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Application of tongue image
characteristics and oral-gut
microbiota in predicting pre-
diabetes and type 2 diabetes
with machine learning
Jialin Deng1†, Shixuan Dai1†, Shi Liu1†, Liping Tu1, Ji Cui1,
Xiaojuan Hu1, Xipeng Qiu2*, Tao Jiang1* and Jiatuo Xu1*

1Department of College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese
Medicine, Shanghai, China, 2School of Computer Science, Fudan University, Shanghai, China
Background: This study aimed to characterize the oral and gut microbiota in

prediabetes mellitus (Pre-DM) and type 2 diabetes mellitus (T2DM) patients while

exploring the association between tongue manifestations and the oral-gut

microbiota axis in diabetes progression.

Methods: Participants included 30 Pre-DM patients, 37 individuals with T2DM,

and 28 healthy controls. Tongue images and oral/fecal samples were analyzed

using image processing and 16S rRNA sequencing. Machine learning techniques,

including support vector machine (SVM), random forest, gradient boosting,

adaptive boosting, and K-nearest neighbors, were applied to integrate tongue

image data with microbiota profiles to construct predictive models for Pre-DM

and T2DM classification.

Results: Significant shifts in tongue characteristics were identified during the

progression from Pre-DM to T2DM. Elevated Firmicutes levels along the oral-gut

axis were associated with white greasy fur, indicative of underlying metabolic

changes. An SVM-based predictive model demonstrated an accuracy of 78.9%,

with an AUC of 86.9%. Notably, tongue image parameters (TB-a, perALL) and

specific microbiota (Escherichia, Porphyromonas-A) emerged as prominent

diagnostic markers for Pre-DM and T2DM.

Conclusion: The integration of tongue diagnosis with microbiome analysis

reveals distinct tongue features and microbial markers. This approach

significantly improves the diagnostic capability for Pre-DM and T2DM.
KEYWORDS

tongue diagnosis, oral-gut microbiome, prediabetes mellitus, type 2 diabetes mellitus,
diagnostic model
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1 Introduction

Diabetes mellitus (DM) is a multifactorial endocrine and

metabolic disorder triggered by a combination of genetic

predisposition and environmental influences, which disrupt

insulin secretion and impair insulin sensitivity, ultimately

resulting in multi-organ dysfunction and potential organ failure

(Standl et al., 2019). In China, the prevalence of type 2 diabetes

(T2DM) among adults is approximately 10.9%, with pre-diabetes

(Pre-DM) affecting around 35.7% of the population (Wang et al.,

2017). T2DM, a polygenic condition, arises from a combination of

hereditary and environmental factors, with insulin resistance (IR)

and beta-cell dysfunction (reduced insulin production) as its

hallmark features (Paquette et al., 2023). Pre-DM, defined by

impaired fasting glucose (FBG) and/or impaired glucose

tolerance, presents a significant risk, as up to 21% of individuals

progress to T2DM within three years (Eades et al., 2014). Thus,

early intervention during the pre-diabetic phase is one of the most

effective strategies for mitigating the onset of T2DM.However, the

indicators and underlying mechanisms predisposing to the

conversion of Pre-DM individuals to T2DM remain unclear

(Takeuchi et al., 2023).

Tongue diagnosis plays a fundamental role in traditional

Chinese medicine (TCM) diagnosis, characterized by features

such as tongue shape, color, texture, back, coating color, and

thickness. TCM relies on these visual characteristics to infer

disease progression and type. However, traditional visual

observation in TCM lacks the ability to objectively quantify these

features (Thirunavukkarasu et al., 2024). Utilizing computer image

processing enables the segmentation of various tongue regions, the

automatic extraction of spectral parameters, and the identification

of distinct features, including region division, color, texture, and

shape. These metrics offer a more precise description of the tongue’s

properties. In addition, deep learning approaches provide a more

comprehensive analysis of tongue images, allowing for an enhanced

understanding of the underlying pathology. In previous research,

we developed a robust classification system specifically for diabetic

tongues (Li et al., 2022), leveraging a deep learning model to

evaluate a substantial number of tongue images and establish

optical characteristics associated with diabetes (Jiang et al., 2021).

Building on these results, a method was devised to correlate tongue

image data with diabetes, supporting the potential of tongue

features as early biomarkers for diagnosing prediabetes and

diabetes (Li et al., 2021a). The tongue, being the initial segment of

the digestive tract, is also intimately linked to the oral microbiome,

which plays a crucial role in maintaining oral ecological balance and

is associated with the onset and progression of systemic diseases

(Gao et al., 2018). Recent studies suggest a significant interplay

between oral and intestinal microbiota, with disruptions in

intestinal microbiota implicated as a risk factor for chronic

conditions such as T2DM, gastrointestinal cancers, and

neurological disorders (Tuganbaev et al., 2022; Pan et al., 2024).

