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Aims Optical coherence tomography (OCT) can identify high-risk plaques indicative of worsening prognosis in patients with acute 
coronary syndrome (ACS). However, manual OCT analysis has several limitations. In this study, we aim to construct a deep- 
learning model capable of automatically predicting ACS prognosis from patient OCT images following percutaneous cor
onary intervention (PCI).

Methods 
and results

Post-PCI OCT images from 418 patients with ACS were input into a deep-learning model comprising a convolutional neural 
network (CNN) and transformer. The primary endpoint was target vessel failure (TVF). Model performances were evalu
ated using Harrell’s C-index and compared against conventional models based on human observation of quantitative (min
imum lumen area, minimum stent area, average reference lumen area, stent expansion ratio, and lesion length) and 
qualitative (irregular protrusion, stent thrombus, malapposition, major stent edge dissection, and thin-cap fibroatheroma) 
factors. GradCAM activation maps were created after extracting attention layers by using the transformer architecture. A 
total of 60 patients experienced TVF during follow-up (median 961 days). The C-index for predicting TVF was 0.796 in the 
deep-learning model, which was significantly higher than that of the conventional model comprising only quantitative factors 
(C-index: 0.640) and comparable to that of the conventional model, including both quantitative and qualitative factors 
(C-index: 0.789). GradCAM heat maps revealed high activation corresponding to well-known high-risk OCT features.

Conclusion The CNN and transformer-based deep-learning model enabled fully automatic prognostic prediction in patients with ACS, 
with a predictive ability comparable to a conventional survival model using manual human analysis.
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Clinical Trial 
Registration

The study was registered in the University Hospital Medical Information Network Clinical Trial Registry 
(UMIN000049237).
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Deep-learning-driven optical coherence tomography (OCT) analysis for cardiovascular outcome prediction in patients with acute coronary syndrome 
(ACS). A deep-learning model utilizing a convolutional neural network (CNN) and a transformer enables automatic prediction of cardiovascular outcomes 
from post-percutaneous coronary intervention (PCI) OCT images in patients with ACS. Harrell’s C-index is significantly higher than that of the conventional 
model including only quantitative factors, and comparable to that of the conventional model including both quantitative and qualitative factors.
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Introduction
Despite advancements in interventional techniques and optimal medic
al therapies, acute coronary syndrome (ACS) continues to be a leading 
cause of morbidity and mortality worldwide. Given that ACS is typically 
accompanied by systemic atherosclerotic complications, affected pa
tients have a high incidence of cardiovascular events, even after success
ful percutaneous coronary intervention (PCI).1 Previous studies have 
clarified several critical intravascular findings after PCI to identify high- 
risk intracoronary conditions that can lead to future cardiovascular 
events.1,2

Optical coherence tomography (OCT) is an intravascular imaging 
modality that allows the detailed evaluation of intracoronary micro
structures post PCI.3 Previous studies have demonstrated that 
OCT-guided stent optimization based on quantitative OCT evaluation 
is associated with better clinical outcomes in patients with ACS.4

Additionally, qualitative OCT assessment and identification of features 
such as lipid-rich plaque and thin-cap fibroatheroma (TCFA) in non- 
culprit lesions (NCLs) have been associated with subsequent adverse 

clinical events after PCI.5–7 However, conventional human-based 
OCT analysis has inherent limitations, including the need for specia
lized knowledge and experience, time, and effort, objectivity and 
reproducibility issues, and limited feature extraction by human 
observers.8

Recently, deep-learning technology has made remarkable pro
gress and has already been implemented in the medical field. 
This technique has also been successfully applied in the field of 
cardiovascular OCT for plaque classification, segmentation, and 
image reconstruction.8–11 A previous study reported that artificial 
intelligence–based software can detect vulnerable plaques that 
are potentially associated with poor prognosis.12 However, the 
mere classification of vulnerable plaques alone may not be suffi
cient for predicting poor outcomes, as most plaques, identified 
through a single-time-point assessment, heal naturally and do not 
correlate consistently with clinical events. Therefore, in this study 
we aim to establish an artificial intelligence–based survival model 
that predicts the prognosis directly from OCT images after PCI 
in patients with ACS.
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Methods
Study design
This multicentre, retrospective, observational study used the Kobe 
University ACS-OCT registry to explore the relationship between the 
morphological plaque characteristics of culprit lesions in ACS and clinical 
outcomes. Consecutive patients with ACS who underwent OCT-guided 
PCI at four institutions between November 2014 and December 2020 
were included in this study. The inclusion criteria were as follows: patients 
with de novo ACS who (i) underwent OCT-guided PCI with a drug-eluting 
stent and (ii) were aged ≥20 years. The participating institutions and exclu
sion criteria are described in Supplementary material online, Appendices S1 
and S2, respectively. The study protocol complied with the Declaration of 
Helsinki and was approved by the Ethics Committee of Kobe University 
Hospital. Informed consent was obtained in the form of an opt-out on 
the website of the Division of Cardiovascular Medicine at Kobe 
University Graduate School of Medicine. The study was registered in the 
University Hospital Medical Information Network Clinical Trial Registry 
(UMIN000049237).

