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Diabetic nephropathy (DN), a leading cause of chronic kidney disease and end-stage kidney disease (ESKD), poses global 
health challenges given its increasing prevalence. DN increases the risk of mortality and cardiovascular events. Early identifica-
tion and appropriate DN management are crucial. However, current diagnostic methods rely on general traditional markers, 
highlighting the need for DN-specific diagnostics. Metabolomics, the study of small molecules produced by metabolic activ-
ity, promises to identify specific biomarkers that distinguish DN from other kidney diseases, decode the underlying disease 
mechanisms, and predict the disease course. Profound changes in metabolic pathways are apparent in individuals with DN, 
alterations in the tricarboxylic acid cycle and amino acid and lipid metabolism, suggestive of mitochondrial dysfunction. Me-
tabolomics aids prediction of chronic kidney disease progression; several metabolites serve as indicators of renal functional 
decline and the risk of ESKD. Integration of such information with other omics data will further enhance our understanding 
of DN, paving the way to personalized treatment. In summary, metabolomics and multi-omics offer valuable insights into DN 
and are promising diagnostic and prognostic tools. 
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INTRODUCTION

Diabetic nephropathy (DN) is the predominant cause of 
chronic kidney disease (CKD) and end-stage kidney disease 
(ESKD). The prevalence of DN is increasing not only in Korea 
but also globally [1,2]. Individuals with CKD and ESKD are 
at heightened risk of all-cause mortality and cardiovascular 
events [3,4]. Patients with diabetes mellitus (DM) undergo-
ing dialysis experience a shorter duration of survival than 
those without DM undergoing dialysis [5]. Early identifica-
tion and effective management of DN are crucial to pre-
vent progressive kidney dysfunction and ESKD. Ongoing 
pharmaceutical research seeks to provide new therapeutic 
options for diabetic kidney disease (DKD) [6,7]. However, 
the lack of specific indicators of DM-induced kidney dam-
age poses challenges. Current assessments rely on general 
markers, such as albuminuria and the estimated glomerular 
filtration rate (eGFR), which reveal kidney damage caused 

by various conditions including DM [8]. There is a need for 
specific methods that diagnose kidney damage associated 
with DM. DN alone does not fully account for kidney failure 
in patients with DM [9]; DN affects only approximately 40% 
of patients with type 1 or 2 DM [10]. Although changes 
in diabetic retinopathy (DR) are indicative of DN, they do 
not consistently precede the condition in patients with type 
2 DM [11]. Only 60–65% of type 2 DM cases exhibit DN 
nephropathy [12]. Thus, the low negative predictive value 
of DR poses challenges to the diagnosis of DN. Although 
kidney biopsy can confirm DN, its invasiveness, and imprac-
ticality for repeat biopsies over an extended period limit its 
utility. Notably, the rate of renal function decline in patients 
with DN varies considerably even among individuals with 
similar baseline renal function [13]. Given these challenges, 
additional biomarkers are needed to better diagnose and 
predict the progression of DN. 

Metabolomics is one of the omics research fields that 
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systematically study small organic metabolites generated 
or consumed during metabolic processes [14,15]. The aim 
is to comprehensively understand why certain compounds 
are produced via metabolic activities, measure changes in 
their levels, and use the data to gain insights into the status 
and functionality of biological systems. As human diseases 
and pathological conditions are associated with metabolic 
changes, interest is growing in the use of metabolomics to 
discover diagnostic biomarkers and potential therapeutic 
targets [16,17]. Metabolomics may reveal the mechanisms 
underlying disease, identify valuable biomarkers, aid drug 
development, and assess environmental toxicity. Metabolo-
mics researchers are active in various fields associated with 
kidney disease, including acute kidney injury, CKD, hemo-
dialysis, peritoneal dialysis, and kidney allograft rejection 
[18-20]. In terms of kidney disease research, metabolomics 
encompasses biomarker discovery, insights into the various 
pathophysiologies, support for personalized medicine, mon-
itoring of treatment responses, and investigation of the ef-
fects of nutrition. Changes in various metabolic pathways 
are apparent in DM and DN patients, in which metabolic 
abnormalities may play a central role [21,22]. Metabolomics 
aids our understanding of complex metabolic changes, per-
mits early diagnosis, and predicts DN prognosis. This review 
explores the applications of metabolomics, particularly the 
advantages afforded in terms of diagnosing DN and predict-
ing CKD progression in individuals with DN. 