In light of the significant involvement of tongue-coated

microbiota (oral microbiota) in TCM tongue diagnosis, this study

aimed to explore the relationship between alterations in TCM

tongue patterns and the oral-gut microbiota axis during diabetes
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progression. The objective was to offer early risk indicators for

T2DM, enabling timely interventions, while simultaneously

advancing the scientific comprehension of tongue diagnosis

within the framework of TCM.
2 Methods

2.1 Study subject recruitment

The study encompassed individuals undergoing physical

examinations at the Shanghai Gaohang Community Service

Center between 2022 and 2023. Following the application of

inclusion and exclusion criteria, 28 healthy controls, 30

individuals with Pre-DM, and 37 T2DM patients were selected.

Informed consent, approved by the ethics committee of Shuguang

Hospital, affiliated with Shanghai University of TCM, was obtained

from all participants.

Participants were considered eligible for the Pre-DM group

based on one or more of the following criteria: (1) FBG ranging

from 5.6 to 6.9 mmol/L; (2) 2-hour postprandial blood glucose

(2hPG) between 7.8 and 11.0 mmol/L; (3) Glycosylated hemoglobin

(HbA1C) levels between 5.7% and 6.4%. For T2DM, inclusion

required meeting one or more of the following: (1) random blood

glucose ≥11.1 mmol/L; (2) FBG ≥7.0 mmol/L; (3) 2hPG ≥11.1

mmol/L; (4) HbA1C ≥6.5%.

The exclusion criteria included: (1) patients diagnosed with type

1 or specific types of DM, or those experiencing acute complications

such as ketoacidosis; (2) recent use of antibiotics, probiotics,

traditional Chinese medicines, or immunosuppressive drugs

within the past two weeks; (3) coexisting oral conditions or

complications, including periodontitis, pulpitis, or oral cancer; (4)

individuals with severe systemic diseases, such as malignant tumors,

immune disorders, or hematological diseases; (5) pregnant or

breastfeeding women; (6) individuals unable to provide fully

informed consent due to mental health symptoms, behavioral

disorders, or cognitive impairments; (7) participants with distinct

dietary habits; (8) participants with irregular bowel movements;

(9) smokers.
2.2 Data and sample collection

The clinical characteristics of the enrolled patients were examined

in this cross-sectional study, with data collected on demographic

factors such as age, gender, body mass index (BMI), and waist-to-hip

ratio (WHR). Personal lifestyle factors included smoking and

drinking history, along with dietary preferences categorized as

spicy, sweet, or no specific preference. The laboratory-developed

TCM Clinical Diagnosis Record Form documented key symptoms,

including dry mouth, bitter taste, constipation, and diarrhea. Blood

pressure was assessed according to World Health Organization

(WHO) criteria, classifying hypertension into grade 1 (140–159

mmHg systolic/90–99 mmHg diastolic), grade 2 (160–179 mmHg

systolic/100–109 mmHg diastolic), and grade 3 (systolic ≥ 180

mmHg/diastolic ≥ 110 mmHg).
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The tongue image acquisition process utilized the Tongue

Diagnostic Instrument (TFDA-1), a device engineered by the

Intelligent Diagnostic Laboratory at Shanghai University of

Traditional Chinese Medicine, as depicted in Figure 1. Detailed

data collection procedures can be found in our earlier publication

(Soper, 2021). Key technical specifications of the device included a

manual operating mode, 1/125 shutter speed, F6.3 aperture setting,

ISO sensitivity of 200, correlated color temperature ranging from

4500K to 7000K, and illumination at 4800 ± 10% (unit: lx).

Oral microbiota samples were obtained from the central region

of the tongue dorsum using aseptic pharyngeal swabs, with at least

ten rotational movements. Stool samples were self-collected by

participants in the morning using a sterile fecal sampler, targeting

the central portion of the stool. Following cryopreservation, the

samples were immediately dispatched to researchers on the same

day. Each specimen was sealed in sterile, enzyme-free Eppendorf

tubes, kept on ice, and transferred to a −80°C freezer within 30

minutes for preservation prior to sequencing. Participants were

instructed to fast before sample collection.

Tongue image features were extracted using the established

methods previously developed by our research group. An intelligent

quality assessment model was employed to screen all collected

tongue images, ensuring they met the required quality standards

(Jiang et al., 2021). Feature extraction was performed using the

adversarial generation network, Tongue-GAN, as described in our

earlier publications (Li et al., 2021b; Jiang et al., 2022).
2.3 DNA extraction and 16S full-length
library construction

Bacterial DNA from the tongue dorsum and fecal samples was

extracted using a swab genomic DNA extraction kit (CW2654,

CwBiotech, Beijing, China) and an intestinal DNA extraction kit

(TIANamp Stool DNA Kit, DP328, Tiangen Biotech, Beijing, China),
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respectively. The 16S rDNA full-length assembly sequencing

technology (16S-FAST) enabled species-level classification through

analysis of bacterial ribosomal 16S RNA sequences, encompassing

nine variable and ten conserved regions (Karst et al., 2018). For both

qualitative and quantitative assessment, as well as quality control, 10

ng of DNA was utilized. Splice and link libraries were constructed,

followed by data assembly from electrophoresis and Qubit

concentration measurements to ensure quality before proceeding

with sequencing on the Illumina NovaSeq 6000 platform (Illumina,

USA). The methodology has been thoroughly detailed in a previous

study by members of the research team (Guo et al., 2023).
2.4 Bioinformatic analysis

