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Summary
Background Blood-based disease staging across the Alzheimer’s disease (AD) continuum holds the promise to
identify individuals that profit from disease-modifying therapies. We set out to identify Braak V+ (Braak V and/or VI)
tau PET-positive individuals within amyloid-β (Aβ)-positive individuals using plasma biomarkers.

Methods In this cross-sectional study, we assessed 289 individuals from the TRIAD cohort and 306 individuals from
the WRAP study across the AD continuum. The participants were evaluated by amyloid-PET with [18F]AZD4694 or
[11C]PiB and tau-PET with [18F]MK6240 and measured plasma levels included total tau, phospho-tau isoforms (pTau)
pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers
using different analytic platforms to predict Braak V+ positivity in Aβ+ individuals.

Findings Highest associations with Braak V+ tau positivity in Aβ+ individuals were found for plasma pTau-217+Janssen

(AUC [CI95%] = 0.97 [0.94, 1.0]) and ALZpath pTau-217 (AUC [CI95%] = 0.93 [0.86, 1.0]) in TRIAD. Plasma ALZpath
pTau-217 separated Braak V+ tau PET-positive individuals in the WRAP longitudinal study (AUC [CI95%] = 0.97
[0.94, 1.0]).

Interpretation Thus, we demonstrate that using adjusted cut-offs, plasma pTau-217 identifies individuals with later
Braak stage tau accumulation which will be helpful to stratify patients for treatments and clinical studies.
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Research in context

Evidence before this study
Several studies have reported a high performance of plasma
phosphorylated tau (pTau) to detect Alzheimer’s disease (AD)
pathophysiology. Recent trials with amyloid-β (Aβ) targeting
antibodies have highlighted the need for a disease staging of
biological AD severity to identify individuals who benefit from
anti-Aβ treatments.

Added value of this study
We showed in two separate cohorts that blood pTau-217 had
excellent performance to separate individuals with PET-
confirmed tau accumulation in Braak stages V and/or VI from
individuals with tau accumulation in lower Braak stages. This
was achieved by using higher cut-offs as compared to

predicting tau accumulation in Braak stages I-IV and was
independent of pre-selecting individuals with PET-confirmed
Aβ accumulation.

Implications of all the available evidence
The findings suggest that in addition to identifying AD
pathophysiology, adjusted cut-offs for blood pTau-217 are
suitable for disease staging of individuals with Aβ
accumulation. Thus, blood pTau-217 can be used in the
diagnostic workup of individuals with suspected
neurodegenerative diseases and to stratify the eligibility of
individuals for anti-Aβ treatments. It is important that the
findings are further validated in real-world clinical setting with
diverse populations and backgrounds.
Introduction
Alzheimer’s disease (AD) is characterised by the
buildup of amyloid-β (Aβ) plaques and the accumulation
of tau into neurofibrillary tangles (NFT), occurring years
before dementia symptoms appear. In vivo biomarkers
using amyloid-positron emission tomography (PET) and
tau-PET,1 as well as cerebrospinal fluid (CSF) assess-
ments of Aβ and phosphorylated tau (pTau)2 can be used
to identify core neuropathologic features of AD in living
humans. Recently, plasma measurements of pTau have
demonstrated close associations with PET, CSF and
neuropathologic assessments of AD pathology.

Several recent studies have provided evidence that
plasma pTau-217 can reliably detect elevated Aβ pa-
thology in both asymptomatic and symptomatic
individuals.3–9 Moreover, some of these studies have also
reported that plasma pTau-217 performs equivalently to
CSF biomarkers for the detection of AD pathology using
PET.3–5 While recent evidence suggests that plasma
pTau biomarkers are closely associated with Aβ pathol-
ogy,6,10,11 in Aβ-positive (A+) individuals with cognitive
symptoms, pTau biomarkers are also associated with tau
tangle pathology12,13 as Aβ deposition assessed by PET
have often plateaued at this stage.14,15

In neuropathologic assessments of AD, the severity
of tau tangle pathology is assessed using the Braak
staging system, with later stages indicating more
advanced disease.16,17 Identifying late-stage tau accumu-
lation may have clinical utility by increasing confidence
that a set of clinical symptoms is due to AD, and
furthermore may aid in treatment decisions, as in-
dividuals with more advanced tau may have lower clin-
ical benefit following Aβ plaque removal.18 Thus, a
cost-effective and widely accessible disease staging of
tau accumulation is warranted to identify eligible in-
dividuals for Aβ-targeting therapies. However, the gold
standard for in vivo Braak staging is PET19 which is not
widely available. In contrast, AD staging by plasma
biomarkers20 holds the promise to stratify A+ in-
dividuals across different clinical settings. Thus, this
study assessed the ability of plasma biomarkers in in-
dependent cohorts to identify late-stage NFT accumu-
lation assessed by tau-PET.
Methods
Study participants: TRIAD cohort
The individuals that were enrolled in the Translational
Biomarkers of Aging and Dementia (TRIAD) cohort21

underwent Aβ PET with [18F]AZD4694, tau PET with
[18F]MK6240 and magnetic resonance imaging (MRI).
The TRIAD cohort consists of a high proportion of in-
dividuals who were recruited from a specialized tertiary
care memory clinic. The cognitively unimpaired
www.thelancet.com Vol 109 November, 2024
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individuals are adult volunteers from the community.
Thus, the TRIAD cohort consists of a greater proportion
of individuals with cognitive impairment than WRAP.
The TRIAD cohort included 277 Asian or white non-
Hispanic individuals, and 12 members of an under-
represented group (Hispanic, African American, native
American). Participants had a detailed clinical and
cognitive assessment, including the Clinical Dementia
Rating (CDR) and Mini-Mental State Examination
(MMSE). In the TRIAD cohort, cognitively unimpaired
individuals had no objective cognitive impairment, a
CDR score of 0, and were asked to report any subjective
cognitive decline in a questionnaire given during
screening. Individuals with MCI had cognitive impair-
ment, relatively preserved activities of daily living, and a
CDR score of 0.5. Patients with Mild-to-moderate Alz-
heimer’s clinical syndrome dementia had a CDR score
between 0.5 and 2 and met the National Institute on
Aging—Alzheimer’s Association (NIA-AA) criteria for
probable AD determined by a dementia specialist.21,22

Exclusion criteria for TRIAD were active substance
abuse, recent head trauma, recent major surgery, or
MRI/PET safety contraindications.23 All participants
where the respective blood biomarkers, Aβ PET and tau
PET were available were included for this study. Sex was
self-reported by study participants.

Study participants: WRAP cohort
The Wisconsin Registry for Alzheimer’s Prevention
(WRAP) participants included in this analysis under-
went Aβ PET with [11C]PiB and tau-PET with [18F]
MK6240. The WRAP study is a longitudinal observa-
tional study of individuals who at baseline do not have
cognitive impairment and are between the ages of 40
and 65 at baseline. The cognitive status in WRAP was
determined via a consensus review process using
similar criteria as for TRIAD and included the CDR and
MMSE. Furthermore, the cognitively unimpaired group
was further partitioned into stable and subclinical
decline subsets (for a comprehensive description of
WRAP cognitive status determination and study inclu-
sion and exclusion criteria, please see24). The WRAP
cohort included 290 Asian or white non-Hispanic in-
dividuals, and 16 members of an underrepresented
group (Hispanic, African American, native American).
All participants where the respective blood biomarkers,
Aβ PET and tau PET were available were included for
this study. Sex was self-reported by study participants.

