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ABSTRACT

Purpose: This study aimed to establish and characterize patient-derived intestinal organoids 
(PDOs) from children with Crohn’s disease (CD).
Methods: To generate PDOs, endoscopic biopsy specimens were obtained from non-
inflamed duodenal bulbs of normal controls and CD patients. To verify the presence of PDOs, 
histological staining and quantitative reverse transcription polymerase chain reaction (RT-
qPCR) analyses were performed.
Results: PDOs were successfully established in normal controls (n=2) and CD patients 
(n=2). Hematoxylin and eosin staining of formalin-fixed, paraffin-embedded PDO sections 
revealed crypt and villus structures, whereas immunofluorescence staining with EpCAM and 
DAPI confirmed the epithelial-specific architecture of the PDOs. RT-qPCR results revealed 
a significant increase in Lgr5, Si, and Chga gene expression and a decrease in Olfm4 and Muc2 
expression in CD patients compared to normal controls, suggesting altered stem cell activity 
and mucosal barrier function (p<0.05).
Conclusion: We successfully established and characterized PDOs in children with CD, 
providing a valuable tool for understanding the pathophysiology of the disease and evaluating 
potential therapeutic approaches. The differential gene expression of PDOs in CD patients 
might be caused by the complex interplay between epithelial adaptation and inflammation in 
the intestinal epithelium.
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INTRODUCTION

Crohn’s disease (CD) is a chronic, relapsing-remitting inflammatory disease that affects the 
entire gastrointestinal tract. Owing to an incomplete understanding of the pathophysiology 
of the disease, pediatric cases present particular challenges [1]. The main treatment for CD 
involves biological therapies, such as antitumor necrosis factor agents, which are aimed at 
suppressing inflammation [2]. However, managing these therapies can be difficult, and 
success rates vary depending on factors such as disease severity and patient response to 
previous treatments [3]. In pediatric patients, biological therapies have been shown to 
induce clinical remission in approximately 40–60% of cases, with approximately 30–50% 
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maintaining remission over time [4]. While further research on the pathophysiology of CD 
is critical to overcome these challenges, studying pediatric patients presents additional 
limitations [5]. Thus, there is an urgent need to develop new treatments targeting different 
pathways to improve patient outcomes [6].

Conventional research models, such as in vitro cell cultures and in vivo animal models, 
have significant limitations [7]. Animal models have long life cycles, differ from humans 
in key biological aspects, and are costly, with additional concerns around animal ethics 
[8]. Similarly, cellular models often lack sufficient representation of human biology [9]. 
Consequently, more effective, safe, and human-representative cellular models are needed to 
reduce reliance on animal experiments. Patient-derived intestinal organoids (PDOs) offer a 
promising alternative because they recapitulate the structures, specific functions, molecular 
characteristics, and expression profiles of the primary intestinal mucosa [10]. These three-
dimensional structures are derived from multipotent epithelial stem cells located at the base 
of intestinal crypts and are grown in culture from endoscopically obtained mucosal biopsies 
[11]. PDOs retain important features of the intestinal epithelium, such as self-renewal, 
self-organization, barrier function, and the ability to differentiate into various epithelial cell 
types [12]. As a result, PDOs have revolutionized research in inflammatory bowel diseases 
by providing new, patient-specific models for studying disease mechanisms and developing 
treatments [13,14].

Pediatric CD often leads to growth retardation, delayed puberty, and follows a different 
disease course compared to adult-onset CD [15]. These unique clinical features highlight 
the need for establishing pediatric-specific PDOs. Despite the growing incidence of CD in 
children, research addressing the specific characteristics of PDOs from pediatric patients 
remains sparse. This study aimed to establish and characterize PDOs in children with CD, 
providing a valuable tool for understanding the pathophysiology of the pediatric CD and 
evaluating potential therapeutic approaches.

MATERIALS AND METHODS

Collection of tissues and ethical statements
To generate PDOs, endoscopic biopsy specimens were obtained from the non-inflamed 
duodenal bulbs of both normal controls and CD patients at Seoul National University 
Hospital and Hallym University Kangnam Sacred Heart Hospital between November 2022 
and May 2024. Normal controls were patients who exhibited normal mucosal findings during 
endoscopy. CD patients were diagnosed according to the pediatric CD guidelines [16]. All 
samples were collected after obtaining informed consent. This study was conducted in 
compliance with the Declaration of Helsinki and was approved by the Institutional Review 
Board of Seoul National University (approval no. H-2207-171-1344) and Hallym University 
Kangnam Sacred Heart Hospital (approval no. 2024-01-013). Written informed consent was 
obtained from all participants, and for participants under the age of 16 years, consent was 
obtained from their parents or legal guardians prior to the study.