A cloud platform (https://www.genescloud.cn/home) was

employed for sequence analyses, utilizing QIIME2 (2019.4), R

language (v3.2.0), the ggplot2 package, and Python. ASV-level

alpha diversity, including Shannon diversity indices, was

calculated via the ASV table in QIIME2 and visualized through

box plots. To assess the significance of differences, the Kruskal-

Wallis rank sum test followed by Dunn’s post-hoc test was applied.

Ranked abundance curves at the ASV level were generated to

evaluate richness and evenness across samples. Beta diversity

analysis, leveraging UniFrac distance metrics, explored microbial

community structural variation, visualized through principal

coordinate analysis (PCoA) and hierarchical clustering. Microbial

structure differentiation among groups was quantified using

permutational multivariate analysis of variance (PERMANOVA)

in QIIME2. Linear discriminant analysis effect size (LEfSe) analysis

identified differentially abundant taxa among groups under default

settings. Random forest analysis in QIIME2, with default

parameters, was employed to classify samples from distinct

groups, utilizing nested stratified k-fold cross-validation for

automated hyperparameter optimization and sample prediction.
FIGURE 1

Display of TFDA-1 Tongue Diagnostic Instrument. (A) was the front picture, (B) was the side picture, and (C) was the shooting interface picture.
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Co-occurrence network analysis was conducted via SparCC, with a

pseudo-count set to 106. Correlation coefficient cutoffs were

established at 0.70 using random matrix theory-based methods in

the R package RMThreshold, with Cytoscape (v3.9.0) constructing

the network visualization. The R language facilitated analysis of the

network’s topological structure, with key species identified through

topological indices and visualized using the ZiPi plot. Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (PICRUSt2) predicted microbial functions based on MetaCyc

(https://metacyc.org/).
2.5 Machine learning methods

Logistic regression with backward selection was applied,

incorporating L2 regularization, a tolerance of 1e-4, an inverse

regularization strength (C) of 1.0, and the lbfgs solver, with a

maximum of 100 iterations. Tongue image features, clinical

indicators, and microbial data were screened for Pre-DM and

T2DM classification, allowing the removal of insignificant

variables while addressing multicollinearity (Chicco et al., 2021).

Model fit was evaluated via maximum likelihood and the Hosmer-

Lemeshow test. A combined tongue-microbiota classification model

for Pre-DM and T2DM was subsequently developed and validated.

To ensure robustness, 5-fold cross-validation was employed,

partitioning data into five subsets and averaging performance

metrics such as ROC AUC, accuracy, sensitivity, and specificity

(Lin et al., 2020; Soper, 2021). Python 3.10.9 facilitated machine

learning techniques aimed at capturing non-linear relationships,

utilizing models like support vector machines (SVM), random
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forests (RF), gradient boosting, adaptive boosting (AdaBoost), and

K-nearest neighbors (KNN). Classification results were calculated

using the sklearn library (Version 1.3.1).
2.6 Statistical analysis

Data analysis utilized SPSS v. 25.0 (IBM Corp., Armonk, NY,

USA). Variable distribution normality and variance homogeneity

were assessed using the Shapiro–Wilk and Levene tests,

respectively. For data meeting normal distribution and variance

homogeneity criteria, a t-test was applied; otherwise, non-

parametric methods were employed. Categorical variables were

analyzed using Fisher’s exact test, while continuous variables were

evaluated via the Wilcoxon rank-sum test. Relationships among

independent variables were examined through Spearman’s rank

correlation, with p-values adjusted for multiple comparisons using

the Bonferroni correction.
3 Results

3.1 Baseline clinical characteristics of the
study cohort

Following the screening process, 28 healthy controls, 30 Pre-

DM patients, and 37 T2DM patients were included in the study

(Figure 2), with baseline clinical characteristics detailed in Table 1.

The Pre-DM and T2DM groups exhibited older average ages
FIGURE 2

Flow Chart of the Clinical Cohort. A total of 28 Control patients, 30 Pre-DM patients, and 37 T2DM patients were selected from the screened
population. Tongue images were captured via TFDA-1, followed by analysis of tongue image characteristics. Additionally, oral and fecal samples
were obtained for bioinformatic profiling, utilizing 16S-FAST for subsequent analysis.
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compared to the control group, although no significant age

difference was observed between the Pre-DM and T2DM groups.

Hypertension was identified as a risk factor for diabetes, with a

markedly higher prevalence of hypertension among T2DM patients.