MRI acquisition and processing
For TRIAD participants structural MRI data were ac-
quired at the Montreal Neurological Institute (MNI) for
all participants on a 3T Siemens Magnetom scanner
using a standard head coil. Hippocampal volume was
assessed using FreeSurfer version 6.0 and the Desikian–
Killiany–Tourville atlas grey matter segmentation.
WRAP T1-weighted structural MRI were acquired on a
www.thelancet.com Vol 109 November, 2024
3T GE Signa 750 and ROI- and tissue class segmented
using SPM12. ROIs for PET analysis were generated by
inverse warping AAL (for PiB) and Harvard–Oxford (for
MK-6240) atlases to subject space using the deformation
fields from the SPM12 unified segmentation and
restricting to PGM >0.3 as previously described.25 Hip-
pocampal volumes were segmented using FSL FIRST26

applied to T1-weighted MRI. All imaging outcomes
underwent routine visual quality assessment under su-
pervision (TJB, SCJ).

PET acquisition and processing
TRIAD participants had a T1-weighted MRI, and [18F]
AZD4694 PET and [18F]MK6240 PET scans were ac-
quired using a brain-dedicated Siemens high-resolution
research tomograph. [18F]MK6240 PET images were
acquired at 90–110 min after the intravenous bolus in-
jection of the radiotracer and reconstructed using an
ordered subset expectation maximization algorithm on a
4D volume with four frames (4 × 300 s), as previously
described.27 [18F]AZD4694 PET images were acquired at
40–70 min after the intravenous bolus injection of the
radiotracer and reconstructed with the same ordered
subset expectation maximization algorithm on a 4D
volume with three frames (3 × 600 s).21 A 6 min trans-
mission scan with a rotating 137Cs point source was
conducted at the end of each PET acquisition for
attenuation correction. Images were corrected for mo-
tion, decay, dead time and random and scattered co-
incidences. In summary, PET images were linearly
registered to T1-weighted image space, and the
T1-weighted images were linearly and nonlinearly
registered to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) reference space. To minimize the in-
fluence of meningeal spillover into adjacent brain re-
gions, [18F]MK6240 images were skull-stripped in T1
space before transformations and blurring.23 The PET
images in T1-space were linearly and nonlinearly
registered to the ADNI space using transformations
from the T1-weighted image to ADNI space. [18F]
MK6240 standardized uptake value ratio (SUVRs) were
calculated using the cerebellar crus I grey matter as a
reference region,23,28 as derived from the SUIT cere-
bellum atlas.29 [18F]AZD4694 SUVRs were calculated
using the whole cerebellum grey matter as the reference
region. PET images were spatially smoothed to achieve
an 8-mm full-width at half-maximum resolution. The
global [18F]AZD4694 SUVR composite included the
precuneus, prefrontal, orbitofrontal, parietal, temporal
and cingulate cortices.29 PET Braak-like stage segmen-
tation was previously described.23,30 Stages included the
following regions: Braak I (transentorhinal), Braak II
(entorhinal and hippocampus), Braak III (amygdala,
para-hippocampal gyrus, fusiform gyrus and lingual
gyrus), Braak IV (insula, inferior temporal, lateral tem-
poral, posterior cingulate and inferior parietal), Braak V
(orbitofrontal, superior temporal, inferior frontal,
3
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cuneus, anterior cingulate, supramarginal gyrus, lateral
occipital, precuneus, superior parietal, superior frontal
and rostromedial frontal) and Braak VI (paracentral,
postcentral, precentral and pericalcarine).16,31 Tau PET
positivity for each Braak stage was defined as [18F]
MK6240 SUVR >2.5 standard deviations of the mean of
the cognitively unimpaired and amyloid-negative partici-
pants. We used [18F]AZD469421 to determine Centiloids
and used a cut-off >20 to determine off Aβ positivity. The
classification into Braak I+ or Braak V+ participants was
based on PET-based tau positivity in the highest Braak
stage. Thus, Braak I+ participants were defined as par-
ticipants with tau accumulation above the threshold in
Braak stages I or higher. Braak V+ positive participants
were defined as participants with tau accumulation above
the threshold in Braak stages V or VI regardless of PET-
based tau positivity in earlier Braak stages.

WRAP participants underwent [11C]PiB amyloid and
[18F]MK6240 tau PET imaging on either an ECAT
EXACT HR+ or Siemens Biograph Horizon tomograph
as previously described.25,32,33 Reconstructed dynamic
PiB PET images were smoothed (3 mm Gaussian),
inter-frame aligned, dynamically denoised (HighlY
constrained backPRojection, HYPR), and registered to
T1-w MRI. Cortical PiB distribution volume ratio (DVR)
was calculated using graphical analysis (cerebellum GM
reference region, k2’ = 0.149 min−1, t* = 35 min)34,35

from eight bi-lateral ROIs.36 A 20-Centiloid equivalent
cutoff of global PiB DVR ≥1.18 was used following
Betthauser and colleagues.37,38 Late-frame dynamic [18F]
MK6240 reconstructed images (5 min frame ×4) were
smoothed (6 mm Gaussian), interframe aligned, sum-
med 70–90 min post-injection and registered to T1-
weighted MRI (SPM12). SUVR was calculated using
inferior cerebellar GM as a reference region.25 Regional
SUVR for regions corresponding to Braak neurofibril-
lary tangle staging were extracted from the Harvard–
Oxford atlas. Tau PET positivity for each Braak stage
was defined as [18F]MK6240 SUVR >2.5 standard de-
viations above the mean value among cognitively un-
impaired, amyloid-negative participants.

Fluid biomarkers
Plasma samples were collected at the screening visit
which generally precedes the first PET visit by approxi-
mately 1–2 months according to standard procedures in
the clinical routine.14 Samples were then rapidly frozen
for long-term storage at −80 ◦C.14 The Quanterix Single
molecule array (Simoa) HD-X platform was used to
quantify different tau species in plasma. pTau-181 and
pTau-231 were quantified using in-house developed as-
says as previously described.14 Two commercially avail-
able pTau217 assays were evaluated: the Janssen R&D
pTau-217+ assay39 and the ALZpath pTau217 assay.9

Plasma NTA-tau concentrations were quantified using
an in house-developed Simoa immunoassay at the Clin-
ical Neurochemistry Laboratory (Mölndal, Sweden).40 The
measurements of the different biomarkers for both sites
have been described in detail elsewhere.9 One technical
replicate was measured per sample. For the TRIAD
cohort the following analytes were measured: pTau-181,
pTau-231, pTau-217+ Janssen, ALZpath pTau-217. All
plasma analytes were measured at the Department of
Psychiatry and Neurochemistry, University of Gothen-
burg except for pTau-217+ Janssen that was measured at
Janssen R&D. For the WRAP cohort the following ana-
lytes were measured: pTau-181, pTau-231, ALZpath
pTau-217. All plasma analytes were measured at the
Department of Psychiatry and Neurochemistry, Univer-
sity of Gothenburg except for pTau-181 Janssen which
was quantified by the commercial pTau181 Advantage
V2.1 Simoa (#104111, Quanterix).