Crypt isolation and passage
Intestinal crypts were isolated from fresh duodenal endoscopic biopsies using a modified 
protocol [17]. Briefly, biopsies (~4×7 mm) were thoroughly washed in PBS containing 
penicillin/streptomycin (Pen/Strep; Gibco) and amphotericin B (Gibco). The washes were 
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repeated until the solution became clear. The cleaned biopsies were then incubated in PBS 
supplemented with dithiothreitol (DTT; Sigma-Aldrich), ethylenediaminetetraacetic acid 
(EDTA; Invitrogen), and Pen/Strep for 30 minutes on ice. After incubation, the samples were 
shaken vigorously, and the supernatant was collected and supplemented with 1 mL of fetal 
bovine serum (FBS; Sigma-Aldrich). This process was repeated at least five times. All collected 
fractions were centrifuged at 1,000 rpm for 10 minutes at room temperature to pellet the 
crypts for further use. The collected cell pellet was resuspended in Matrigel, and 11.5 µL 
drops of the Matrigel-cell suspension were pipetted into a 6-well plate. The culture medium 
was composed of advanced DMEM/F12 (Gibco), supplemented with pen/strep (Gibco), 
GlutaMAX (Gibco), non-essential amino acids (Gibco), Sodium Pyruvate (Gibco), N2 and B27 
supplements (Sigma-Aldrich), Epidermal Growth Factor (EGF; PeproTech), Gastrin, N-acetyl 
cysteine, and insulin (Sigma-Aldrich) The culture medium was refreshed every two days, and 
the organoids were subjected to mechanical passaging at 7-to-8-day intervals.

Histologic analyses
Mature intestinal organoids were harvested by carefully collecting Matrigel, and the organoid 
pellet was fixed with 4% paraformaldehyde (Biosesang) and embedded in paraffin. Sections 
were cut at a thickness of 4 µm for hematoxylin and eosin (H&E) and immunofluorescence 
(IF) analysis. The sections were deparaffinized with xylene and rehydrated using a graded 
ethanol series. For H&E staining, deparaffinized sections were stained with a H&E staining 
kit (Vector Laboratories) following the manufacturer’s guidelines. For IF staining, the 
deparaffinized slides were subjected to antigen retrieval by heating in citrate buffer (Sigma-
Aldrich) for 20 minutes. Endogenous peroxidase was inactivated with 0.3% hydrogen 
peroxide, followed by permeabilization with 0.15% TritonX-100 (Sigma-Aldrich) in PBS. Non-
specific binding was blocked using goat serum (Sigma-Aldrich) before incubating the slides 
with primary antibody EpCAM (Cell Signaling Technology) overnight at 4°C. Slides were then 
incubated with a goat anti-mouse IgG (H+L) cross-absorbed secondary antibody, Alexa Fluor 
488 (Invitrogen), for 1 hour. The nuclei were counterstained with DAPI (Invitrogen).

Quantitative reverse transcription polymerase chain reaction analyses
Total RNA from the organoids of normal controls and CD patients was isolated using TRIzol 
reagent (Invitrogen) and Direct-zolTM RNA Miniprep (Zymo Research), according to the 
manufacturer’s protocol. Complementary DNA was synthesized using Maxima H Minus 
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). mRNA expression levels were 
measured with FastStart Essential DNA Green Master (Roche), which was analyzed by using 
the Lightcycler® 96 Instrument (Roche). The primer sequences are listed in Table 1. Fold 
changes in gene expression were calculated by the 2−ΔΔCt method, with normalization to the 
housekeeping gene (18S ribosomal RNA).
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Table 1. Quantitative reverse transcription polymerase chain reaction primer sequences
Gene Forward Reverse
18S AGAAACGGCTACCACATCCA CCCTCCAATGGATCCTCGTT
Lgr5 CTCCCAGGTCTGGTGTGTTG GAGGTCTAGGTAGGAGGTGAAG
Olfm4 ACTGTCCGAATTGACATCATGG TTCTGAGCTTCCACCAAAACTC
Si TCCAGCTACTACTCGTGTGAC CCCTCTGTTGGGAATTGTTCTG
Muc2 CAACAACACCCTGCTCAACG CTTCGGGTCGCTCTTGAAGT
Chga TAAAGGGGATACCGAGGTGATG TCGGAGTGTCTCAAAACATTCC
Lyz CTTGTCCTCCTTTCTGTTACGG CCCCTGTAGCCATCCATTCC

https://pghn.org


Statistical analysis
Statistical analysis of differences between groups was performed using Student’s t-test from 
triplicate samples using GraphPad Prism (version 11; GraphPad Software, Inc.). A p-value of 
less than 0.05 was considered indicative of statistical significance.