BMI and WHR measurements indicated greater obesity in both the

Pre-DM and T2DM groups relative to the control group.
3.2 The change of tongue

Following the extraction of tongue image features, three sets of

crowd computer tongue image parameters were identified. Notably, a

significant increase in preALL was observed in both the Pre-DM and

T2DM groups, indicating a marked thickening and greasiness of the

tongue coating. The Con* and MEAN* values for both the tongue

body and coating in the T2DM group were substantially higher

compared to the other groups. Furthermore, the ASM* and ENT*

values for the tongue coating displayed significant variation when

compared to the Control and Pre-DM groups. These results suggest a

progressive transition in the tongue texture from smooth to rough,

indicative of aging as diabetes progresses. Analyzing the color

parameters of the tongue and coating, a gradual shift towards paler

and whiter shades was noted, as shown in Table 2 and Figure 3.
3.3 Alerted diversity of the oral and gut
microbiota of participants

a-diversity analysis revealed a marked reduction in the richness

and evenness of gut microbiota as diabetes progressed, contrasted

by a significant rise in oral microbiota species abundance in both

the pre-DM and T2DM groups (Figures 4A, B). This discrepancy

may be attributed to the thickened tongue coating observed in these

groups. PCoA analysis further demonstrated partial overlap

between the pre-DM and control groups, while the T2DM group

exhibited distinct shifts in community composition, highlighting

notable alterations in microbial structure (Figures 4C, D).
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3.4 Changes in the composition of the oral
and gut microbiota in patients with Pre-
DM and T2DM

Significant variations were observed in the oral and gut

microbiota at both the phylum and genus levels (Figure 5). In the

oral microbiota, diabetes progression was associated with a marked

increase in Firmicutes-C and a decrease in Fusobacteriota. Notably,

the Pre-DM group exhibited a rise in Bacteroidota and a reduction

in Actinobacteriota compared to the control and T2DM groups. In

the gut microbiota, Bacteroidota levels were significantly elevated,

while Firmicutes-A and Actinobacteriota showed substantial

reductions in the T2DM group relative to other groups. The

microbiota shifts in Pre-DM largely mirrored those in T2DM,

though the increase in Firmicutes-C was most prominent in the

Pre-DM group. A significant rise in Proteobacteria was observed

exclusively in the T2DM group.

At the genus level, Pauljensenia and Veillonella-A exhibited

significant enrichment, while Neisseria showed a slight reduction in

the T2DM group, aligning with the trends observed in Pre-DM.

Additionally, Haemophilus-D and Porphyromonas-A were

specifically reduced in the T2DM group. In the gut microbiota,

Bacteroides levels increased, whereas Faecalibacterium and

Bifidobacterium declined as the disease progressed. Notably,

Phocaeicola exhibited the most significant increase in the Pre-DM

group. Escherichia was markedly enriched in the T2DM group,

where it accounted for the highest relative abundance.
3.5 Oral and gut signature microbiota in
Pre-DM and T2DM

LEfSe analysis revealed significant distinctions in tongue

coating and fecal microbiota between the Pre-DM and T2DM

groups (Figure 6). At the genus level, Porphyromonas ,

AlloPrevotella, and Staphylococcus within the oral microbiota,
TABLE 1 Characteristics of the Discovery Cohort.

Control (n=28) Pre-DM (n=30) T2DM (37) P

Male Sex (%) 8 (28%) 7 (23%) 15 (40%) 0.296

Age (Mean ± SD) 61.96 ± 6.19 68.13 ± 9.31** 69.70 ± 6.59** 0.000

BMI (kg/m2) 24.13 ± 2.85 24.65 ± 4.02 24.72 ± 2.63 0.684

WHR (Mean ± SD) 0.89 ± 0.05 0.90 ± 0.06 0.91 ± 0.07 0.480

BP (%)

None 28 (100%) 19 (63%) 11 (29%)

0.000
Primary 0 8 (27%) 12 (32%)

Secondary 0 3 (10%) 11 (29%)

Tertiary 0 0 3 (10%)

FBG (mmo/L) 5.55 ± 0.37 5.56 ± 0.59 7.77 ± 3.07**## 0.000

2hPG (mmo/L) \ 8.25 ± 1.99 10.99 ± 3.73# 0.002

HbA1C (%) \ 5.96 ± 0.37 7.56 ± 2.88# 0.001
** Compared with Control group, P < 0.01; #Compared with Pre-DM group, P < 0.05; ##Compared with Pre-DM group, P < 0.01.
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TABLE 2 Tongue image features of participants.