NOVEL APPROACHES DISTINGUISHING DN 
FROM NON-DN

When diabetics exhibit a decline in kidney function or pro-
teinuria, it does not necessarily mean that they have DN. 
Other glomerular diseases concurrent with diabetes may 
explain the observations. In particular, DN is less likely when 
diabetes is of short duration, active urinary sediments are 
present, kidney function declines rapidly, or DR is absent 
[11]. Several studies have sought to use metabolomics to 
differentiate DN from other renal diseases in DM patients 
(Table 1) [23]. Hirayama et al. [24] used capillary electropho-
resis-mass spectrometry (CE-MS) to show that the levels of 
19 serum metabolites distinguished non-DN and DN status. 
Metabolites of the urea cycle and tryptophan–kynurenine 
pathways were particularly important in this regard. Using 
liquid chromatography-mass spectrometry (LC-MS), Xia et 

al. [25] reported that adenosine, inosine, uric acid, and xan-
thine levels were useful to distinguish patients with DM with 
versus without DN. Jiang et al. [26] used LC-tandem MS to 
simultaneously quantify the levels of eight plasma aminothi-
ols in the homocysteine metabolic cycle and discovered that 
two sulfur-containing metabolites, S-adenosylmethionine 
and S-adenosylhomocysteine, were potential DM biomark-
ers in patients with or without DN. Han et al. [27] showed 
that the levels of non-esterified and esterified fatty acids dis-
criminated among controls, DM patients, and patients with 
DN categorized using the Mogensen classification. Metabo-
lites associated with inflammation were affected in all three 
groups. Pena et al. [28] found that urine hexose, glutamine, 
and tyrosine levels, and plasma butenoylcarnitine and histi-
dine concentrations, predicted progression from micro- to 
macro-albuminuria. In most previous studies, DN was clini-
cally diagnosed. However, the recent DIAMOND study tar-
geted patients with biopsy-confirmed DN and found that 
integration of clinical factors with urinary metabolite levels 
accurately predicted biopsy-confirmed DN in patients with 
type 2 DM [29]. The cited authors compared the urinary 
metabolomic profiles of patients with type 2 DM with bi-
opsy-confirmed DN, DM with immunoglobulin A nephrop-
athy (IgAN), DM with membranous nephropathy (MN), and 
a healthy control group (living donors scheduled for kidney 
transplantation). Four urinary metabolites (alanine, choline, 
N-phenylacetylglycine, and trigonelline) quantitated via non-
targeted nuclear magnetic resonance (NMR) spectroscopy 
exhibited projection scores > 1 and areas under the curves  
> 0.7 (all p < 0.05); all were predictive of DN. Clinical factors 
(age, the presence of DR, DM duration, and the hemoglobin 
A1c [HbA1c] level), the concentrations of urinary metabo-
lites, and the combination of clinical and metabolic markers 
were highly predictive of biopsy-confirmed DN status.

Recent DN metabolomic studies have reported signifi-
cant alterations in several metabolic pathways including 
the tricarboxylic acid (TCA) cycle, amino acid and lipid me-
tabolism, the urea cycle, and nucleotide metabolism [30]. 
Sharma et al. [31] coupled targeted metabolomic evaluation 
with systems biology tools to gain insights into the complex 
mechanism of DN. They compared the metabolomic pro-
files of diabetics with and without CKD, patients with focal 
segmental glomerular sclerosis, and healthy controls. Thir-
teen metabolites served as urinary metabolomic signatures 
of DKD. Most metabolites (or the enzymes responsible for 
their production) were always within the cytoplasm or were 
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transported from the cytoplasm to mitochondria. Thus, it 
was suggested that mitochondrial dysfunction might be as-
sociated with DKD. 

