy, comorbidities, or biomarker levels are reassuring. 
Second, due to restrictions of the local ethics committee, 
patients were recruited in SICFAIL only if they were able to 
provide informed consent themselves or a legal representa-
tive was available, which determined the recruitment of 
mostly mild strokes. While the differing stroke severity 
profiles between SICFAIL and STRAWINSKI/PREDICT 
allowed us to gain some relevant insights, as stated above, 
they also represent a limitation regarding the exact replica-
tion of the results of the derivation cohort. The limitations 
of the ethics committee also resulted in a later time point of 
blood sampling in the derivation cohort. However, the 
remarkable consistency in the magnitude and direction of 
the ORs suggests that this limitation has not substantially 
influenced our results. Further, additional measurements in 
the validation cohort of copeptin, MR-proANP, and procal-
citonin at days 2-4 did not significantly change the results, 
in line with previous research showing that MR-proANP’s 
predictive value remains unaltered during the first days 
after the index event, despite modest variations in serum 
concentration.32 Third, because the PREDICT/
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STRAWINSKI studies were not conceived as a validation 
cohort of SICFAIL, the time points of outcome assessment 
also differed between datasets. Caution is advised when 
directly comparing the performance between outcomes in 
the derivation and validation dataset, since functional out-
come can continue improving beyond 3 months after AIS, 
especially in patients with severe stroke.33 Fourth, because 
not all variables required to calculate the ASTRAL score 
were available in the STRAWINSKI/PREDICT studies, the 
investigation of this score was not possible in the validation 
dataset. Fifth, we were not able to perform sensitivity anal-
yses in the derivation dataset due to the low number of 
patients with severe stroke, resulting in limited statistical 
power. Sixth, although not all five biomarkers investigated 
in the derivation dataset were available in the validation 
dataset, we investigated at least one biomarker of each 
domain (cardiac, inflammation, stress). Lastly, the panel of 
biomarkers was selected based on a previous systematic 
review and we cannot exclude that other promising mark-
ers can similarly improve model performance.

In summary, our results suggest that: (1) copeptin, 
NT-proBNP, and MR-proANP can improve discrimination, 
calibration, and overall performance of existing models to 
predict long-term poor outcome in patients with mild to 
moderate AIS, and (2) the incremental value of blood-based 
biomarkers in the prediction of mid-term poor outcome in 
patients with moderate to severe AIS is unclear and needs 
to be addressed in further studies. The integration of blood-
based biomarkers into existing models might ease the adop-
tion of biomarkers in clinical routine.
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