Outcomes
The primary endpoint was target vessel failure (TVF), including cardiac 
death, target vessel–related myocardial infarction (MI), and ischaemia- 
driven target vessel revascularization (TVR).13 Detailed definitions of out
comes are described in the Supplementary material online, Appendix S3. 
Clinical outcomes were determined by reviewing medical records and con
firmed through direct contact with the patients, their families, or physicians.

Conventional optical coherence tomography 
image analysis and definitions
At the end of the PCI procedure, OCT images were acquired using 
frequency-domain OCT (ILUMIEN; Abbott Vascular, Santa Clara, CA, 
USA) with a Dragonfly Optis OCT imaging catheter (Abbott Vascular). 
Offline OCT analysis was performed using dedicated software (Light Lab 
Imaging Inc., Westford, MA, USA) by independent observers blinded to 
the clinical presentation and lesion characteristics of the patient. The longi
tudinal image length was 75 mm at a pullback speed of 18 mm/s or 54 mm 
at a pullback speed of 36 mm/s.

The target vessel was divided into the following longitudinal sub-segments: 
(i) stented segments, (ii) adjacent reference segments (≤5 mm long), and (iii) 
NCLs.6 An NCL was defined as an untreated coronary segment with >30% 
diameter stenosis on angiography, located at least 5 mm away from the stent. 
In cases where multiple candidate NCLs were present, the most stenotic le
sion was defined as the NCL (see Supplementary material online, Figure S1). 
For quantitative analysis, cross-sectional OCT images were measured for 
every frame at 0.1 or 0.2 mm intervals. A qualitative assessment was per
formed to evaluate irregular protrusion, stent thrombus, stent malapposition, 
major stent edge dissection, and TCFA in the NCL. Detailed definitions are 
provided in Supplementary material online, Appendices S4 and S5.

Data pre-processing
The entire data set was divided into quintiles, each representing 20% of the 
entire data set. One quintile was allocated as the test data set, while the re
maining four quintiles were used for cross-validation and subdivided into 
training and validation data sets in a 3:1 ratio. To account for the varying 
number of pullbacks from the various participating centres, all data were ag
gregated and then randomly divided into five equal parts to ensure a ba
lanced and representative division of the data set. Data in the Digital 
Imaging and Communications in Medicine format were converted into ma
trix form and resized to a resolution of 250 × 250 pixels. For the OCT 
images, areas outside the scanning range were replaced with zeros, and 
any text, such as examination information, was masked.

The images, initially 8-bit in depth, were standardized by dividing their 
pixel values by 256. Detailed data augmentation procedures are described 
in Supplementary material online, Appendix S7.

Additionally, to further validate the model’s performance, we performed 
prospective validation at one of the participating facilities. Comprehensive 
details are provided in Supplementary material online, Appendix S8.

Deep-learning model
We developed a hybrid model that integrated a convolutional neural network 
(CNN)14 with a transformer model.15 The feature extraction component of 
our model utilized Resnet50,16 a specific CNN architecture, pre-trained on 
the ImageNet data set. This model processes cross-sectional OCT images to 
generate feature vectors, each consisting of 256 elements. For each epoch, 
50 slices were randomly selected from the entire length of the vessel, ensuring 
the model was exposed to a diverse representation of vessel segments. Given a 
set of 50 cross-sectional images, the feature matrix for each sample was dimen
sioned at (50, 256), and the CNN model employed common weights to embed 
each image into the same 256-dimensional feature space. Subsequently, the fea
tures extracted by the CNN, along with a class token of the same element num
ber, were input into a transformer encoder model. The feature vector derived 
from the output class token was extracted, layer normalization applied, and 
then fed into a linear layer, outputting two values: µ and σ (Figure 1). These 
two parameters represent location and scale, as assumed by the time to the 
event with a log-logistic distribution. A negative log-likelihood loss was com
puted from the two values, µ and σ, using the following equation:

nll = − logL

=
􏽘

i

log xi − μi

σi
+ δi log σi + (1 + δi) log 1 + exp −

log xi − μi

σi

􏼒 􏼓􏼔 􏼕􏼔 􏼕

,

(1) 

where xi is the observed time and δi is the presence or absence of an event.17

The transformer model parameters were configured with a batch size of six, 
a learning rate ranging from 1e−3 to 1e−7 (log uniform distribution), and the 
Adam optimizer. The optimal model was determined by parameter explor
ation using the training and validation data sets. For each of the four folds, 
the model that achieved the highest C-index on the validation data set was 
saved. The top four models were then used to construct an ensemble model. 
The predictions from these models were combined by averaging the time- 
dependent values of the output survival curves, resulting in the final ensemble 
model’s prediction.

Model evaluations and statistics
The performance of the deep-learning model was assessed using Harrell’s 
concordance index (C-index). The evaluation metric was defined as the 
time at which the survival curves indicated a 50% probability of survival. 
The survival function, S(t), was delineated using values of µ and σ produced 
by the deep-learning model, as given by the following equation:

S(t) =
1

1 + exp ( log t − μ)
σ

􏼐 􏼑 (2) 

The C-index was used as the evaluation metric for the Cox regression mod
el. Both the Cox regression and deep-learning models were fitted using the 
training and validation data sets and subsequently evaluated using the test 
data set. The 95% confidence interval (CI) for each model metric was cal
culated using the bootstrap method with 1000 iterations. Furthermore, 
the comparison of model performance was based on the evaluation of 
each model’s metrics using identical bootstrap samples, with a two-sided 
significance test conducted to calculate the P-value. The base program 
was developed using Python 3.8 with the PyTorch 1.8 framework as the 
deep-learning library. The model visualization methods are shown in 
Supplementary material online, Appendix S9.

Results
Study population
In total, 519 consecutive patients underwent OCT-guided PCI for de 
novo ACS lesions during the study period. After excluding 101 patients, 
418 patients with 418 vessels were included in the analysis. Among 
them, 359 patients overlapped with those from our previous study 
(Figure 2).5 Specifically, 225 NCLs were located in the proximal portion 
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of the stent, while 193 NCLs were located in the distal portion. Among 
these patients, 334 (80%) were allocated to the training and validation 
data sets, with the remaining 84 (20%) assigned to the test data set.

The baseline patient, lesion, and conventional human-based OCT char
acteristics of each item in the data set are summarized in Table 1. The me
dian age was 68 years, and 75.1% of patients were male. Patients 
presenting with ST-segment elevation MI accounted for 59.1% of the total 
study population. There were no significant differences in the baseline 
characteristics between the two data sets, except for serum creatinine le
vels. The reproducibility of the conventional OCT analysis is outlined in 
Supplementary material online, Appendix S10 and Figure S2.

Outcomes
During a median follow-up of 961 days [interquartile range (IQR): 662– 
1355 days], 60 patients (14.4%) experienced TVF (TVF group), whereas 
358 patients (85.6%) did not (non-TVF group; Figure 2). The TVF group 
included 17 (4.1%) patients who experienced cardiac death, 4 (1.0%) 
patients who experienced target vessel–related MI, and 44 (10.5%) pa
tients who experienced ischaemia-driven TVR (Table 2). The 5-year 
cumulative incidence of TVF was 35.0%. The median follow-up period 
was 259 (IQR: 33–362) days in the TVF group [cardiac death: 37 (IQR: 
10.5–63.5) days, target vessel–related MI: 252 (IQR: 7.5–620) days, and 
ischaemia-driven TVR: 304 (IQR: 195–434.5) days] and 1053 (IQR: 
763–1424) days in the non-TVF group.