Ethics
TRIAD was approved by the MNI PET working com-
mittee and the Douglas Mental Health University
Institute Research Ethics Board (MP-18-2017-157).
Written informed consent was obtained for all par-
ticipants. WRAP was approved by the University
of Wisconsin–Madison Health Sciences IRB
(IRB00000366), and all participants provided written
informed consent.

Statistics
All analyses were performed using R within the R Studio
environment. Sample size determination, and blinding
were not performed. No specific exclusion criteria were
defined for this study. For comparing plasma biomarker
levels in TRIAD and WRAP, we first tested for normality
distribution with the Shapiro-Wilk test. Since our data
was not normally distributed, we used the non-
parametric Wilcoxon rank sum test between all
conditions with Holm-Bonferroni correction for multi-
ple comparisons. The mean differences and 95% con-
fidence intervals were additionally reported. ROC
analyses and estimation of area under the curve (AUC)
and 95% confidence intervals (CInt) were calculated
using the DeLong’s method with the pROC package.41

We included biological sex, age, and APOE ε4 carrier-
ship as covariates for the ROC analyses. ROC curves
were statistically compared using the DeLong’s test with
FDR-correction for multiple comparisons. In separate
analyses for each cohort, we examined ROC character-
istics of each plasma biomarker for separating the
following conditions: TBraak I+ vs. T-;TBraak V+ vs. T- and
TBraak I–IV combined in all participants; TBraak V+ vs. T-
and TBraak I–IV in the Aβ+ subset of participants. For the
TRIAD cohort, we additionally performed the following
analyses: demented vs not-demented; A+T- vs. A-T-;
A+T+ vs. A-T-; A+T+ vs. A+T- in cognitively unimpaired
participants; and TBraak V+ vs. T- and TBraak I–IV in the
cognitively impaired Aβ+ subset of participants. The
exact numbers for the subset comparisons are reported
in the respective results sections and figure legends.
www.thelancet.com Vol 109 November, 2024
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A-T- A+T- A+TBraak I–IV A+TBraak V+

N (%) 166 (57.4) 26 (9.0) 39 (13.5) 58 (20.1)

N female, (%) 100 (60.2) 14 (53.8) 26 (66.7) 33 (56.9)

Diagnosis, Cognitively
unimpaired, N (%)

137 (82.5) 16 (61.5) 20 (51.3) 1 (1.7)

Diagnosis, Mild cognitive
impairment, N (%)

29 (17.5) 10 (38.5) 15 (38.5) 20 (34.5)

Diagnosis, Dementia, N (%) 0 (0.0) 0 (0.0) 4 (10.3) 37 (63.8)

APOE ε4 carriership, N (%) 44 (26.5) 5 (19.2) 18 (46.2) 44 (75.9)

Age (years), mean (SD) 59.5 (19.9) 71.9 (7.0) 72.3 (9.2) 68.9 (8.8)

Mini-Mental State Exam, mean (SD) 28.8 (2.1) 27.6 (4.6) 28.2 (2.4) 22.8 (5.7)

Educational years, mean (SD) 15.2 (3.6) 14.3 (3.1) 14.9 (3.6) 14.8 (3.5)

Total tau SUVR, mean (SD) 0.9 (0.1) 0.9 (0.1) 1.0 (0.1) 2.0 (0.9)

Total amyloid SUVR, mean (SD) 1.3 (0.1) 1.8 (0.4) 2.1 (0.4) 2.4 (0.5)

Hippocampal volume, mean, cm3, (SD) 3.6 (0.5) 3.4 (0.4) 3.4 (0.4) 3.0 (0.5)

Table 1: Patient characteristics of TRIAD.

Articles
Sensitivity, specificity, and accuracy as well as their 95%
confidence intervals of continuous biomarker values to
evaluate their performances were calculated using
Youden’s index. For the TRIAD cohort we additionally
calculated Pearson correlation analyses of the blood
biomarkers with the hippocampal volume separately for
A-T-, A+T-, A+TBraak I–IV, and A+TBraak V+. The regres-
sion lines were fitted using the ordinary least square
method. To compare the performance of pTau-217
alone or in combination with pTau-181 or pTau-231
we performed Cohen’s Kappa agreement analysis.42

Therefore, we dichotomized the either all or A+ partic-
ipants into TBraak I+ or TBraak V+ or the respective rest
using the PET-based classification as gold standard and
the biomarker-based classification using our determined
cut-offs for each respective tau analyte and comparison.
For testing the prediction of biomarkers combinations,
participants needed to be classified as positive for one of
the biomarkers. We reported Cohen’s Kappa and the
95% confidence intervals. The Cohen’s Kappa can be
interpreted by: Cohen’s Kappa ≥0.8 = almost perfect,
≥0.6 = substantial, ≥0.4 = moderate, ≥0.2 = fair,
≥0 = slight, <0 = poor agreement.43 For biomarker
concentrations in Table 3, we reported mean with
standard deviation (SD) when mean/SD >2 or median
with interquartile range when mean/SD <2.

Role of funders
This research is supported by the Weston Brain Insti-
tute, Canadian Institutes of Health Research, Canadian
Consortium of Neurodegeneration and Aging, the Alz-
heimer’s Association, Brain Canada Foundation, the
Fonds de Recherche du Québec—Santé and the Colin J.
Adair Charitable Foundation. None of the funders had a
role in the study design, data collection, data analyses,
data interpretation or writing.
Results
Study population TRIAD cohort
We included 289 participants from the TRIAD cohort
(n = 174 cognitively unimpaired, n = 74 with mild
cognitive impairment (MCI), n = 41 with Alzheimer’s
disease (AD)) who were separated according to brain Aβ
status and tau accumulation in different Braak stages by
[18F]AZD4694 PET and [18F]MK6240 PET respectively.
TRIAD sample characteristics are summarized in
Table 1 (demographics separated by sex are shown in
Supplementary Table S1). We identified 166 (57%)
participants without brain amyloidosis or tau pathology
(A-T-, 60% female, mean age 60 years), 26 (9%) partic-
ipants with amyloid aggregation without detectable tau
accumulation by PET (A+T-, 54% female, mean age 72
years), 39 (14%) participants with brain amyloidosis and
tau accumulation in Braak stages I–IV (A+TBraak I–IV,
67% female, mean age 72 years), and 58 (20%) partici-
pants with Aβ accumulation in the brain and tau
www.thelancet.com Vol 109 November, 2024
accumulation in Braak stages V or VI (A+TBraak V+, 57%
female, mean age 69 years).