Control(n=28) Pre-DM(n=30) T2DM(37) P

perAll 0.294 ± 0.106 0.418 ± 0.095** 0.431 ± 0.120** 0.000

perPart 0.812 ± 0.591 0.997 ± 0.745 0.742 ± 0.156 0.067

TB-Con 68.971 ± 15.086 76.913 ± 24.674 85.539 ± 27.800* 0.011

TC-Con 98.086 ± 38.085 105.247 ± 38.683 137.266 ± 58.421**# 0.002

TB-ASM 0.078 ± 0.011 0.076 ± 0.015 0.071 ± 0.013 0.118

TB-ENT 1.197 ± 0.056 1.210 ± 0.080 1.237 ± 0.073 0.072

TB-MEAN 0.026 ± 0.003 0.027 ± 0.004 0.028 ± 0.005* 0.033

TC-ASM 0.066 ± 0.015 0.064 ± 0.016 0.055 ± 0.011**# 0.004

TC-ENT 1.263 ± 0.093 1.280 ± 0.093 1.342 ± 0.085**# 0.001

TC-MEAN 0.031 ± 0.006 0.032 ± 0.006 0.036 ± 0.007**# 0.003

TB-R 143.036 ± 9.187 134.167 ± 8.710* 140.324 ± 14.996 0.001

TB-G 79.214 ± 7.345 76.167 ± 6.978 82.784 ± 11.804# 0.020

TB-B 82.429 ± 7.042 78.433 ± 5.998 85.135 ± 10.942## 0.005

TC-R 122.179 ± 12.919 121.533 ± 10.894 130.135 ± 18.768 0.062

TC-G 78.607 ± 11.707 80.133 ± 10.507 89.270 ± 15.816**# 0.002

TC-B 80.464 ± 12.285 81.867 ± 9.387 90.676 ± 15.288**# 0.003

TB-H 331.587 ± 92.795 298.015 ± 134.633 231.552 ± 171.991 0.119

TB-I 101.179 ± 7.339 95.967 ± 6.775 102.48 ± 12.238# 0.005

TB-S 102.48± 12.238 0.211 ± 0.022 0.197 ± 0.021**# 0.000

TC-H 293.145 ± 138.032 261.865 ± 159.085 183.245 ± 178.388 0.180

TC-I 93.429± 12.197 94.200± 10.046 94.200 ± 10.046*# 0.007

TC-S 0.167 ± 0.023 0.156 ± 0.021 0.142 ± 0.021**# 0.000

TB-L 41.345 ± 2.998 39.294 ± 2.839 41.835 ± 4.964# 0.009

TB-a 27.066 ± 2.429 24.737 ± 2.465** 24.281 ± 2.174** 0.000

TB-b 9.963 ± 1.778 9.377 ± 1.570 8.963 ± 2.215 0.117

TC-L 38.287± 4.918 38.646 ± 4.248 42.226± 6.621*# 0.006

TC-a 18.651± 1.685 17.665 ± 0.076 17.087 ± 1.855** 0.005

TC-b 6.530 ± 1.777 6.119 ± 1.545 5.989 ± 2.528 0.560

TB-Y 100.735 ± 6.389 96.530± 5.969 102.10± 10.664# 0.009

TB-Cr 155.802 ± 2.416 153.31± 2.428** 153.105 ± 2.664** 0.000

TB-Cb 119.952 ± 1.354 120.39± 1.209 120.504 ± 1.769 0.314

TC-Y 94.880± 10.307 95.621± 8.838 103.29± 14.143*# 0.006

TC-Cr 147.005 ± 1.536 146.06± 1.831 145.848 ± 2.412 0.063

TC-Cb 122.357 ± 1.318 122.62± 1.222 122.560 ± 2.038 0.722
F
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Tongue coating index: perAl l, perPart; Texture indicators: CON (contrast degree), ASM (Angle degree second moment), ENT (entropy value), MEAN (average value); The color index comes
from the RGB, HSI, Lab, YCrCb four color space, in which R (red value), G (green value), B (blue value), H (hue), S (color saturation), I (luminance), L (lightness), a (red-green axis), b (Yellow-
blue axis), Y(yield of light), Cr (red signal and the brightness value of differences), Cb (the difference between the blue signal and the luminance value); *Compared with Control group, P < 0.05; **
Compared with Control group, P < 0.01; #Compared with Pre-DM group, P < 0.05; ##Compared with Pre-DM group, P < 0.01.
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FIGURE 4

Alterations in the oral and gut microbiota diversity in Pre-DM and T2DM patients were presented as follows: (A) Oral microbiota a-diversity, assessed
via Observed species count and Shannon index; (B) Gut microbiota a-diversity, similarly evaluated with Observed species and Shannon index; (C)
PCoA analysis of the oral microbiota; (D) PCoA analysis of gut microbiota across participants.
FIGURE 3

Tongue image features of participants. (A) Three groups of tongue images;(B) tongue coating thickness index; (C) tongue texture; (D) tongue body
color; (E) tongue coating color; *Compared with Control group, P < 0.05; ** Compared with Control group, P < 0.01; #Compared with Pre-DM
group, P < 0.05; ##Compared with Pre-DM group, P < 0.01.
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alongside Blautia, Lactiplantibacillus, and Romboutsia-B in the gut

microbiota, emerged as potential microbial markers for Pre-DM. In

contrast, Escherichia, Klebsiella, and AlloPrevotella in the gut

microbiota were identified as potential indicators of T2DM.
3.6 Association analysis between tongue
features and microbiota of the oral-
gut axis