Comparison between the target vessel 
failure and the non–target vessel failure 
groups
The TVF group had a significantly lower left ventricular ejection fraction 
(51 vs. 55%, P = 0.002), lower statin use frequency at discharge (83.3 vs. 
96.1%, P < 0.001), and a higher incidence of multivessel disease (53.3 vs. 
33.8%, P = 0.004) than those of the non-TVF group (see Supplementary 
material online, Table S1). The OCT characteristic values were signifi
cantly lower in the TVF group than those in the non-TVF group, as fol
lows: minimum lumen area (2.5 vs. 3.6 mm2, P < 0.001), in-stent 
minimum lumen area (4.6 vs. 4.9 mm2, P = 0.04), average reference 
lumen area (5.7 vs. 6.4 mm2, P = 0.007), and minimum lumen area at 
NCL (2.9 vs. 4.8 mm2, P < 0.001). The TVF group had a significantly 
higher prevalence of irregular protrusion (75.0 vs. 46.9%, P < 0.001), 
stent thrombus (50.0 vs. 24.0%, P < 0.001), and TCFA in NCL (38.3 
vs. 9.5%, P < 0.001) than the non-TVF group.

Target vessel failure–associated factors in 
the conventional model
The results of the multivariable Cox regression analysis for TVF are 
summarized in Table 3. The multivariable Model 1, which included 
only quantitative factors (minimum lumen area, minimum stent area, 
average reference lumen area, stent expansion ratio, and lesion length), 
showed that minimum lumen area [hazard ratio (HR): 0.57, 95% CI: 
0.43–0.76, P < 0.001] was independently associated with TVF. The mul
tivariable Model 2, which included quantitative and qualitative factors 
(Model 1 plus irregular protrusion, stent thrombus, stent malapposi
tion, major stent edge dissection, and TCFA in NCL), showed that min
imum lumen area (HR: 0.61, 95% CI: 0.46–0.82, P < 0.001), irregular 
protrusion (HR: 2.10, 95% CI: 1.09–4.05, P = 0.026), major stent 
edge dissection (HR: 4.38, 95% CI: 1.56–12.3, P = 0.005), and TCFA 
in NCL (HR: 3.89, 95% CI: 2.11–7.15, P < 0.001) were independently 
associated with TVF. The C-index values of Models 1 and 2 were 
0.640 (95% CI: 0.440–0.822) and 0.789 (95% CI: 0.635–0.920), respect
ively (Figure 3). Additional Cox regression analyses including stent opti
mization criteria are described in Supplementary material online, 
Table S2.

Patient-specific hazard and survival curves
Figure 4 illustrates the individualized cause-specific hazard and survival 
curves for the TVF (left graph) and non-TVF (right graph) groups. In 
the TVF group, the predicted hazard was relatively higher, especially 
in the early phase, leading to a correspondingly lower survival rate at 
earlier time points. Conversely, in the non-TVF group, the predicted 
hazard remained lower throughout, resulting in a consistently higher 
survival rate over time.

Figure 1 A schematic overview of the deep-learning model. 
Post-percutaneous coronary intervention optical coherence tomog
raphy images consisting of 50 random slices (250 × 250 pixels) are in
put into the convolutional neural network (Resnet 50), generating 256 
element vectors. These vectors are fed into a transformer encoder 
model, along with a class token. Following layer normalization, a linear 
layer outputs two patient-specific parameters—µ and σ—that define 
the patient-specific hazard curve. The weights are optimized using the 
maximum likelihood process to match the actual survival data. Finally, 
the optimized hazard function is used to predict patient-specific sur
vival curves.
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Comparison of model performance 
between conventional and deep-learning 
models
The C-index values for the deep-learning models in the four-fold cross- 
validation were 0.696, 0.704, 0.661, and 0.679. The C-index for the 
ensemble deep-learning model was 0.796 (95% CI: 0.664–0.908; 
Figure 3). Compared with conventional Model 1, the deep-learning 
model showed a significantly higher predictive ability (C-index: 0.640 
vs. 0.796, respectively, P = 0.001). Furthermore, the predictive ability 
of the deep-learning model was comparable to that of Model 2 
(C-index: 0.789 vs. 0.796, respectively, P = 0.422; Figure 3).

Visualization of the attention of 
deep-learning models
The model was visualized to enhance deep-learning model interpret
ation. As shown in the representative cases in Figure 5, GradCAM high
lights the regions that cause greater activation of the network within 
the most ‘attended’ cross-sections determined by the attention mech
anism. Most of the highlighted regions in the heat map correspond 
closely to the well-established characteristics observed by human ob
servers. For instance, the highlighted areas in A and B correspond to 
thin-cap fibroatheroma and lipid-rich plaques, C highlights the vessel lu
men with a small area, D and E potentially indicate calcified nodule and 

thrombus, and F, G, and H suggest stent malapposition, stent edge dis
section, and irregular protrusion, respectively. The attention levels 
within each cross-section along the longitudinal axis are illustrated in 
Supplementary material online, Figure S3.