Study population WRAP cohort
Furthermore, we included 306 participants from the
WRAP study (n = 296 cognitively unimpaired, n = 9 with
MCI, n = 1 with dementia) who were assessed with [18F]
MK6240 PET, including 306 who were also assessed
with [11C]PiB PET. WRAP sample characteristics are
shown in Table 2 (demographics separated by sex are
shown in Supplementary Table S1). Among those with
both amyloid and tau PET, we identified 209 (68%) A-T-
participants (67% female, mean age 66 years), 44 (14%)
A+T- participants (59% female, mean age 69 years), 27
(9%) A+TBraak I–IV participants (67% female, mean age
69 years), 9 (3%) A+TBraak I–IV participants (89% female,
mean age 69 years), 15 (5%) A-TBraak V+ participants
(80% female, mean age 68 years), and 2 (<1%) A-TBraak

V+ participants (100% female, mean age 57 years).

Blood pTau levels across the Braak stages
First, we analysed the blood levels of total tau (Fig. 1a),
pTau-181 (Fig. 1b), pTau-217+Janssen (Fig. 1c), ALZpath
pTau-217 (Fig. 1d), pTau-231 (Fig. 1e), and NTA-tau
(Fig. 1f) in A-T-, A+T-, A+TBraak I-IV, and A+TBraak V+

participants of the TRIAD cohort.
We observed a significant stepwise increase in pTau-

217+Janssen, and ALZpath pTau-217 across the four A/T
categories. pTau-181 and pTau-231 levels were
increased in patients with A+T- in comparison to A-T-,
and in A+TBraak V+ against all other groups. However, we
did not find significant differences between A+T- and
A+TBraak I–IV for pTau-181 and pTau-231. Blood levels of
total tau was significantly increased in A+TBraak V+ par-
ticipants in comparison to A+T- participants, and blood
levels of NTA-tau were increased in A+TBraak V+ partic-
ipants in comparison to all other groups (descriptive
statistics of all blood biomarkers are provided in
Table 3). We replicated this analysis in WRAP for
5
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A-T- A+T- A+TBraak I–IV A+TBraak V+ A-TBraak I–IV A-TBraak V+

N (%) 209 (68.3) 44 (14.4) 27 (8.8) 9 (2.9) 15 (4.9) 2 (0.7)

N female (%) 139 (66.5) 26 (59.1) 18 (66.7) 8 (88.9) 12 (80.0) 2 (100.0)

Diagnosis, Cognitively unimpaired, N (%) 208 (99.5) 42 (95.5) 24 (88.9) 5 (55.6) 15 (100.0) 2 (100.0)

Diagnosis, Mild cognitive impairment, N (%) 1 (0.5) 2 (4.5) 3 (11.1) 3 (33.3) 0 (0.0) 0 (0.0)

Diagnosis, Dementia, N (%) 0 (0.0) 0 (0.0) 0 (0.0) 1 (11.1) 0 (0.0) 0 (0.0)

APOE ε4 carriership, N (%) 62 (29.7) 26 (59.1) 20 (74.1) 6 (66.7) 6 (40.0) 1 (50.0)

Age (years), mean (SD) 65.7 (6.7) 69.0 (5.4) 69.1 (6.3) 69.0 (4.1) 68.3 (7.0) 57.4 (2.9)

Mini-Mental State Exam, mean (SD) 29.5 (0.7) 29.1 (1.1) 28.9 (1.3) 27.0 (4.2) 29.5 (0.6) 29.0 (0.0)

Educational years, mean (SD) 16.2 (2.7) 16.5 (2.4) 16.4 (2.5) 15.1 (2.6) 15.8 (2.7) 18.0 (0.0)

Total tau SUVR, mean (SD) 1.0 (0.1) 1.0 (0.1) 1.1 (0.1) 1.8 (0.4) 1.1 (0.1) 1.4 (0.0)

Total amyloid DVR, mean (SD) 1.1 (0.1) 1.4 (0.2) 1.5 (0.2) 1.8 (0.2) 1.1 (0.1) 1.1 (0.0)

Hippocampal volume, mean, cm3, (SD) 3.8 (0.4) 3.8 (0.4) 3.6 (0.4) 3.5 (0.6) 3.6 (0.4) 3.8 (0.3)

Table 2: Patient characteristics of WRAP longitudinal study cohort.
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analytes that were available (pTau-181, ALZpath pTau-
217, and pTau-231). We again observed stepwise in-
creases for pTau-217 along the AD continuum (A-T-,
A+T-, A+TBraak I-IV, A+TBraak V+). Results were similar
but weaker for pTau-181 and pTau-231 (Fig. 1g–i).

In the next step, we calculated the absolute mean
differences for A+TBraak V+ vs. A-T-, A+TBraak V+ vs. A+T-
and A+TBraak V+ vs. A+TBraak I-IV. Our analyses
confirmed stepwise increases of the mean differences
for pTau-217+Janssen and ALZpath pTau-217 in TRIAD
when contrasting A+TBraak V+ with A+TBraak I-IV, A+T-,
and A-T- individuals (Fig. 1j). This was mirrored in the
WRAP cohort, where ALZpath pTau-217 showed a
gradual increase of the mean differences for the same
comparisons (Fig. 1k). We concluded that across both
cohorts, the gradual PET-based classification was rep-
resented by pTau-217+Janssen and ALZpath pTau-217. In
addition, we analysed the relationship between the
different tau analytes and neurodegeneration, another
hallmark of AD. Therefore, we calculated the correlation
between the hippocampal volume and the tau analytes
separately in A-T-, A+T-, A+TBraak I–IV, and A+TBraak V+

TRIAD participants (Supplementary Figure S1,
Supplementary Table S2) where we did not detect a
significant association between the different pTau-217
assays and hippocampal degeneration. This underlines
that pTau-217 reflects tau and amyloid brain accumu-
lation in the AD continuum.

pTau-217 identifies participants with tau
accumulation in late Braak stages
Next, we performed receiver operating characteristic
(ROC) analysis of pTau-181, pTau-217+Janssen, ALZpath
pTau-217, and NTA-tau to discriminate tau accumula-
tion. In the first step, we aimed to identify AD vs. non-
AD, A+T- vs. A-T-, and A+T+ vs. A-T- in the TRIAD
cohort (Supplementary Figure S2). Only the pTau-217
assays showed AUCs >0.9 for all three comparisons
(AD vs. all: pTau-217+Janssen, AUC = 0.95; ALZpath
pTau-217, AUC = 0.92; A+T-vs. A-T-: pTau-217+Janssen,
AUC = 0.9; ALZpath pTau-217, AUC = 0.92; A+T+ vs. A-
T-: pTau-217+Janssen, AUC = 1.0; ALZpath pTau-217,
AUC = 0.99; the results of the statistical comparisons
are provided in Supplementary Table S3). In the next
step, our goal was to determine tau accumulation in
different Braak stages in the TRIAD and WRAP cohorts.
Therefore, in separate analyses for each cohort, we
examined ROC characteristics of each plasma
biomarker for separating the following conditions:
participants with any tau accumulation (TBraak I+) vs.
participants without tau accumulation (T-); TBraak V+ vs.
T- and TBraak I–IV combined in all participants, and in the
Aβ+ subset of participants. To separate TBraak I+ from T-
in all individuals, we found the highest AUCs for pTau-
217+Janssen and ALZpath pTau-217 in TRIAD (Fig. 2a;
pTau-217+Janssen, AUC = 0.88; ALZpath pTau-217,
AUC = 0.88), and WRAP (Fig. 2b; ALZpath pTau-217,
AUC = 0.78). Similarly, pTau-217 best distinguished
TBraak V+ individuals in TRIAD (Fig. 2c; pTau-217+Jans-
sen, AUC = 0.99; ALZpath pTau-217, AUC = 0.95) and
WRAP (Fig. 2d; ALZpath pTau-217, AUC = 0.95).
Additionally, pTau-181 (AUC = 0.92), pTau-231
(AUC = 0.91), and NTA-tau (AUC = 0.94) identified
TBraak V+ individuals with an AUC >0.9 in TRIAD.