RESULTS

Establishment of PDOs in pediatric CD patients
Normal and CD PDOs were established using endoscopic biopsy specimens obtained from 
non-inflammatory mucosal lesions in the duodenal bulb. Intestinal crypts were isolated from 
the duodenal biopsies of normal controls (n=2) and CD patients (n=2). Table 2 shows the 
subject characteristics. Established PDOs from duodenal biopsies of normal controls were 
stably cultured for 23 weeks, and PDOs from non-inflamed duodenal biopsies of CD patients 
were stably cultured until 20 weeks before freezing. The PDOs were split once weekly, and the 
conditioned media were replaced three times a week. On average, a split ratio of 1:3–1:5 was 
used for the normal control and CD groups. Fig. 1 shows the process of PDOs growth from 
days one to six in the fourth week of passage in the control group. From days one to three, the 
intestinal organoids began to recover from dissociation, showing early expansion and initial 
lumen formation (Fig. 1). By day six, the organoids had grown significantly and matured, with 
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Table 2. Clinical characteristics of subjects

Subjects Age (yr)/
sex The reason of endoscopy Endoscopic findings at the time 

samples acquisition Diagnosis

Normal 1 13/M Vomiting NOS Cyclic vomiting syndrome
Normal 2 13/F Poor oral intake NOS Anorexia nausea
CD 1 15/F Abdominal pain, chronic 

diarrhea, recurrent oral 
ulcer, weight loss

Multiple mucosal ulcers in the 
second portion of duodenum, 
and multiple cobblestone 
ulceration in colon.

CD
Paris classification (A1b, 
L3+L4a, B1p, G0)

CD 2 12/F Abdominal pain, poor oral 
intake, weight loss

Aphthous ulcers ( jejunum on 
capsule and terminal ileum).

CD
Paris classification (A1b, 
L1+L4b, B1, G1)

M: male, F: female, NOS: not otherwise specified, CD: Crohn’s disease.

P4D1 P4D2 P4D3

P4D4 P4D5 P4D6

Fig. 1. Process of intestinal organoid growth from days one to six in fourth week passage in control group.
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well-defined structures and differentiated cell types (Fig. 1). PDOs in CD patients exhibited 
the same growth pattern.

Histologic verification of PDOs
The histological structure of the PDOs on day seven using H&E staining is shown in Fig. 2,  
which revealed crypt and villus structures. Hematoxylin stains the nuclei of cells dark blue 
or purple, while eosin stains the cytoplasm and extracellular matrix pink. To confirm the 
growth of epithelial-specific organoids in our small intestinal crypt culture system, we 
immunostained the PDOs of normal control and CD patients for EpCAM and DAPI (Fig. 3).

Molecular characterization of PDOs in pediatric CD patients
In the RT-qPCR analyses, Lgr5 gene expression was significantly higher in CD patients 
compared to normal controls (p<0.05, Fig. 4), whereas Olfm4 gene expression was 
significantly lower (p<0.05, Fig. 4). Additionally, RT-qPCR showed a significant increase in 
Si and Chga gene expression and a decrease in Muc2 expression in CD patients compared to 
normal controls (p<0.05, Fig. 4). No significant differences in Lyz expression were observed 
(Fig. 4).
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A B

Fig. 2. Distinct crypt and villus structures in normal (A) and CD (B) samples visualized by hematoxylin and eosin 
staining from paraffin-embedded sections. Scale bars 50 µm. CD: Crohn’s disease.

EpCAM DAPI Merged

EpCAM DAPI Merged

A

B

Fig. 3. Structural analysis of intestinal epithelial cells in human duodenal 3-dimensional organoids from control 
(A) and CD (B) patients using EpCAM immunofluorescence staining. Representative images show epithelial cell 
marker with EpCAM (green) and nuclei (blue) with DAPI. Scale bars 60 µm. CD: Crohn’s disease.
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DISCUSSION

This study describes the methodologies used to establish PDOs from the endoscopic 
biopsies of normal controls and CD patients. Our study characterized the specific gene 
expression profiles associated with CD, including increased expression of Lgr5, Si, and Chga, 
and decreased expression of Olfm4 and Muc2, suggesting alterations in stem cell activity and 
mucosal barrier function. These findings provide valuable insights into the pathophysiology 
of CD and a new model for therapeutic research.

We determined that PDOs from both normal controls and CD patients accurately replicated 
the structural and cellular features of native intestinal tissue, as demonstrated by H&E 
and IF staining. EpCAM, a marker for epithelial cells, is commonly expressed on the basal 
or basolateral cell membrane in IF to indicate cell-to-cell adhesion in epithelial tissues, 
including intestinal organoids [18]. IF staining of EpCAM confirmed that the architecture of 
the established intestinal organoids closely resembled that of native intestinal tissues.