Prospective validation
During a median follow-up period of 1084 days (IQR: 210–1491), 19 
out of 89 (21.3%) patients experienced TVF events. A comparison of 
baseline characteristics and clinical events between the original and pro
spective cohorts is presented in Supplementary material online, 
Table S3. The C-index value of the prospective validation data set was 
0.797 (95% CI: 0.669–0.908), which was comparable to that of the 
test data set in the original cohort.

Discussion
To the best of our knowledge, this is the first study to develop a 
deep-learning survival model using intravascular OCT images. The main 
findings of this study can be summarized as follows: (i) using a CNN 
and transformer architecture, we successfully developed a deep-learning 
survival model that provides fully automated prognostic predictions 
based on post-PCI OCT images in patients with ACS; (ii) the 
deep-learning model significantly outperformed conventional models 
that included only quantitative factors and exhibited comparable 

Figure 2 A patient flow chart.
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Table 1 Baseline patient and lesion characteristics and optical coherence tomography findings by human analysis

Total 
(n = 418)

Training and validation (n = 334) Test 
(n = 84)

P-value

Age, year 68 (60–76) 69 (60–77) 67 (60–75) 0.34
Male 314 (75.1) 253 (75.7) 61 (72.6) 0.55

BMI, kg/m2 23.3 (21.2–25.4) 23.2 (21.0–25.3) 23.5 (21.7–25.4) 0.29

Comorbidity
Hypertension 278 (66.5) 216 (64.7) 62 (73.8) 0.11

Dyslipidaemia 259 (62.0) 203 (60.8) 56 (66.7) 0.32

Diabetes mellitus 168 (40.2) 131 (39.2) 37 (44.0) 0.42
Smoking 255 (61.0) 200 (59.9) 55 (65.5) 0.35

Family history 74 (17.7) 56 (16.8) 18 (21.4) 0.32

Haemodialysis 10 (2.4) 9 (2.7) 1 (1.2) 0.42
Prior MI 17 (4.1) 15 (4.5) 2 (2.4) 0.38

Prior PCI 25 (6.0) 21 (6.3) 4 (4.8) 0.60

Prior CABG 2 (0.5) 2 (0.6) 0 (0.0) 0.48
Clinical presentation 0.07

STEMI 247 (59.1) 193 (57.8) 54 (64.3)

Non-STEMI 119 (28.5) 103 (30.8) 16 (19.0)
Unstable angina 52 (12.4) 38 (11.4) 14 (16.7)

Laboratory data

LDL-C, mg/dL 126 (100–150) 124 (100–148) 131 (105–156) 0.13
HDL-C, mg/dL 46 (38–55) 46 (38–55) 45 (37–53) 0.40

TG, mg/dL 121 (77–192) 119 (76–192) 131 (84–196) 0.24

HbA1c, % 6.0 (5.7–6.7) 6.0 (5.6–6.6) 6.1 (5.7–7.5) 0.050
Creatinine, mg/dL 0.80 (0.68–0.94) 0.81 (0.69–0.94) 0.74 (0.65–0.89) 0.029

Peak CK, IU/L 913 (321–2537) 861 (317–2390) 1420 (344–3148) 0.13

Peak CK-MB, IU/L 90 (24–252) 82 (24–245) 159 (24–301) 0.13
LVEF, % 55 (47–61) 55 (47–60) 55 (47–61) 0.93

Medication received at hospitalization

Statin 128 (30.6) 100 (29.9) 28 (33.3) 0.55
ACE inhibitor/ARB 80 (19.1) 66 (19.8) 14 (16.7) 0.52

β-Blocker 27 (6.5) 23 (6.9) 4 (4.8) 0.48

Medication received at discharge
Statin 394 (94.3) 313 (93.7) 81 (96.4) 0.34

ACE inhibitor/ARB 313 (74.9) 252 (75.4) 61 (72.6) 0.59

β-Blocker 281 (68.2) 222 (67.7) 59 (70.2) 0.65
Lesion location 0.82

LAD 230 (55.0) 184 (55.1) 46 (54.8)