Next, we repeated the analyses in each cohort using
the subset of Aβ+ participants. The best separation to
identify TBraak I+ individuals among Aβ+ participants
(i.e., relative to A+T-; Fig. 2e) was achieved using pTau-
217+Janssen (AUC = 0.94) and ALZpath pTau-217
(AUC = 0.85), and pTau-181 (AUC = 0.86) in TRIAD.
In the parallel WRAP analyses, all analytes showed
AUCs <0.8 (Fig. 2f). When examining A+TBraak V+ vs the
remaining Aβ+ participants in TRIAD, the identification
of A+TBraak V+ (Fig. 2g) was possible with an AUC >0.9
with pTau-181 (AUC = 0.9), pTau-217+Janssen

(AUC = 0.97), ALZpath pTau-217 (AUC = 0.93) and
NTA-tau (AUC = 0.93). In parallel WRAP analyses, re-
sults with ALZpath pTau-217 were similar in Aβ+
www.thelancet.com Vol 109 November, 2024
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Fig. 1: Blood tau biomarkers across different Braak stages. (a–f) TRIAD cohort plasma levels of (a) total tau (pg/mL), (b) pTau-181 (ng/mL),
(c) pTau-217+Janssen (pg/mL), (d) ALZpath pTau-217 (pg/mL), (e) pTau-231 (pg/mL), and (f) NTA tau (pg/mL) in individuals without amyloid and
tau pathology (A-T-, n = 166), in individuals with amyloid accumulation and no tau accumulation (A+T-, n = 26), amyloid accumulation and tau
PET positivity in Braak stages I-IV (A+TBraak I–IV, n = 39), and amyloid accumulation and tau PET positivity in Braak stages V and VI (A+TBraak V+,
n = 58). (g–i) WRAP cohort plasma levels of (g) pTau-181 (ng/mL), (h) ALZpath pTau-217 (pg/mL), and (i) pTau-231 (pg/mL) in individuals
without amyloid and tau pathology (A-T-, n = 209), in individuals with amyloid accumulation (A+T-, n = 44), amyloid accumulation and tau
PET positivity in Braak stages I-IV (A+TBraak I–IV, n = 27), and amyloid accumulation and tau PET positivity in Braak stages V and VI (A+TBraak V+,
n = 9). Individual data points and the median are shown. (j) Mean differences and respective 95% confidence intervals for comparisons between
A+TBraak V+ and A-T-, A+TBraak V+ and A+T-, and A+TBraak V+ and A+TBraak I–IV in the TRIAD cohort. (k) Mean differences and respective 95%
confidence intervals for comparisons between A+TBraak V+ and A-T-, A+TBraak V+ and A+T-, and A+TBraak V+ and A+TBraak I–IV in theWRAP cohort.
Bonferroni-Holmes adjusted Wilcoxon rank sum test was used for statistical comparisons. The exact P-values are provided in the figure. pTau,
phospho-tau; NTA tau, N-terminal tau.
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Analyte Cohort A-T- A+T- A+TBraak I–IV A+TBraak V+

Mean (SD)*/
Median (IQR)#

Mean (SD)*/
Median (IQR)#

Mean (SD)*/
Median (IQR)#

Mean (SD)*/
Median (IQR)#

Total tau (pg/mL) TRIAD 1.84 (0.68)* 2.01 (0.61)* 2.13 (0.94)* 2.47 (0.79)*

pTau-181 (pg/mL) TRIAD 9.28 (4.49)* 11.55 (3.79)* 13.42 (4.043)* 22.41 (8.11)*

pTau-217+Janssen (pg/mL) TRIAD 0.052 (0.021)* 0.073 (0.031)* 0.12 (0.052)* 0.24 (0.12)*

ALZpath pTau-217 (pg/mL) TRIAD 0.16 (0.071)* 0.31 (0.18–0.38)# 0.43 (0.32–0.56)# 0.83 (0.37)*

pTau-231 (pg/mL) TRIAD 11.34 (7.61–15.55)# 17.57 (8.091)* 19 (6.33)* 26.74 (10.23)*

NTA tau (pg/mL) TRIAD 0.15 (0.075–0.25)# 0.17 (0.12–0.32)# 0.15 (0.10–0.24)# 0.50 (0.35–0.63)#

pTau-181 (pg/mL) WRAP 2.42 (1.17)* 3.07 (0.92)* 3.34 (1.34)* 5.69 (1.76)*

ALZpath pTau-217 (pg/mL) WRAP 0.37 (0.16)* 0.73 (0.31)* 0.83 (0.58–1.14)# 1.97 (0.69)*

pTau-231 (pg/mL) WRAP 11.04 (4.10)* 14.91 (4.60)* 14.79 (6.10)* 21.98 (8.11)*

Abbreviations: pTau, phospho-tau; SD, standard deviation; IQR, interquartile range; *mean (SD) is provided; #median (IQR) is provided, See Statistics section for justification
of descriptive parameters.

Table 3: Blood biomarkers levels in the TRIAD and WRAP cohorts.
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participants (Fig. 2h; TBraak I+: AUC = 0.72; TBraak V+:
AUC = 0.97), but in this group, pTau-181 also classified
A+Braak V+ participants well (AUC = 0.94). Thus, blood
levels of pTau and NTA-tau can be used to identify
Fig. 2: Discrimination of tau accumulation in different Braak stages
characteristic (ROC) analyses to identify TBraak I+ individuals without prese
selection in TRIAD (c) and WRAP (d), TBraak I+ individuals in Aβ+ participant
TRIAD (g) and WRAP (h). pTau-181 (pg/mL), pTau-217+Janssen (pg/mL), ALZ
tested in TRIAD. pTau-181 (pg/mL), ALZpath pTau-217 (pg/mL), pTau-2
confidence intervals are shown in the figure. The ROC models include biolo
(AUC) and 95% confidence intervals are shown. Dashed line represents AU
A+TBraak V+ individuals without preselection and in an
Aβ+ enriched cohort (all AUCs and confidence intervals
are provided in Table 4 for TRIAD and Table 5 for
WRAP; the results of the statistical comparisons are
by blood tau biomarkers in TRIAD and WRAP. Receiver operating
lection in TRIAD (a) and WRAP (b), TBraak V+ individuals without pre-
s in TRIAD (e) and WRAP (f), TBraak V+ individuals in Aβ+ participants in
path pTau-217 (pg/mL), pTau-231 (pg/mL), and NTA tau (pg/mL) were
31 (pg/mL) were tested in WRAP. Area under the curve (AUC) and
gical sex, age, and APOE ε4 status as covariates. Area under the curves
C of 0.5. pTau, phospho-tau; NTA tau, N-terminal tau.
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Analyte Comparison AUC (95% CInt) Thr. Sens. (95% CInt) Spec. (95% CInt) Acc. (95% CInt)

pTau-181 (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.92 (0.87, 0.96) 17.26 0.83 (0.71, 0.93) 0.92 (0.78, 0.97) 0.9 (0.8, 0.94)

pTau-217+Janssen (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.99 (0.98, 1) 0.12 1 (1, 1) 0.93 (0.89, 0.97) 0.94 (0.91, 0.97)