Abnormal FBG patients exhibiting thin white fur (TW-fur) and

white greasy fur (WG-fur) were selected to investigate the

relationship between tongue characteristics and the oral-gut axis

microbiota. At the genus level, WG-fur was associated with elevated

levels of Veillonella-A and Streptococcus in the oral cavity, while

increased Blautia and Prevotella were observed in the gut. The

majority of the altered microbiota belonged to the phylum

Firmicutes. Pearson correlation analysis revealed significant

associations between oral-gut microbiota and tongue parameters.

Specifically, perALL showed a positive correlation with Phocaeicola-

A and Veillonella-A, while TB-a exhibited the strongest correlation

with Blautia-A (correlation coefficient 0.28, P<0.01). Additionally,

Escherichia was positively correlated with multiple tongue image

parameters, including TB-L, TC-L, and TC-b (Figure 7).

To investigate the mechanism underlying greasy fur formation,

an abundance analysis of KEGG functional pathways was

performed. The findings indicate that the differential alterations

in tongue fur were predominantly associated with pathways related

to Metabolism, with the highest abundance observed in metabolic
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cofactors and vitamins (Figure 7). According to TCM, tongue

coating results from “disharmony of the viscera and fumigation

of the spleen and stomach.” Increased metabolic activity elevates

blood flow to the tongue, leading to a thickened coating. The

metabolism of cofactors, vitamins, and other nutrients indirectly

influences the tongue coating by impacting nutritional status,

metabolic function, and visceral health.
3.7 Pre-DM and T2DM diagnostic models
based on tongue image and oral and gut
flora biomarker fusion

A diagnostic model was developed to assess the predictive value

of tongue images and microbiota in identifying Pre-DM and

T2DM. Variables included gender, age, BMI, WHR, tongue image

parameters (perALL, TB-Con, TC-Con, TB-ASM, TB-ENT, TB-

MEAN, TC-ASM, TC-ENT, TC-MEAN, TB-L, TB-a, TB-b, TC-L,

TC-a, and TC-b), and key microorganisms from the oral and gut

microbiome (Bacteroides-H, Phocaeicola-A, Escherichia, and

Porphyromonas-A). Six modelling techniques were applied—

Logistic Regression, SVM, Random Forest, Gradient Boosting,

AdaBoost, and KNN—to differentiate Pre-DM, T2DM, and

healthy controls. Among the three classification models, SVM

achieved the highest accuracy, followed by KNN, while Gradient

Boosting demonstrated the poorest performance for classifying Pre-

DM and T2DM (Figure 8, Table 3). Feature Importance analysis

from the Random Forest model highlighted TB-a and perALL from

the tongue image parameters, along with Escherichia and
FIGURE 5

Compositional alterations of oral and gut microbiota in participants. (A) Stacked bar plots presenting the relative abundance of oral microbiota at the
phylum level among participants; (B) Stacked bar plots illustrating the relative abundance of gut microbiota at the phylum level among participants;
(C) Stacked bar plots depicting the relative abundance of oral microbiota at the genus level among participants; (D) Stacked bar plots demonstrating
the relative abundance of gut microbiota at the genus level among participants.
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Porphyromonas-A, as key contributors to the model’s predictive

performance, serving as primary classification indicators for Pre-

DM and T2DM diagnosis (Figure 9).
4 Discussion

Tongue image diagnosis plays a central role in TCM diagnosis,

with recent research indicating a strong correlation between

changes in tongue appearance, coating, and the oral microbiome

(Han et al., 2016; Wilbert et al., 2020; Lu et al., 2022). As the oral

cavity serves as the entry point to the digestive tract, the oral and

gastrointestinal microbiota—the two largest microbiomes in the

human body—are intricately connected. While gut microbiota has

been extensively studied, particularly its role and metabolites in the

development and progression of T2DM (Li et al., 2020; Longo et al.,

2023), less attention has been given to the impact of oral

microorganisms on T2DM. The oral-gut microbiota axis has been

identified as a key mechanism through which oral microbiota

influence host diseases (Li et al., 2024b; Zhang et al., 2024b).

Previous studies from our group have identified shared

commensal bacteria between the tongue coating and the

intestines, particularly Prevotella (Guo et al., 2022). However, few

studies have specifically addressed the role of oral microorganisms

in T2DM. This study investigates the tongue image characteristics
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of Pre-DM and T2DM patients, alongside the dynamic changes in

the oral-gut microbiota axis, through a clinical cohort study,

emphasizing the relationship between oral microbiota and tongue

image characteristics at different stages of diabetes progression. We

can identify diabetes-related metabolites and study the link between

specific flora and systemic inflammation by analyzing the oral-gut

microbiota axis.