LCx 51 (12.2) 42 (12.6) 9 (10.7)
RCA 137 (32.8) 108 (32.3) 29 (34.5)

Multivessel disease 153 (36.6) 118 (35.3) 35 (41.7) 0.28

OCT characteristics
Lesion length, mm 23.0 (18.0–28.8) 23.0 (16.0–28.0) 23.0 (18.0–32.6) 0.15

MLA, mm2 3.5 (2.4–4.6) 3.5 (2.4–4.6) 3.5 (2.3–4.7) 0.85

Minimum stent area, mm2 5.0 (4.0–6.4) 4.9 (4.0–6.5) 5.1 (4.1–6.3) 0.89
In-stent MLA, mm2 4.8 (3.9–6.1) 4.8 (3.9–6.3) 4.9 (4.1–5.8) 0.98

Average reference lumen area, mm2 6.3 (5.1–8.3) 6.3 (5.1–8.2) 6.2 (5.2–8.4) 0.86

Stent expansion ratio 0.77 (0.65–0.87) 0.77 (0.65–0.87) 0.76 (0.65–0.86) 0.55
NCL MLA, mm2 4.5 (3.0–6.5) 4.4 (3.0–6.6) 4.7 (3.0–6.3) 0.60

Irregular protrusion 213 (45.2) 175 (52.4) 38 (45.2) 0.24

Stent thrombus 116 (27.8) 95 (28.4) 21 (25.0) 0.53
Stent malapposition 290 (69.4) 234 (70.1) 56 (66.7) 0.55

Continued
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predictive performance to the conventional model that incorporated 
both quantitative and qualitative factors, as assessed by expert analysts. 
This innovative model demonstrates the potential to overcome long
standing challenges in OCT analysis, such as time and effort requirements, 
as well as objectivity and reproducibility issues, potentially offering a sig
nificant advancement in the management of patients with ACS.

Advantages of optical coherence 
tomography–based prognosis prediction 
model in patients with acute coronary 
syndrome undergoing percutaneous 
coronary intervention
Currently, ACS remains a challenging disease, with a significant number 
of patients experiencing secondary events.18 Given that a certain pro
portion of cardiovascular events are inevitable, risk stratification in the 
acute phase is essential. Secondary events in patients with ACS are 
known to stem from both stented culprit lesions and NCL. The 
PROSPECT study demonstrated that major adverse cardiovascular 
events were equally attributable to culprit lesions and NCL in patients 
with ACS who underwent PCI.1 Notably, intravascular imaging is useful 
in predicting future adverse events derived from both sources. Previous 
studies have consistently demonstrated that the post-PCI minimum 
stent area, stent edge dissection, and smaller reference lumen area eval
uated using intravascular ultrasound or OCT are powerful predictors 
of future target lesion revascularization and stent thrombosis after 
PCI.19 In addition to the stented segment, we have previously demon
strated that OCT-based NCL findings, such as the presence of lipid-rich 
plaques and TCFA, were independently associated with subsequent 
TVF after PCI in patients with ACS.5 These findings highlight the clinical 
utility of OCT imaging for risk stratification of patients with ACS 

following PCI, not only at the lesion level, but also at a patient-wide le
vel. However, despite the demonstrated benefits of intravascular im
aging, its global adoption remains limited (e.g. <10% of cases in the 
USA between 2007 and 2017).20 Possible barriers include the addition
al time and cost associated with the procedures and the lack of ad
equate operator training for image interpretation.21 Therefore, to 
maximize the potential benefits of OCT in daily practice, it is imperative 
to develop user-friendly software with sufficient reliability. In this con
text, artificial intelligence technology could provide an innovative solu
tion that would enable the widespread use of OCT during PCI.