ALZpath pTau-217 (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.95 (0.91, 1) 0.45 0.95 (0.84, 1) 0.89 (0.82, 0.97) 0.9 (0.84, 0.96)

pTau-231 (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.91 (0.87, 0.96) 22.06 0.82 (0.68, 0.98) 0.88 (0.64, 0.95) 0.87 (0.7, 0.91)

NTA tau (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.94 (0.9, 0.97) 0.28 0.94 (0.8, 1) 0.82 (0.74, 0.92) 0.84 (0.77, 0.92)

pTau-181 (pg/mL) TBraak I+ vs. T- 0.83 (0.78, 0.88) 11.38 0.72 (0.6, 0.86) 0.81 (0.64, 0.89) 0.77 (0.71, 0.82)

pTau-217+Janssen (pg/mL) TBraak I+ vs. T- 0.88 (0.83, 0.93) 0.09 0.73 (0.61, 0.84) 0.93 (0.85, 0.98) 0.85 (0.8, 0.9)

ALZpath pTau-217 (pg/mL) TBraak I+ vs. T- 0.88 (0.83, 0.93) 0.32 0.77 (0.65, 0.86) 0.88 (0.77, 0.95) 0.83 (0.76, 0.88)

pTau-231 (pg/mL) TBraak I+ vs. T- 0.81 (0.76, 0.87) 15.49 0.76 (0.55, 0.88) 0.75 (0.62, 0.91) 0.75 (0.69, 0.81)

NTA tau (pg/mL) TBraak I+ vs. T- 0.81 (0.75, 0.87) 0.24 0.55 (0.34, 0.83) 0.8 (0.47, 0.94) 0.7 (0.61, 0.75)

pTau-181 (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.9 (0.83, 0.96) 15.62 0.81 (0.62, 0.93) 0.86 (0.73, 0.98) 0.84 (0.76, 0.9)

pTau-217+Janssen (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.97 (0.94, 1) 0.13 0.97 (0.73, 1) 0.82 (0.67, 1) 0.88 (0.8, 0.93)

ALZpath pTau-217 (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I-IV 0.87 (0.8, 0.95) 0.6 0.84 (0.7, 0.97) 0.84 (0.64, 0.96) 0.84 (0.76, 0.91)

pTau-231 (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.93 (0.86, 1) 21.81 0.75 (0.52, 0.89) 0.82 (0.67, 0.96) 0.77 (0.7, 0.85)

NTA tau (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.93 (0.88, 0.99) 0.27 0.94 (0.8, 1) 0.82 (0.69, 0.94) 0.87 (0.79, 0.93)

pTau-181 (pg/mL) A+TBraak I+ vs. A+T- 0.86 (0.78, 0.94) 13.08 0.73 (0.55, 0.9) 0.89 (0.67, 1) 0.77 (0.63, 0.89)

pTau-217+Janssen (pg/mL) A+TBraak I+ vs. A+T- 0.94 (0.89, 0.99) 0.09 0.86 (0.61, 0.98) 0.94 (0.72, 1) 0.87 (0.71, 0.95)

ALZpath pTau-217 (pg/mL) A+TBraak I+ vs. A+T- 0.8 (0.69, 0.91) 0.39 0.82 (0.54, 0.98) 0.76 (0.47, 1) 0.8 (0.61, 0.91)

pTau-231 (pg/mL) A+TBraak I+ vs. A+T- 0.85 (0.76, 0.93) 20 0.7 (0.38, 0.89) 0.76 (0.47, 1) 0.71 (0.49, 0.84)

NTA tau (pg/mL) A+TBraak I+ vs. A+T- 0.8 (0.7, 0.91) 0.22 0.68 (0.39, 0.82) 0.83 (0.61, 1) 0.7 (0.51, 0.81)

Abbreviations: Thr., Threshold identified using Youden’s index; Sens., Sensitivity; Spec., Specificity; Acc., Accuracy; CInt, confidence interval.

Table 4: Accuracy analysis of blood biomarkers in TRIAD.
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provided in Supplementary Table S3; ROC analyses
without inclusion of covariates are shown in
Supplementary Figure S3).

Next, we set out to investigate these findings in
different subpopulations in the TRIAD cohort. First, we
analysed the ROC characteristic of an age matched
cohort where only the participants older than 65 years
were included (A-T-: n = 110, mean age = 72, standard
deviation (SD) age = 4.8; A+T-: n = 22, mean age = 73,
Analyte Comparison AUC (95% CInt)

pTau-181 (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.85 (0.7, 1)

ALZpath pTau-217
(pg/mL)

TBraak V+ vs. T- and TBraak I–IV 0.95 (0.89, 1)

pTau-231 (pg/mL) TBraak V+ vs. T- and TBraak I–IV 0.85 (0.71, 0.99)

pTau-181 (pg/mL) TBraak I+ vs. T- 0.74 (0.66, 0.81)

ALZpath pTau-217
(pg/mL)

TBraak I+ vs. T- 0.78 (0.71, 0.85)

pTau-231 (pg/mL) TBraak I+ vs. T- 0.72 (0.64, 0.8)

pTau-181 (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.94 (0.88, 1)

ALZpath pTau-217
(pg/mL)

A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.97 (0.94, 1)

pTau-231 (pg/mL) A+TBraak V+ vs. A+T- or A+TBraak I–IV 0.83 (0.68, 0.97)

pTau-181 (pg/mL) A+TBraak I+ vs. A+T- 0.67 (0.55, 0.8)

ALZpath pTau-217
(pg/mL)

A+TBraak I+ vs. A+T- 0.72 (0.6, 0.84)

pTau-231 (pg/mL) A+TBraak I+ vs. A+T- 0.61 (0.48, 0.74)

Abbreviations: Thr., Threshold identified using Youden’s index; Sens., Sensitivity; Spec.,

Table 5: Accuracy analysis of blood biomarkers in WRAP longitudinal study.
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SD age = 5.1; A+TBraak I–IV: n = 35, mean age = 74, SD
age = 5.0; A+TBraak V+: n = 35, mean age = 72, SD
age = 4.0). Confirmatory, we found that pTau-217+Jans-
sen, and ALZpath pTau-217 identified TBraak V+ in-
dividuals with an AUC >0.9 in all participants and in A+
preselected participants (Supplementary Figure S4, the
results of the statistical comparisons are provided in
Supplementary Table S4). Furthermore, we analysed the
ROC characteristics in individuals with mild cognitive
Thr. Sens. (95% CInt) Spec. (95% CInt) Acc. (95% CInt)