PREDICTION OF PROGRESSIVE KIDNEY 
DYSFUNCTION IN DIABETICS

Several metabolomics studies have sought to predict the 
progression and prognosis of DN (Table 2). In a nested case–
control study with 840 participants, the levels of 12 biomark-
ers were significantly associated with a rapid decline in the 
eGFR after adjusting for covariates (baseline eGFR, albumin-
uria, and HbA1c level) [32]. In a study on the 1,001 type 1 
and 2 DM patients in the Chronic Renal Insufficiency Cohort 
(CRIC), the levels of the urine metabolites 3-methylcrotony-
glycine and 3-hydroxyisobutyrate (3-HIBA) were significantly 
negatively associated with the eGFR slope after adjusting for 
the above covariates [33]. In contrast, the citric and aconitic 
acid levels were positively associated with the eGFR slope. 
Also, the 3-HIBA and aconitic acid levels were associated 
with a higher and lower risk of kidney failure, respectively 
and the need for kidney replacement therapy. The cited au-
thors suggested that the TCA cycle and amino acid metabo-

lism, which affect mitochondrial function and angiogenesis, 
may be related to DN. Kwon et al. [34], in a targeted NMR 
metabolomics study on Korean diabetics, showed that urine 
myoinositol was a novel prognostic biomarker of DKD. The 
level increased as the DKD progressed. The predictive effects 
were additive to those of the eGFR and proteinuria status 
(conventional markers of renal dysfunction). Niewczas et 
al. [35] reported that abnormal plasma concentrations of 
specific metabolites correlated with the risk of progression 
to ESKD in patients with early stage DN. Their nested case–
control study included 40 patients and 40 controls who had 
progressed to ESKD and remained alive without ESKD. The 
plasma levels of several baseline uremic solutes and essential 
amino acids, measured by MS-based global metabolomic 
profiling, were associated with ESKD progression, as were 
the gut microbiome status and fatty acid and amino acid 
metabolism. Of the six polyol uremic solutes significantly 
associated with ESKD progression, the plasma myoinositol 
level was the most strongly correlated after adjusting for 
clinical covariates (eGFR, albuminuria, and HbA1c level). 
Although albuminuria is prognostic of CKD progression, 
some DM patients exhibit progressive GFR decline even in 
the absence of albuminuria [36,37]. One metabolomic study 
enrolled non-proteinuric type 2 DM patients with or without 

Table 2. Metabolomic studies predicting DN progression

Study Study population Main results

Colombo et al. [32] Nested case-control study  
(n = 840) 

Twelve biomarkers demonstrated a significant association with a rapid decline 
in the eGFR adjusted for covariates, including baseline eGFR, albuminuria, 
and HbA1c.

Kwan et al. [33] Type 1 and type 2 DM  
(n = 1,001)

T he  l e ve l s  o f  u r ine  met ab o l i t e s  3 - methy l c ro tonyg l yc ine  and 
3-hydroxyisobutyrate had significant negatively associated with the eGFR 
slope after adjusting for covariates, including baseline eGFR, albuminuria, and 
HbA1c. In contrast, citric and aconitic acid levels were positively associated 
with the eGFR slope.

Kwon et al. [34] DKD stage 1 to 5 (n = 208), 
control (n = 234)

Urine myo-inositol levels increased as the DKD stage progressed, and additive 
effects were demonstrated in predicting ESKD progression when eGFR 
and proteinuria, which are conventional renal dysfunction markers, were 
considered.

Niewczas et al. [35] DM with ESKD progressors 
(n = 40), DM without ESKD 
progressors (n = 40)

Among the six polyol-derived uremic solutes significantly associated with ESKD 
progression, plasma myo-inositol was the most strongly correlated metabolite 
after adjusting for clinical covariates, including eGFR, albuminuria, and HbA1c.

Hirakawa et al. [38] CKD stage 3 with DM  
(n = 135)

According to the deep learning method, systolic blood pressure, albuminuria, 
six identified metabolites, and three identified metabolites, including urinary 
NMP, were potential markers of rapid kidney function decline.