Additionally, RT-qPCR analyses revealed the expression of various gene markers in both 
PDOs, including Lgr5 (stem cell marker), Olfm4 (stem cell marker), Si (intestinal epithelial cell 
marker), Muc2 (goblet cell marker), Chga (neuroendocrine cell marker) and Lyz (Paneth cell 
marker), indicating that they contain a diverse range of cell types [19].

In PDOs from CD patients, we observed notable differences in gene expression compared 
to PDOs from normal controls based on RT-qPCR results. Our study shows significantly 
increased Lgr5 gene expression and decreased Olfm4 gene expression in Crohn’s PDOs 
compared with normal controls. Several mechanisms can explain these findings. Although 
Lgr5 and Olfm4 are stem cell markers, they are differentially regulated under different disease 
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Fig. 4. mRNA expression of intestine-specific genes between normal and CD patients in human duodenal 
3-dimensional organoids. mRNA expression level of stem cell-associated genes (A) Lgr5 and (B) Olfm4, as well 
as intestinal epithelial maturation-associated genes (C) Si, (D) Muc2, (E) Chga, and (F) Lyz measured using 
quantitative reverse transcription polymerase chain reaction analyses. Gene expressions presented using 2–ΔΔCt 
method. Statistical significance differences between groups analyzed by Student’s t-test. ns: not significant, CD: 
Crohn’s disease. **p<0.01, ***p<0.001, ****p<0.0001.
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conditions. Lgr5 is crucial for maintaining intestinal stem cells and promoting epithelial 
regeneration, whereas Olfm4 is associated with Paneth cells, which support stem cells but 
are less involved in their proliferation [20,21]. Chronic inflammation may cause changes in 
the intestinal epithelium and its microenvironment, thereby affecting stem cell markers. 
Additionally, increased Lgr5 expression may reflect an adaptive response to damage, whereas 
decreased Olfm4 expression may indicate impaired Paneth cell function [22]. Thus, the 
differential expression of Lgr5 and Olfm4 highlights the complex interactions between stem 
cell biology, inflammation, and tissue regeneration in CD.

A significant increase in Si and Chga gene expression and a significant decrease in Muc2 gene 
expression were observed in PDOs from CD patients on RT-qPCR. Increased Si expression 
in CD likely represents an adaptive epithelial response, compensating for digestive 
function under stress [23]. This upregulation may also indicate changes in epithelial cell 
differentiation and tissue regeneration during inflammation [24]. Decreased Muc2 expression 
in CD indicates a compromised mucosal barrier, because Muc2 is crucial for protecting and 
lubricating the epithelial surface [25]. Lower Muc2 levels suggest that inflammation disrupts 
the mucosal integrity, exacerbating epithelial damage and vulnerability [26]. Additionally, 
Chga gene expression analysis revealed increased chromogranin A, indicating a potential 
rise in neuroendocrine cell populations during inflammation. This upregulation may be an 
adaptive response of neuroendocrine cells to chronic stress or tissue damage [27]. Overall, 
these expression profile changes provide insights into the complex alterations in intestinal 
epithelial cell populations and their potential roles in CD pathology.

CD in children exhibits distinct clinical characteristics that differ significantly from those 
in adult populations [28]. Pediatric CD often leads to growth retardation, delayed puberty, 
and a different disease course compared to adult-onset CD [28]. Children with CD frequently 
present with more aggressive disease behavior, resulting in greater intestinal damage and 
higher rates of complications compared to adults [29]. Current literature emphasizes the 
unique pathophysiology and treatment responses in pediatric CD patients, highlighting the 
need for dedicated pediatric-oriented PDO settings [30]. However, research utilizing PDOs in 
children is lacking, particularly in Asian cohorts. Our established PDOs in pediatric CD can 
help advance research and improve clinical outcomes for children with CD.

Our study is the first report from Korea on the establishment of PDOs from mucosal biopsy 
samples of pediatric CD patients. By successfully generating organoids from patients, this 
study provides a groundbreaking model for investigating the pathophysiology of CD and 
predicting drug responses. The ability to perform such studies on organoids rather than 
directly on patients offers a novel approach for forecasting therapeutic responses. In this 
study, we performed RT-qPCR using various cell markers, and future experiments could 
include IF staining for these markers. Additionally, RNA sequencing could be employed to 
analyze genes and pathways specific to pediatric CD, paving the way for further insights. 
This study was limited by its small sample size. Our future plans include the creation of a CD 
organoid bank by collecting mucosal samples from a larger patient cohort.

In conclusion, we successfully established and characterized PDOs from pediatric CD 
patients, offering a valuable model for understanding the pathophysiology of the disease 
and evaluating potential therapeutic approaches. The differential gene expression of PDOs 
in CD patients might be caused by the complex interplay between epithelial adaptation and 
inflammation in the intestinal epithelium.
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