3.72 0.82 (0.77, 0.86) 0.89 (0.85, 0.92) 0.88 (0.84, 0.91)

1.18 0.82 (0.77, 0.86) 0.97 (0.95, 0.99) 0.96 (0.94, 0.98)

15.55 0.82 (0.77, 0.86) 0.8 (0.76, 0.84) 0.81 (0.76, 0.85)

2.87 0.59 (0.53, 0.64) 0.72 (0.66, 0.76) 0.7 (0.64, 0.74)

0.62 0.57 (0.52, 0.63) 0.84 (0.79, 0.87) 0.79 (0.74, 0.83)

13.25 0.55 (0.5, 0.61) 0.67 (0.61, 0.72) 0.65 (0.59, 0.7)

3.96 0.89 (0.8, 0.94) 0.79 (0.68, 0.86) 0.9 (0.81, 0.95)

1.18 1 (0.95, 1.01) 0.87 (0.78, 0.93) 0.96 (0.89, 0.99)

16.45 0.78 (0.67, 0.85) 0.66 (0.55, 0.76) 0.84 (0.74, 0.9)

3.72 0.5 (0.39, 0.61) 0.8 (0.7, 0.87) 0.82 (0.73, 0.89)

0.78 0.67 (0.55, 0.76) 0.66 (0.55, 0.76) 0.84 (0.74, 0.9)

14.85 0.56 (0.44, 0.65) 0.55 (0.44, 0.65) 0.73 (0.63, 0.82)

Specificity; Acc., Accuracy; CInt, confidence interval.
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impairment and mild dementia (CDR score ≤1 and
MMSE >21) to investigate which tau analytes could be
used to determine eligibility for Aβ-targeting therapies
(A-T-: n = 18, mean age = 70, SD age = 10.6; A+T-: n = 9,
mean age = 72, SD age = 6.6; A+TBraak I–IV: n = 18, mean
age = 71, SD age = 9.5; A+TBraak V+: n = 34, mean
age = 71, SD age = 6.1). Again, our analyses showed that
pTau-217+Janssen, and ALZpath pTau-217 identified
TBraak V+ individuals with an AUC >0.9 in all partici-
pants and in A+ preselected participants
(Supplementary Figure S5, the results of the statistical
comparisons are provided in Supplementary Table S5).
Next, we tested the ROC characteristics to identify
Braak-dependent tau accumulation in cognitively
impaired (CI) and unimpaired (CU) participants.
Therefore, we set out to identify CI A+TBraak V+ (n = 41)
vs. CI A+T- and A+TBraak I-IV (n = 41) participants. In
this analysis, pTau-217+Janssen (AUC = 0.98), ALZpath
pTau-217 (AUC = 0.91), and NTA-tau (AUC = 0.93)
showed the best performance. Next, we probed the ROC
characteristics of the tau analytes to separate CU A+
with any tau accumulation (n = 16) from those without
tau accumulation (n = 14). Again, pTau-217+Janssen

(AUC = 0.94), and ALZpath pTau-217 (AUC = 0.87)
achieved the best separation (Supplementary Figure S6,
the results of the statistical comparisons are provided in
Supplementary Table S3). Thus, we concluded that
pTau-217 identifies individuals with tau accumulation
in later Braak stages in different AD relevant
subpopulations.

Next, we performed a post-hoc power analysis sepa-
rately for TRIAD and WRAP. Given the respective
sample sizes and a 0.05 significance level, our study had
a power of 1.0 to differentiate TBraak V+ in all or A+ in-
dividuals with an AUC of 0.80 which corresponded to
the lowest AUC that we observed in our analyses across
all tau derivates. Thus, our study was adequately pow-
ered to identify TBraak V+ individuals with the respective
blood biomarkers.

Braak V+ tau PET positivity can be estimated by
adapted cut-offs
Next, we determined different cut-offs for all partici-
pants without preselection and Aβ+ individuals to
separate (A) TBraak I+ individuals from T- participants,
and (B) TBraak V+ participants from all other participants,
including those with no tau and those with tau accu-
mulation in lower Braak stages (TBraak I–IV). Therefore,
we calculated absolute thresholds for optimal separation
using Youden’s index from our previous ROC analyses
for pTau-181, pTau-217+Janssen, ALZpath pTau-217 and
NTA-tau (all thresholds, sensitivity, specificity, and ac-
curacy analyses are shown in Table 4). Across all bio-
markers, an increase of the threshold led to a separation
of TBraak V+ individuals from TBraak I–IV and T- in-
dividuals with or without preselection by brain
amyloidosis. We focused on our two pTau-217 assays
since they consistently showed the highest accuracy to
differentiate tau PET-positive participants from others
without and with preselection of Aβ+ participants. In
participants without preselection, 0.12 pg/mL pTau-
217+Janssen (Fig. 3a; sensitivity = 1, specificity = 0.93,
accuracy = 0.94), and 0.45 pg/mL ALZpath pTau-217
(Fig. 3b; sensitivity = 0.95, specificity = 0.89, accu-
racy = 0.90) separated TBraak V+ individuals in the TRIAD
cohort (in comparison to 0.09 pg/mL pTau-217+Janssen

and 0.32 pg/mL ALZpath pTau-217 to identify TBraak I+

individuals). We repeated the analyses after preselection
of Aβ+ participants. Here, pTau-217+Janssen blood levels
>0.13 pg/mL (Fig. 3c; sensitivity = 0.97, speci-
ficity = 0.82, accuracy = 0.88), and ALZpath pTau-217
blood levels >0.6 pg/mL (Fig. 3d; sensitivity = 0.84,
specificity = 0.84, accuracy = 0.84) identified A+TBraak V+

tau PET-positive participants in the TRIAD cohort (in
comparison to 0.09 pg/mL pTau-217+Janssen and
0.39 pg/mL ALZpath pTau-217 to identify A+TBraak I+

tau PET-positive participants).
Using a similar procedure in the independent WRAP

study cohort, ALZpath pTau-217 identified TBraak V+

participants with a 1.18 pg/mL cut-off (Fig. 4a; sensi-
tivity = 0.82, specificity = 0.97, accuracy = 0.96).
Furthermore, ALZpath pTau-217 identified A+TBraak V+

tau PET-positive participants with a 1.18 pg/mL cut-off
(Fig. 4b; all statistical results for the WRAP study
cohort are shown in Table 5; sensitivity = 1.0, speci-
ficity = 0.87, accuracy = 0.96) underlining that blood
levels of pTau-217 can be used to identify individuals
with late-stage cortical tau accumulation.