DN, diabetic nephropathy; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; DM, diabetes mellitus; DKD, diabet-
ic kidney disease; ESKD, end-stage kidney disease; CKD, chronic kidney disease; NMP, 1-methylpyridin-1-ium.
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a low eGFR (eGFR < 60 mL/min/1.73 m2). The levels of 11 
gas chromatography-MS and 19 LC-MS urinary metabolites 
were strongly associated with a low eGFR. However, no ad-
justments were made for clinical covariates of DN progres-
sion. One recent study used a combination of non-targeted 
metabolomic assays and a comprehensive machine learning 
approach to predict CKD progression in patients with DKD 
[38]. A non-targeted metabolomic analysis of plasma and 
urine samples from 135 patients with stage 3 CKD and DM 
was used to predict DN progression. A deep learning meth-
od indicated that the systolic blood pressure, albuminuria, 
levels of six identified metabolites, and three unidentified 
metabolites, including urinary 1-methylpyridin-1-ium (NMP), 
were potential markers of rapid kidney function decline. The 
cited authors suggested that machine learning might iden-
tify potential biomarkers not detected using traditional sta-
tistical approaches.

Experiments on animals with diabetes revealed that oral 
glycine alleviated renal oxidative stress by reducing Nox4 ex-
pression [39]. In diabetic rats treated with glycine, mesangial 
expansion was attenuated, the levels of fibrosis markers 
were reduced, and oxidative stress was reduced. A me-
ta-analysis of the metabolomic differences between 1,875 
DKD patients and 4,503 controls identified 60 differential-
ly expressed metabolites, of which five were essential [40]. 
Compared to controls, DKD patients exhibited significant 
decreases in the levels of glycine, aconitic acid, glycolic acid, 
and uracil, but they also had significantly higher cysteine 
levels; this suggests that DKD patients experience disrupt-
ed amino acid, lipid, and pyrimidine metabolism. Although 
attempts to suppress DN progression by controlling specific 
metabolites are still limited, these results may help suppress 
DN progression through continued research. 

METABOLOMIC PROFILES OF DR: EVIDENCE 
FROM OTHER DIABETIC MICROVASCULAR 
COMPLICATIONS

Several micro- and macrovascular complications may devel-
op in diabetics. DR is a major long-term complication (20% 
of DM patients) [41], and DR and DN may share metabolic 
pathways. Several studies have evaluated the metabolomic 
profiles of diabetics with DR [42]. The metabolites of pa-
tients with and without DR differed significantly; the fuma-
ric acid, cytidine, uridine, and acetic acid levels correlated 

with DR status [43], as did dysregulation of pyrimidine, argi-
nine, and proline metabolism. Chen et al. [44] described the 
plasma metabolomic profiles of 40 DR cases and controls. 
After adjusting for recognized risk factors, the metabolite 
markers were significant and consistently reliable predictors. 
The pentose phosphate pathway has been identified as a 
major metabolomic dysregulation associated with DR. Re-
cently, Yun et al. [45] described the metabolomic profiles 
associated with DR development and progression in diabet-
ics. The levels of 16 metabolites were affected in those with 
both nonproliferative and proliferative DR, of which three 
(total DMA, tryptophan, and kynurenine levels) served as in-
dicators of DR progression in diabetics. Tomofuji et al. [46] 
evaluated the serum metabolites of diabetics with both ret-
inal and renal complications. The levels of five metabolites, 
including N-acetylneuraminic acid, served as metabolomic 
signatures associated with both complications. N-acetyl-
neuraminic acid, a primary human sialic acid, has been 
linked to both DKD and DR [47,48]. An association was ob-
served between the N-acetylneuraminic acid level and the 
myocardial infarction risk [49]. The N-acetylneuraminic acid 
concentration may explain the shared etiologies of retinal, 
renal, and cardiovascular complications in diabetics; the me-
tabolomic features of those with diabetic complications may 
be shared.