Tongue diagnosis, rooted in the TCM theory of the visceral

picture, posits that internal organs are connected to the tongue via

meridians, either directly or indirectly (Zhao et al., 2013).

Consequently, abnormalities in tongue coating signify systemic

imbalances, including alterations in the tongue-coating

microbiome (Jiang et al., 2012). The physiological state and

pathological conditions of internal organs manifest through

changes in the tongue. In TCM, the formation of tongue coating

is attributed to the disharmony of Zang-Fu organs, with

“fumigation of the spleen and stomach” leading to increased

metabolism, heightened tongue blood flow, and thickening of the

coating. Additionally, nutrient metabolism, particularly involving

cofactors and vitamins, influences the nutritional status, metabolic

activity, and Zang-Fu functions, indirectly affecting the tongue

coating. In TCM, diabetes is classified under “collateral disease,”

characterized by symptoms such as excessive thirst, frequent

urination, and weight loss, which corresponds to the term “thirst-

quenching” (Liu et al., 2024). Diabetes is primarily considered a
FIGURE 6

LEfSe analysis of oral and gut signature microbiota in Pre-DM and T2DM (the LDA threshold was 3). (A) Taxonomic branching map of oral microbiota
in Pre-DM group and T2DM group; (B) Bar chart of oral microbiota in Pre-DM group and T2DM group; (C) Taxonomic branching map of gut
microbiota in Pre-DM group and T2DM group; (D) Bar chart of gut microbiota in Pre-DM group and T2DM group.
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FIGURE 8

Different modeling method was adopted to establish the Pre-DM and T2DM diagnosis model of Receiver Operating Characteristic (ROC) curve.
FIGURE 7

Association analysis between the microbiota of the oral-gut axis in TW-fur and WG-fur. (A) Two distinct groups of tongue images; (B) Stacked bar
plots illustrating statistically significant differences in flora at the genus level; (C) Heat maps depicting species composition at the genus level for the
two sets, with UPGMA clustering based on Pearson correlation coefficient matrix and ranked by clustering results; (D) Correlation heat map showing
the relationship between tongue parameters and oral-gut axis microbiota (correlation coefficients as values); (E) Predicted metabolic pathways of
tongue coating microbiota in WG-fur patients (The x-axis represents the average relative abundance of functional pathways, the y-axis lists MetaCyc
functional pathways at the second classification level, and the right margin indicates the first-level pathway classification).
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result of “humidity” and “heat” imbalances in the body (Li et al.,

2024a). Tongue coating in Pre-DM and T2DM patients often

appears thick and greasy, with a rough texture and aged

appearance. Color parameters indicate that both tongue and moss

colors progressively become pale and white.

Research has increasingly established a clear association between

gut microbiota dysregulation and the onset of T2DM (Sharma and

Tripathi, 2019). Diabetic patients exhibit significant alterations in gut

microbiota composition compared to healthy individuals, with

microbial biodiversity in Pre-DM and T2DM progressively

declining (Yang et al., 2021). This observation aligns with the

current study’s findings, where both the Observed Species and

Shannon index of intestinal flora in Pre-DM and T2DM patients

were markedly lower than in healthy controls, indicating a reduction

in microbial richness associated with diabetes. In metabolic disorders,

the gut microbiome is frequently characterized by dysbiosis, typically

manifesting as a reduction in commensal bacteria alongside an

increase in pathogenic species. This shift results in an
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overrepresentation of normally minor bacterial populations,

particularly opportunistic pathogens, and a corresponding decline

in overall diversity (Scheithauer et al., 2020). Throughout the

progression from pre-glucose intolerance to T2DM, bacterial

changes often follow a synchronous pattern (Allin et al., 2018), a

trend that this study also confirmed. Specifically, gut microbiota

composition evolved with diabetes progression, evidenced by an

increase in Bacteroides-H and a decrease in Faecalibacterium and

Bifidobacterium. The most pronounced increase in Phocaeicola was

observed in the Pre-DM group, while Escherichia was significantly

enriched in T2DM, holding the highest relative abundance. These

trends are consistent with the findings of Li Wang et al. (Wang et al.,

2021) and Christian Diener et al (Diener et al., 2021). Additionally,

Xiuying Zhang et al. (Zhang et al., 2013) demonstrated that the

relative abundance of Bacteroides fluctuates significantly in response

to worsening glucose intolerance.

In this study, the analysis integrated oral flora alongside

intestinal flora, revealing a notable contrast between the two. The
FIGURE 9

Feature importance evaluation in random forests.
TABLE 3 Comparison of diagnostic efficiency of six different machine learning methods.

Methods AUC Accuracy Precision Recall F1-Score

Logistic Regression 0.821 0.737 0.733 0.917 0.815

SVM 0.869 0.789 0.750 1.000 0.857

Random Forest 0.714 0.737 0.733 0.917 0.815

Gradient Boosting 0.679 0.737 0.733 0.917 0.815

AdaBoost 0.786 0.684 0.714 0.833 0.769

KNN 0.839 0.789 0.786 0.917 0.769
AUC, Area Under the Curve.
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oral microbiota showed a marked increase in species abundance in

both Pre-DM and T2DM groups compared to the gut microbiota.