Last, we aimed to analyse whether the prediction of
TBraak V+ tau accumulation benefits from combining
pTau-217 with pTau-231 or pTau-181. Therefore, we
performed an agreement analysis of the PET-based with
a blood-based TBraak V+ classification using our respec-
tive cut-offs. Across both cohorts, we found a high
agreement between the PET-based and ALZpath pTau-
217-based identification of TBraak V+ in all or in A+
preselected participants with a Cohen’s Kappa coeffi-
cient ≥0.6. However, combining ALZpath pTau-217
with the other biomarker consistently reduced the
agreement between the PET-based and blood-based
identification of TBraak V+ in the TRIAD and WRAP co-
horts. Similarly, pTau-217+Janssen that was only available
in the TRIAD cohort showed a high agreement with the
PET-based identification of TBraak V+ participants that
was decreased by combining pTau-181 or pTau-231
(Supplementary Table S6).
Discussion
AD stage has implication on the outcomes of disease
modifying treatments.44–46 This study assessed the ability
of plasma biomarkers to identify individuals within a
late-stage tau accumulation, designated as a PET-based
Braak stage of V+. We found that plasma pTau-217
www.thelancet.com Vol 109 November, 2024
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Fig. 3: pTau-217 identifies individuals with Braak V+ tau accumulation in TRIAD. (a and b) Accuracy, sensitivity, and specificity of pTau-
217+Janssen in TRIAD (a), and ALZpath pTau-217 in TRIAD (b) to detect TBraak V+ individuals without preselection. (c and d) Accuracy, sensitivity,
and specificity of pTau-217+Janssen in TRIAD (c), ALZpath pTau-217 in TRIAD (d) to detect TBraak V+ individuals in Aβ+ participants. Cut-off
according to Youden-index are shown as dashed lines. pTau, phospho-tau.

Articles
could reliably detect late-stage tau accumulation in
amyloid-PET-positive individuals. Moreover, we identi-
fied cut-offs that were able to identify late-stage tau
accumulation in an independent cohort. These results
support the construct that plasma pTau concentrations
is useful in estimating biological severity in AD and for
determining eligibility for clinical trials by excluding
individuals with high tau burden.
Fig. 4: pTau-217 identifies individuals with Braak V+ tau accumulation
pTau-217 in WRAP to detect TBraak V+ individuals without preselection (a
shown as dashed lines. pTau, phospho-tau.
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The recent TRAILBLAZER-ALZ2 study observed that
patients with more advanced tau pathology experienced
lower clinical benefit in response to amyloid-PET reduc-
tion. In light of these findings, there may be a need to
determine severity of a patient’s biological AD in order to
forecast someone’s response to treatment. In particular,
there is a clinical need to identify individuals with tau
accumulation in later Braak stages who are not eligible for
in WRAP. (a and b) Accuracy, sensitivity, and specificity of ALZpath
) and in Aβ+ participants (b). Cut-off according to Youden-index are
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Aβ-targeting therapies. Thus, plasma pTau-217 provides
useful information in this regard by estimating tau-PET
severity. Notably, this was consistent in two separate co-
horts recruited in a specialized tertiary care memory clinic
(TRIAD) and longitudinal observational study (WRAP)
with different demographics supporting the generaliz-
ability of our results. Future studies are needed to deter-
mine whether a combination of plasma biomarkers (i.e., a
plasma biomarker panel47) will provide additional infor-
mation to continuous plasma pTau-217 concentrations.

Because of the close association between tau-PET
and cognitive decline,48,49 elevated thresholds for
plasma p-tau may suggest patients are at higher risk of
future cognitive decline. In fact, a recent study that
divided individuals based on plasma pTau-217 quartiles
provided evidence that elevated plasma pTau-217 con-
centrations were associated with a higher risk of
cognitive decline over 6 years.50 Since we did not find
significant associations between pTau-217 and hippo-
campal volume when separately analysing individuals
with high and low tau burden, our data suggests that
pTau-217 rather specifically reflects AD pathophysiology
than broadly neurodegeneration. Therefore, our study
provides further support to the notion that using higher
thresholds for plasma pTau-217 can be used to estimate
risk of AD-related cognitive decline.

From a diagnostic standpoint, there may also be a
use-case for different plasma pTau-217 thresholds. A
recent study used a two-step workflow where patients
with MCI were characterised as low risk/intermediate
risk/high risk for elevated brain amyloid-PET based on
plasma pTau-217 concentrations.51 The use of a three-
range plasma pTau-217 approach (as opposed to a
normal/abnormal cut-point) was associated with a lower
number of cognitively impaired patients who would
require confirmatory biomarker testing.51 Another study
showed that pTau-217 as stand-alone test can reliably
identify A+ individuals including individuals with high
tau burden who would require confirmatory tau-PET.52

Our study contributes to this framework by high-
lighting that elevated (i.e., highly abnormal) concentra-
tions of plasma pTau-217 are not only highly likely to be
associated with elevated amyloid-PET but also associated
with advanced tau accumulation. Along these lines, we
additionally show that pTau-217 can identify individuals
with MCI or mild AD who would be disqualified from
Aβ-targeting therapies due to the high tau burden.
Furthermore, our data suggests that pTau-217 alone
shows a higher agreement with the PET-based classifi-
cation of tau accumulation in later Braak stages than
combining pTau-217 with other tau analytes. Thus,
blood pTau-217 in combination with the clinical
phenotype might suffice for AD diagnosis, disease
staging and eligibility testing for Aβ-targeting therapies.
However, further studies in diverse populations and
patient groups are required to investigate pTau-217 as
stand-alone test for estimating AD severity.
While many studies have focused on identifying
abnormal amyloid-PET using plasma biomarkers, a
limitation is that plasma pTau-217 alone cannot deter-
mine whether AD is driving a patient’s clinical pheno-
type, or whether the abnormal Aβ is incidental. Another
advantage of using higher thresholds to detect advanced
tau accumulation is that it increases the likelihood that
the clinical phenotype is driven by AD. Despite these
potential advantages, prospective studies evaluating how
plasma biomarkers influence diagnosis and care of pa-
tients with neurodegenerative diseases are needed (i.e.,
similar to the IDEAS study53).

Our study has limitations. The first limitation is that
both the TRIAD and WRAP cohorts constitute self-
selected individuals who are interested in participating
in aging and dementia research. Both samples are also
highly educated and feature a low proportion of non-
white individuals. Therefore, replication of the present
results in more representative populations and different
patient care settings is needed. Another limitation of the
present study is that both the TRIAD and WRAP studies
are single-centre studies where plasma biomarker
collection and analysis protocols are more tightly
controlled than can be reasonably achieved in large
multicentre studies. Furthermore, our findings need to
be replicated in multi-ethnic cohorts to incorporate our
findings into community-based diagnostic procedures.
Furthermore, although we included possible con-
founders in our analyses, studies with larger sample
sizes should determine separate cut-offs for age groups,
sexes and genetic risk factors which could further guide
AD diagnosis and staging. A final limitation of our study
is that plasma biomarkers were measured for each assay
all at once (which is standard practice in cohort studies).
Therefore, before these assays and cutoff points can be
used in clinical practice, they need to be validated in a
prospective manner.

In summary, this study highlights that pTau-217
blood concentration qualifies as biomarker to identify
individuals with tau accumulation in Braak stages V and
VI which has the potential to guide patient stratification
for treatments, clinical trials, and patient counselling.
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