IMPROVING THE EVIDENCE: INTEGRATION 
AND COLLABORATION WITH OTHER OMICS

With technological advancements, multi-omics techniques, 
in addition to metabolomics are improving and can pro-
vide personalized precision medicine. Therefore, by merg-
ing multi-omics data, including genomics, transcriptomics, 
proteomics, and metabolomics, researchers may thorough-
ly understand DN. The use of genomics and epigenetics 
techniques can provide significant insights into the genetic 
factors that render individuals susceptible to DN [50]. Tran-
scriptomics ensures a thorough understanding of gene ex-
pression patterns and the molecular pathways involved in 
DN. Proteomics identifies proteins associated with DN, sug-
gesting potential DN biomarkers and therapeutic targets. 
Metabolomics studies the small molecules, metabolites, and 
metabolic pathways involved in DN progression. A compre-
hensive approach would facilitate the development of novel 
medications and enable customized DN treatments. Sha et 
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al. [51] used multi-omics data, including transcriptome, pro-
teome, and metabolome data derived using kidney biopsies 
and mouse DN models to show that lipid metabolism was 
significantly disrupted during DN pathogenesis and pro-
gression. Another study integrated metabolomic, lipidomic, 
and genome-wide single-nucleotide polymorphism data to 
identify diabetics at high risk of DKD [52]. That study used 
machine learning models to augment traditional methods 
and a protein–protein interaction network analysis to iden-
tify the molecular mechanisms. Omics data integration fa-
cilitates network-based analysis, revealing complex relation-
ships among DN-relevant genes, proteins, and metabolites. 
However, translation of such insights to the clinic remains 
challenging given the lack of experimental validation in 
animal models or clinical trials. It is important to integrate 
multi-omics data with detailed clinical information to iden-
tify DN patient subgroups who require personalized treat-
ment. Advances in multi-omics analysis will enhance our 
understanding of DN and reveal new drug targets.

LIMITATIONS OF CURRENT METABOLOMICS

Metabolomics researchers define metabolite profiles that 
foster an understanding of physiological status, disease 
status, and drug actions. However, several limitations are 
evident; there are pre-analytical, analytical, and post-analyt-
ical issues [53]. Metabolites have very diverse and complex 
structures, making data interpretation difficult. Some me-
tabolites are unstable, and their levels change during sam-
ple processing and storage. No single analytical technique 
exhibits the specificity and sensitivity required to identify 
and quantify the entire metabolome of a single biological 
entity [54]. Standard operating procedures are essential; 
metabolite detection must be accurate and consistent if 
metabolomics are to be clinically relevant. Such procedures 
minimize analytical and batch-to-batch variability during 
metabolomics workflow [55]. Metabolomics research re-
quires advanced statistical techniques and systems biology 
information to process and analyze large-scale data. Several 
methods of analysis are used to interpret data, and attempts 
are made to reduce the false positives by applying a false 
discovery rate in untargeted metabolomics [56]. Biological 
variations among individuals and groups are common, and 
it can be difficult to determine whether changes in the lev-
els of specific metabolites are attributable to individual dif-

ferences or environmental factors. Various external factors, 
such as environmental factors and eating habits, can affect 
the metabolites.

Metabolomic studies have identified several metabolites 
that may serve as novel biomarkers of DN. However, there is 
a limitation in that no consistent single metabolites has been 
presented. The identification of consistent single metabo-
lites for distinguishing DN remains a challenge due to the 
disease’s complexity and patient variability. This emphasizes 
the need for further studies integrating comprehensive me-
tabolomic profiling with multi-omics approaches. Moreover, 
considering patient heterogeneity is essential. Individual ge-
netic background, the disease stage, co-existing conditions, 
and lifestyle choices all influence metabolic profiles. Future 
studies should include diverse patient cohorts and employ 
stratified analyses to discover biomarkers relevant in specific 
subgroups. Continued efforts are required to discover me-
tabolites that better predict DN diagnosis and progression in 
clinical practice. 

CONCLUSION

Novel biomarkers can be utilized for early detection and 
prediction of DN progression. Metabolomic and multi-om-
ics techniques may aid patient-tailored DN management in 
future. 
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