Currently, many researchers are developing automated software to 
classify and segment atherosclerotic plaques using artificial intelligence, 
and several studies have validated its clinical availability.22,23 However, 
most previous deep-learning models were ‘classification models’, con
structed using manual labelling provided by experienced readers. 
However, creating such teacher data requires significant time and 
effort, and the accuracy of this labelled data is often uncertain. In add
ition, detecting high-risk plaques cannot always predict future clinical 
events since not all vulnerable plaques lead to cardiovascular events. 
In contrast, our deep-learning model is unique in that it not only classi
fies atherosclerotic high-risk plaques but also directly predicts clinical 
outcomes after ACS. The teacher data in our deep-learning model 
consist solely of survival information, eliminating the need to create a 
large volume of labelled data. In practical terms, developing a robust 
survival model that predicts clinical outcomes based on vessel-level 
analysis proves more challenging than creating classification or segmenta
tion models based on frame-level analysis using millions of cross-sectional 
OCT images. Nonetheless, the C-index for predicting TVF was 0.796, 
indicating a significantly better performance than that of conventional 
Model 1 (including only quantitative factors) and comparable to that of 
conventional Model 2 (including both quantitative and qualitative factors), 
highlighting its sufficient robustness for practical clinical application. 
Although this study could not demonstrate our model’s performance su
periority over conventional Model 2, the time and effort saved compared 
with manual analysis was significant. In addition, deep-learning models can 
overcome the major problems of intra- and inter-observer reproducibil
ity faced by manual OCT analysis.24

Combination of convolutional neural 
network and transformer model
Many deep-learning models for medical image processing are based on 
CNN, which are adaptable to both two-dimensional and three- 
dimensional (3D) formats. Although it was possible to build a 
3D-CNN model that directly inputs a single vessel, our approach chose 
to integrate the architecture of the transformer model. This model was 
originally developed for natural language processing and has been wide
ly applied in various fields. In our model, each cross-sectional vessel 
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Table 1 Continued

Total 
(n = 418)

Training and validation (n = 334) Test 
(n = 84)

P-value

Major stent edge dissection 8 (1.9) 7 (2.1) 1 (1.2) 0.59

TCFA in NCL 57 (13.7) 46 (13.8) 11 (13.1) 0.86

Values are median (IQR) or n (%). 
ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; BMI, body mass index; CABG, coronary artery bypass grafting; CK, creatine kinase; CKD, chronic kidney 
disease; CK-MB, creatine kinase–myocardial band; HbA1c, glycosylated haemoglobin; HDL-C, HDL cholesterol; LAD, left anterior descending artery; LCx, left circumflex artery; 
LDL-C, LDL cholesterol; LVEF, left ventricular ejection fraction; MI, myocardial infarction; MLA, minimum lumen area; NCL, non-culprit lesion; OCT, optical coherence tomography; 
PCI, percutaneous coronary intervention; RCA, right coronary artery; STEMI, ST-segment elevation myocardial infarction; TCFA, thin-cap fibroatheroma; TG, triglyceride.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Clinical outcomes

Total (n = 418)

TVF, n (%) 60 (14.4)
Cardiac death, n (%) 17 (4.1)

Target vessel–related MI, n (%) 4 (1.0)

Ischaemia-driven TVR, n (%) 44 (10.5)
TLR, n (%) 22 (5.3)

Non-TLR TVF, n (%) 22 (5.3)

MI, myocardial infarction; TVF, target vessel failure; TVR, target vessel revascularization.
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image is linked to an individual ‘word’ in a sentence for natural language 
processing. A key advantage of the transformer is its ability to handle 
sequential data effectively and its capacity to easily utilize information 
from distant locations within an image, a task notably challenging for 
a model using only the CNN architecture. Another advantage of the 
transformer is its ability to visualize the most attended region using 
the ‘self-attention’ mechanism. Figure 5 illustrates the regions with 
the highest attention related to future TVF events, most of which cor
respond to well-known OCT characteristics associated with adverse 
cardiovascular events, such as lipid-rich plaques, TCFA, thrombus, 

and small lumen area. Although not shown in the present study, the 
transformer model has the potential to reveal several novel OCT find
ings associated with future cardiovascular events. Alongside the com
bined architecture, we employed an ensemble model constructed by 
averaging the predictions of the top-performing models across differ
ent folds. These top models likely learned distinct aspects of the data, 
and the ensemble approach leverages this diversity, capturing a wider 
range of patterns. Consequently, this method reduces the risk of over
fitting and mitigates individual model biases and errors, leading to more 
generalized and robust predictions.

Comparison of deep-learning-based 
survival model and Cox proportional 
hazard model
Currently, the Cox proportional hazards model is the gold standard for de
termining prognostic variables. This semi-parametric model calculates the 
effects of observed variables on the risk of a prognostic event and assumes 
that the patient’s log risk of failure is a linear combination of the patient’s 
covariates.25 However, in many clinical settings, this assumption of linearity 
for the log-risk function may be overly simplistic. Hence, we developed a 
non-linear survival model using a novel artificial intelligence–based method 
that integrates a CNN and the transformer model. This non-linear survival 
model can predict an individual hazard function, assumed to follow a 
log-logistic distribution characterized by a location parameter µ and scale 
parameter σ for each patient. Additionally, the Cox proportional hazards 
model is limited in its ability to handle tabular data variables extracted by 
human observers, potentially overlooking image features that are still un
known but potentially relevant to prognosis. In contrast, our novel method 
circumvents these disadvantages as a fully automated survival model that 
requires only raw image data as input, underscoring its potential to revo
lutionize survival-prediction models for medical imaging.