This discrepancy may be attributed to the thickened tongue coating

observed in patients, in contrast to the thin coating in healthy

individuals. As the disease progresses, the accumulation of phlegm

and dampness leads to a thicker, greasier tongue coating,

corresponding with an increase in oral microbial diversity.

Further species composition analysis identified significant

enrichment of Pauljensenia and Veillonella-A in the T2DM

group, while Neisseria exhibited a slight decrease, consistent with

the trends observed in Pre-DM. Additionally, Haemophilus-D and

Porphyromonas-A were reduced exclusively in the T2DM group.

LEfSe analysis indicated that Porphyromonas may serve as a key

marker distinguishing Pre-DM from T2DM, given its association

with chronic inflammatory diseases. Insulin resistance, thus, seems

secondary to the inflammatory process, where both innate and

adaptive immune responses are potentially driven by microbiota-

induced inflammation (Cai et al., 2011; Agrawal and Kant, 2014).

These results highlight the pivotal role of inflammation in the

development and progression of diabetes.

To investigate the association between TCM tongue diagnosis

and microbiota, patients with thin white fur and white greasy fur

were selected to examine the correlation between tongue

characteristics and the oral-gut microbiota axis. Analysis of

species composition revealed that the predominant flora in both

the oral cavity and intestines of patients with white greasy coating

belonged to Firmicutes, a key producer of butyric acid among short-

chain fatty acids (SCFAs). SCFAs play a role in fatty acid oxidation,

glucose metabolism, and inflammation (Rivera-Chávez et al., 2016),

with butyric acid promoting cytokine production in anti-

inflammatory regulatory T cells and enhancing lipolysis (Atarashi

et al., 2011, 2013; Rumberger et al., 2014). To further understand

the mechanism behind greasy fur formation, an abundance analysis

of KEGG functional pathways was performed. Results indicated

that the differential changes in tongue coating were primarily linked

to pathways involved in Metabolism, with the highest abundance

observed in metabolic cofactors and vitamins.

Advancements in science and technology have accelerated the

application of deep learning models in disease diagnosis and

classification (Zhang et al., 2024a). RF analysis and ANN models

have been employed to identify key signature genes and develop

diagnostic frameworks (Yao et al., 2024). Xiaozhou Lu et al. (Lu

et al., 2024) demonstrated that deep learning-based tongue image

analysis serves as an effective screening tool for liver fibrosis. In

previous research, tongue image analysis was integrated with

microbiome technology to develop an early screening model for

MAFLD with enhanced accuracy (Dai et al., 2024). This study

marks the first instance of combining tongue analysis and

microbiome data for the prediction and diagnosis of Pre-DM and

T2DM, achieving high precision. Among the three diagnostic

models, SVM showed the highest accuracy, reaching 78.9%.

Contribution analysis identified TB-a and perALL in tongue

image parameters, along with Escherichia and Porphyromonas-A

in microbiota, as primary classification indicators for Pre-DM and

T2DM diagnosis. Non-laboratory-based risk models offer the

potential to identify and prioritize individuals at higher risk,
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guiding targeted diagnostic testing and preventive measures.

Constructing a diagnostic model confirms the importance of

tongue image and oral flora in diagnosing diabetes, providing a

basis for further exploration of the mechanism.

This experiment led to several key conclusions. First, distinct

characteristic markers are present at various stages of diabetes

progression. The increased abundance of Porphyromonas in the

oral microbiota and Blautia in the gut microbiota not only serve as

microbiological indicators for Pre-DM patients but also function as

risk predictors for T2DM. Escherichia is significantly elevated in

T2DM and represents a potential microbial marker for the

condition. Additionally, the study identified alterations in tongue

imagery and the oral-gut axis across different stages of diabetes,

emphasizing the central role of elevated Firmicutes in the oral-gut

axis in the development of a white, greasy coating, closely linked to

metabolic processes. A diagnostic and predictive model was also

developed, achieving high accuracy through the SVM model.

Parameters such as TB-a and perALL in tongue imagery, along

with Escherichia and Porphyromonas-A in microbiota, emerged as

primary classifiers for Pre-DM and T2DM diagnosis. The findings

further underscore the relevance of the oral microbiota present on

tongue coatings, supporting the scientific foundation of TCM

tongue diagnosis in disease management.

This exploratory research combined tongue diagnosis from

TCM with analysis of the oral-gut microbiome axis. However,

limitations due to the small sample size led to overfitting in the

machine learning model, and validation of the corresponding

diagnostic model remains insufficient. Future studies will aim to

address these issues by increasing the sample size, controlling for

confounding variables, and incorporating additional bioinformatics

data to further identify diagnostic markers for Pre-DM and T2DM.
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