Limitations
This study had several limitations. First, the sample size for the patient- 
level survival model was small, and a larger sample size may provide 
greater predictive ability. Second, the imbalanced data set between 
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Table 3 Cox regression analysis for factors associated with target vessel failure after percutaneous coronary 
intervention

Model 1 Model 2

HR 95% CI P-value HR 95% CI P-value

Quantitative factors
MLA 0.57 0.43–0.76 <0.001 0.61 0.46–0.82 <0.001

Minimum stent area 1.17 0.72–1.89 0.53 1.07 0.67–1.73 0.77

Average reference lumen area 0.91 0.60–1.38 0.66 0.96 0.99–1.05 0.86
Stent expansion ratio 1.80 0.12–28.0 0.68 4.28 0.24–77.0 0.32

Lesion length 1.00 0.98–1.03 0.60 1.02 0.99–1.05 0.21

Qualitative factors
Irregular protrusion 2.10 1.09–4.05 0.026

Stent thrombus 1.79 0.99–3.24 0.055

Stent malapposition 1.25 0.64–2.45 0.52
Major stent edge dissection 4.38 1.56–12.3 0.005

TCFA in NCL 3.89 2.11–7.15 <0.001

All variables are derived from post-PCI OCT findings. 
CI, confidence interval; HR, hazard ratio; MLA, minimum lumen area; NCL, non-culprit lesion; PCI, percutaneous coronary intervention; TCFA, thin-cap fibroatheroma; TVF, target vessel 
failure.

Figure 3 A comparison of model performance between conven
tional and deep-learning models. Harrell’s C-index values for conven
tional Model 1 (including only quantitative factors), conventional 
Model 2 (including quantitative and qualitative factors), and the en
semble deep-learning model are shown. The error bars represent a 
95% confidence interval calculated using the bootstrap method.
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Figure 4 Representative hazard and survival curves in the target vessel failure and non-target vessel failure groups. Hazard and survival curves es
timated using µ and σ outputs from the deep-learning model for individual patients are shown: (A) target vessel failure group and (B) non–target vessel 
failure group. The upper figure shows the survival curve, while the lower figure shows the hazard curve. The dotted lines represent the curves estimated 
from each cross-validation and the solid lines represent the curves resulting from the ensemble model averaged over each cross-validation. The black 
arrows indicate the time of the target vessel failure event and the green arrows indicate the time of censoring.

Figure 5 Visualization of the attention of deep-learning models. The original optical coherence tomography images (left panels) and heat map images 
highlighting the regions with the highest attention within each optical coherence tomography cross-sectional image (right panels). In (A) and (B), the 
highlighted areas correspond to thin-cap fibroatheroma and lipid-rich plaques. In (C), almost the entire lumen with a small area is highlighted. (D) 
and (E) may indicate calcified nodule and thrombus, respectively, whereas (F), (G), and (H) suggest stent malapposition, stent edge dissection, and ir
regular protrusion.
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the TVF and the non-TVF groups [i.e. the small number of patients in 
the TVF group (14.4%) and short median time to event in the TVF 
group (259 days)] may have reduced the predictive ability of this model. 
In the case of diseases such as cancer, which have a higher incidence of 
events and a longer observation period, this approach may provide a 
survival model with better performance. Third, external validation 
was lacking; instead, we opted for forward validation within the 
same participating facility. However, our model achieved a C-index of 
0.797, demonstrating comparable performance to the internal test 
data set. This highlights the potential for future use in predicting post- 
procedural outcomes during PCI procedures.

Conclusions
The CNN and transformer-based deep-learning model enabled fully 
automated prediction of cardiovascular outcomes after PCI in patients 
with ACS. The performance of the model was comparable to that of a 
conventional human-based model developed by expert clinicians. This 
deep-learning-based survival model holds promise for advancing the 
risk stratification of patients with ACS undergoing PCI.
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